175
Tomographic Anthropomorphic Models Part IV: Organ Doses for Adults due to Idealized External Photon Exposures M. Zankl, N. Petoussi-Henss, U. Fill, D. Regulla Institut für Strahlenschutz ________________________________________ November 2002 GSF-Bericht 13/02

Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

Tomographic Anthropomorphic Models

Part IV: Organ Doses for Adults

due to Idealized External Photon Exposures

M. Zankl, N. Petoussi-Henss, U. Fill, D. Regulla

Institut für Strahlenschutz

________________________________________

November 2002

GSF-Bericht 13/02

Page 2: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

Contents Abstract ....................................................................................................... 1 1 Introduction........................................................................................... 2 2 The voxel phantoms .............................................................................. 6 3 Monte Carlo calculations .................................................................... 11

3.1 Doses to bone and red bone marrow............................................. 14 4 Results and Discussion........................................................................ 16

4.1 Description of the data presented.................................................. 16 4.2 Comparison of conversion coefficients between voxel and

mathematical models ................................................................. 17 4.3 Comparison of conversion coefficients for voxel models............. 25

5 Conclusions......................................................................................... 26 References ................................................................................................. 29 Appendix A Conversion coefficients for anterior-posterior (AP) broad

parallel beams 35 Appendix B Conversion coefficients for posterior-anterior (PA) broad

parallel beams 63 Appendix C Conversion coefficients for left lateral (LLAT) broad parallel

beams 91 Appendix D Conversion coefficients for right lateral (RLAT) broad paral-

lel beams 119 Appendix E Conversion coefficients for rotational (ROT) broad parallel

beams 147

Page 3: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

1

Abstract

The present report contains extensive tables and figures of conversion co-efficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman. The geometries considered were broad parallel beams, supposing to simu-late standard occupational exposures. The directions of incidence are ante-rior-posterior, posterior-anterior, left lateral, right lateral and a full 360° rotation around the body's longitudinal axis. The organ dose conversion coefficients given in this catalogue were calcu-lated using a Monte Carlo code simulating the photon transport in the voxel models. Conversion coefficients are given for the equivalent dose to 23 organs and tissues and for monoenergetic photons with energies be-tween 10 keV and 10 MeV. The primary raw data from the Monte Carlo calculation are presented in tables and figures. For comparison purposes, in the figures fitted data of the conversion coefficients for the mathematical phantoms Adam and Eva (both consisting of organs with the so-called ref-erence masses) are also shown. The variation of the conversion coefficients from voxel to mathematical model as well as from voxel to voxel model is extensively described. The positioning of some organs is compared for the voxel and mathematical models and some deficiencies of the latter ones are revealed. The impact of the size of the model as well as the individual variation on the conversion coefficients is also discussed.

Page 4: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

2

1 Introduction

Models of the human body are needed in order to estimate the radiation dose received by the different tissues or organs of the body resulting from an irradiation. This could be an irradiation of a patient due to medical pur-poses, for example a diagnostic x-ray examination, or an irradiation that a person receives at his working place, i.e. a radiation worker at a nuclear power station or at several other places where radiation sources are used, e.g. in radiology. Furthermore, irradiations to all of us (i.e. general public) occur due to the natural environment and often due to man-made contami-nations. For all these cases the radiation doses absorbed in the organs of the human body have to be estimated in order to estimate the risk con-nected to these irradiations. The International Commission on Radiological Protection (ICRP) elabo-rates since more than 50 years a system for radiological protection, based on quantities, concepts and basic recommendations. The concept of radia-tion protection is based on the justification, optimisation and limitation of the radiation exposure. This concept resulted in a dose limitation system for occupational and man-made environmental radiation exposures to en-sure that the radiation risk would not exceed legally established limits. The quantity to be limited in radiation protection of occupationally exposed persons is the effective dose, E, which is a combination of so-called equivalent doses of several organs and tissues of the body that are consid-ered more radiosensitive and therefore “critical”.

TRT

TTT

T wwDwHE ⋅⋅=⋅= ∑∑

where HT is the mean organ equivalent dose, the quantity assumed related to the stochastic radiation risk. It is derived from the mean organ absorbed dose, DT, i.e. the total amount of energy deposited in an organ (or tissue), T, per mass of the organ, by multiplying with a radiation weighting factor, wR reflecting the relative biological effectiveness of the incident radiation. The organs and tissues together with their respective tissue weighting fac-tors wT can be found in ICRP Publication 60 (ICRP 1991) and are shown in Table 1.

Page 5: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

3

Table 1: Tissue weighting factors, wT, for the evaluation of effective dose, E.

Tissue or organ Tissue weighting

factor, wT

Gonads 0.20 Colon 0.12 Lungs 0.12 Red bone marrow 0.12 Stomach 0.12 Bladder 0.05 Breast 0.05 Liver 0.05 Oesophagus 0.05 Thyroid 0.05 Bone surface 0.01 Skin 0.01 Remainder * 0.05

* The organs constituting the remainder are the following: adrenals, brain, small intestine, kidneys, muscle, pancreas, spleen, thymus and uterus. The equivalent dose conversion coefficients for the remainder are evaluated as arithmetic mean values of the conversion coefficients for these nine organs. E is then the quantity to be limited in radiation protection of occupationally exposed persons. Following new and extended epidemiological data, the ICRP attributes risks for stochastic effects of R = 7.3·10-2·Sv-1 to a popula-tion of both sexes and all ages, and R = 5.6·10-2·Sv-1 to a working popula-tion (ICRP 1991), where the unit sievert refers to the effective dose E. This means, by multiplying a specific value of effective dose (in sieverts) by 7.3 or 5.6, the percentage probability of a resulting detriment could be evalu-ated. Therefore, it is evident the necessity to estimate the organ and tissue equivalent doses and the effective dose in order to be able to judge the risk of an irradiation. As neither organ equivalent doses nor effective dose are measurable, the so-called conversion coefficients relate organ doses to measurable dose quantities.

Page 6: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

4

To estimate the equivalent doses in the body and consecutively the risk to a person or population, there are two approaches, an experimental and a theoretical one and both require representations of the human body, so-called phantoms or models. The experimental determination is very diffi-cult whereas the mathematical modelling of an exposure has been proved to be extremely flexible and powerful. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body.

The phantoms, i.e. the models used for the representation of the human body in dose calculations, can range from simple geometric forms such as spheres, cylinders or slabs to complex representations of detailed anatomi-cal features. Such complex models, used since 1966 for the estimation of organ doses are the so-called mathematical phantoms, which are models whose body organs and tissues are described by mathematical expressions representing planes or cylindrical, conical, elliptical or spherical surfaces. This model was named “MIRD” after the initials of the Medical Internal Radiation Dose Committee of the US Society of Nuclear Medicine where it was initially developed (Snyder et al 1969, 1979). From this, several paediatric models were derived to represent infants and children of various ages, for example those from Cristy (1980) and Cristy and Eckerman (1987 a-f). As an improvement to these hermaphrodite model, separate male and female adult mathematical models have been introduced by Kramer et al (1982) called Adam and Eva. More recently, four phantoms representing the adult female, non-pregnant and at 3 stages of pregnancy, were elabo-rated by Stabin et al (1999). All these models represent an “average or standard individual” as defined by ICRP´s data on Reference Man (ICRP 1975). Obviously, these mathematical models, although they have a large number of organs and their respective masses are in accordance with the ICRP data on Reference Man, are rigid, stylised and unrealistic, concern-ing organ shape and location. The development of anatomically realistic mathematical models from medical imaging data started as an extension and improvement to these earlier phantoms. These models use computed (CT) or magnetic resonance (MR) tomographic data of real persons to provide three-dimensional repre-sentations of the human body and comprise a large number of volume ele-ments (voxels) all of the same size but with differing composition accord-ing to the organ to which they belong.

Page 7: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

5

Among other laboratories, GSF started the development of voxel models covering various ages (Zankl et al 1988, Veit et al 1989). Such models have been the subject of increasing interest and acceptance, and others have been developed elsewhere using CT or MR imaging. Dimbylow (1996) elaborated a male adult whole body voxel phantom from a set of serial MRI slices from one subject. More recently, a male adult voxel phantom has been constructed from high-resolution photographic images of the Visible Human (Spitzer and Whitlock, 1998, Xu et al 2000). Partial body models were also developed: Zubal et al (1994, 1996) developed a head-to-torso phantom as well as a head phantom with fine resolution whereas Caon et al (1999) constructed a trunk model of a 14-year-old fe-male. For almost thirty years the mathematical MIRD-type phantoms, based on the anatomical data of the reference man as defined in ICRP Publication 23 (ICRP 1975) found wide acceptance and were used from several groups for numerous applications in the field of radiation protection to compute organ doses from external and internal exposures, environmental, medical and occupational. Photon, electron as well as neutron exposures were consid-ered, together with Monte Carlo codes simulating the transport of radiation in the body. Conversion coefficients for external radiation from idealized geometries are compiled in a joint ICRP/ICRU Publication (ICRP 1996, ICRU 1998). Concerning photon external exposures, a large amount of data appearing at the above publications, stem from the GSF and were es-timated using the MIRD type phantoms Adam and Eva (Zankl et al 1997). In view of the advantages of the new voxel models, discussed below, new sets of conversion coefficients using adult male and female voxel models were calculated and are presented here, for idealized geometries.

Page 8: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

6

2 The voxel phantoms

A recent overview of the GSF voxel phantoms has appeared in Petoussi-Henss et al (2002). Saito et al (2001) describe the voxel phantom of a Japanese male. A detailed presentation of Donna will appear soon (Fill et al in preparation). Four voxel phantoms were used for the present calculations: three of them were constructed at the GSF (Zankl and Wittman 2001, Petoussi-Henss et al 2002, Zankl et al 2002) and the fourth one was constructed at Yale Uni-versity (Zubal et al 1994). Table 2 shows the voxel phantoms used, giving also the age, height and weight of the individual from whose data the phan-toms were constructed. Figure 1a shows the male phantom Golem, shown for comparison purposes together with the mathematical model Adam (Figure 1b). The GSF voxel phantoms contain a large number of organs and tissues including all ICRP critical organs except bone surface. Table 3 shows the masses of some selected organs of these phantoms. In the same table, the masses of the ICRP 23 Reference Man are also shown.

a b

Figure 1: View of selected organs of the male phantom Golem and the male mathematical model Adam

Page 9: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

7

Table 2: Voxel phantoms used for the present calculations

Name Gender Age Type Weight(kg)

Height (cm)

Size of voxel

(mm3 )

Nr of organs

DONNA female 40 years

whole-body, with standard-ized GI tract

79 170 35.2 62

GOLEM male 38 years

whole-body 68.9 176 34.6 121

Voxel-man1

male ? head to mid-thigh

(65.2)2

70.2 (170)2

178 9.6 53

VISHUM male 38 years

from knees upwards

(87.8) 2

103.2 (125)

180. 4.3 131

1 Constructed at Yale University (Zubal et al 1994) 2 value in parenthesis indicates the weight/height of the phantom (partial body), whereas the value without the parenthesis indicates the weight/height of the pa-tient. Voxelman was constructed at Yale University (Zubal et al 1994, 1996). This is the model of an adult male of height 178 cm and weight 70.2 kg who had been scanned from head to upper thigh using computed tomogra-phy (CT). The external dimensions are similar to the Reference Man data for male persons (ICRP 1975). A total number of 54 different organ and tissues was defined in this model, comprising those organs considered ra-diation-sensitive by ICRP (ICRP 1991), except thymus. Red bone marrow was segmented in the long bones, and "skin" comprises also the subcuta-neous adipose tissue. The voxel dimensions given in the literature are not unequivocal. For the present work, a voxel height of 4 mm was assumed, resulting in an overall height of 94.4 cm from head to upper thigh, which seems reasonable compared to the reported total body height. From the de-scription of the scan geometry (image diameter: 480 mm, original scan resolution: 512x512 pixels) and the reported data reduction to 128x128 pixels, a voxel side length of 3.75 mm in the image plane was recon-structed.

Page 10: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

8

Golem (Zankl and Wittmann 2001) was segmented from the whole body CT data of a 38-year old male patient of 176 height and 68.9 kg weight, i.e., a person similar to the male Reference Man in his external dimensions. Donna (Fill et al in preparation) is the model of a 40-year old female pa-tient of 176 cm height and about 80 kg weight; that means she is taller and heavier than the female Reference Man but most of her organ masses are in good agreement. Donna has a standardized GI tract which has been seg-mented from a high resolution CT data set of the intestinal region of an-other female patient and was then fitted into the pelvic region (Fill et al in preparation).

The Visible Human was constructed at GSF from CT data from the Visible Human Project of the American National Library of Medicine. This project provides CT and MRI as well as high-resolution photographic image data of the donated body of an executed man from Texas, USA. The model comprises the body from head to knees and has a voxel resolution of 0.91x0.94x5 mm3. To best fit with the photographic image data, the pixel side lengths were determined by comparing the front-to back and left-to-right distances of the CT and the photographic data set in several images at corresponding height positions. For the photographic images, pixel dimen-sions of 0.33x0.33 mm2 were assumed. The fact that the pixel dimensions thus reconstructed for the CT images differ slightly in width and depth in-dicates the probability of a moderate distortion of either the CT or the pho-tographic data set. Another possible explanation might be that certain deg-radation processes may have started in the dead body between CT scanning and cryosectioning. This would mean that part of the differences in the im-age sequences are due to changes in the body itself, not to differences caused by the image modalities. Another voxel model of the same individ-ual exists, called VIP-Man, segmented from the photographic images (Spitzer and Whitlock 1998, Xu et al 2000).

For all GSF voxel models, the content of red bone marrow was estimated for each skeletal voxel separately from its original grey value and the loca-tion of the bone voxels. That means, following literature data (Cristy 1981, ICRP 1995), all bone marrow below mid of humeri and femurs was as-sumed inactive, i.e., yellow. At all other locations, the marrow was as-sumed as mixture of equal volumes of red and yellow bone marrow. This method is described in more detail in Zankl and Wittmann (2001) and re-sults in a distribution of the red bone marrow among different bones that agrees reasonably well with literature data (Cristy 1981, ICRP 1995).

Page 11: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

9

Table 3. Organ and tissue masses (g) of the voxel phantoms whose con-version coefficients are shown in this report. For comparison pur-poses, the masses of the ICRP Reference Man are also shown (ICRP 1975, ICRP 1995).

Organ or tissue

Golem Voxelman

Visible Human

Donna

ICRP

Reference Man

ICRP Reference

Female adipose tissue 19970. 2667. (26040.)1 34820. 13500. 17700. adrenals 22.8 3.6 7.2 21.7 14. 14. bladder wall 68.4 186. 51.9 61. 45. 45. Bladder contents 272. 382. 41.2 45. 200. 200. brain 1218. 1081. 1429. 1208. 1400. 1200. breast - - - 43.92 - 360. colon wall 297. 1080. 790. 321.6 370. 360. eye lens 0.9 1.4 0.6 1.9 0.4 0.4 gall bladder wall 8.3 19.4 3.1 6.6 10. 8. heart 716. 553. 637. 446.3 330.3 240.3

kidneys 316. 450. 383. 281. 310. 275. liver 1592. 1729. 2037. 1585. 1800. 1400. lungs 729. 912. 1026. 631. 1000. 800. muscle 26970. (21160.) 1 (40970.) 1 25420. 28000. 17000. oesophagus 30.1 37.9 86.2 27.7 40. 30. ovaries - - - 12.1 - 11. pancreas 71.9 46.8 62.5 41.2 100. 85. red marrow 1177. 1223. 1399. 1012. 1170. 900. skeleton 6831. (6448.) 1 (8841.) 1 7484. 10500. 7800. skin 4703. (18000.) 1 (1950.) 1 4351. 2600. 1790. small intestine +cont.

959. 1562.4 521. 767.

435. 363.

640. 400.

600.

spleen 174. 329. 266. 306. 180. 150. stomach wall 233. 303. 258. 195. 150. 140. stomach contents 140. 166. 305. 250. testes 21.1 102. 25.5 - 35. - thymus 10.7 - 14.0 19.0 20. 20. thyroid 25.8 6.2 31.8 18.7 20. 17. uterus - - - 71.7 80. yellow marrow 2445. - 1662. 1604. 2480. 1800.

1 parentheses indicate that corresponding mass of the lower legs is missing 2 glandular tissue only 3 wall (muscle) only 4 not separated

Page 12: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

10

The main differences of the voxel to MIRD-type phantoms are summarised in Table 4. The more significant advantage of the voxel phantoms towards the mathematical ones, is their realism concerning anatomy: the organ shape as well as the organ location is realistic, since computed tomo-graphic images from a real person were employed for their construction. The distance between the organs is an important parameter, particularly for internal dosimetry where several organs are the so-called source organs and all the others are the targets. The realism of the organ shape is demon-strated in figure 2 where a CT slice of Golem is appearing, together with a cross-section of the MIRD-type phantom Adam. Table 4: Principal differences of voxel to MIRD-type phantoms Mathematical Tomographic / voxel Organ shape reduced to a (over-) simpli-

fied form as identified on the slice im-ages; realistic

Organ size rigid; representative Depending on individual; variable, for each dimension independently (influence of body mass on doses)

Organ topology Often unrealistic realistic Skeleton homogeneous mixture of all

skeletal components; varia-tion of red bone marrow dis-tribution among different bones and at various ages considered

amount of bone marrow and hard bone assessed from the CT data, for each bone voxel separately, i.e. with high resolution

Page 13: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

11

Figure 2. Comparison of an axial slice of the voxel phantom Golem (right) to the corresponding one of the mathematical phantom Adam (left). Organs

shown: adrenals, liver, lungs, spleen, stomach wall, stomach contents.

3 Monte Carlo calculations

The radiation transport in the human phantoms was calculated using a Monte Carlo code following individual photon histories (Veit et al 1989). For each single particle history, the parameters influencing its actual course were selected randomly from their probability distributions. The radiation processes considered inside the human body were photoelectric absorption, Compton scattering and pair production. The cross section data for the photon interaction processes for single elements were taken from a library of the ORNL (Roussin et al 1983). From these elemental data, cross sec-tion data for body tissues were evaluated according to chemical composi-tion and density. The media considered for the present calculations were hard bone, red and yellow bone marrow, muscle tissue, skin, soft tissue, adipose tissue, lung tissue and air. The tissue compositions were those described in ICRU Re-port 44 (ICRU 1989) and are shown in table 5; the composition of "soft tissue" was averaged from those of brain, GI tract, heart, kidneys, liver, ovaries, pancreas, spleen, testes and thyroid. The energy transferred at a point of inelastic photon interaction was assumed to be deposited at that point; secondary electrons were not pursued further ("kerma approxima-

Page 14: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

12

Table 5: Elemental compositions (percentage by mass) and densities of body tissues (from. ICRU Report 44 (1989) Tissue 1

H 6 C

7 N

8 O

11 Na

12 Mg

15 P

16 S

17 Cl

19 K

20 Ca

26 Fe

ρ (g/cm3)

Hard (=cortical) bone 3.4 15.5 4.2 43.5 0.1 0.2 10.3 0.3 22.5 1.920 Cartilage 9.6 9.9 2.2 74.4 0.5 2.2 0.9 0.3 1.100 Skin 10.0 20.4 4.2 64.5 0.2 0.1 0.2 0.3 0.1 1.090 Blood 10.2 11.0 3.3 74.5 0.1 0.1 0.2 0.3 0.2 0.1 1.060 Muscle tissue 10.2 14.3 3.4 71.0 0.1 0.2 0.3 0.1 0.4 1.050 Soft tissuea) 10.45 12.45 2.6 73.5 0.2 0.2 0.2 0.2 0.2 1.050 Red bone marrow 10.5 41.4 3.4 43.9 0.1 0.2 0.2 0.2 0.1 1.030 Breast (mammary gland) 10.6 33.2 3.0 52.7 0.1 0.1 0.2 0.1 1.020 Yellow bone marrow 11.5 64.4 0.7 23.1 0.1 0.1 0.1 0.980 Adipose tissue 11.4 59.8 0.7 27.8 0.1 0.1 0.1 0.950 Lung tissue 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2 0.260 a) The composition for soft tissue was evaluated as an average of the compositions for brain, GI tract, heart, kidney, liver,

ovary, pancreas, spleen, testis and thyroid

Page 15: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

13

tion"). The main advantage of this technique is its high calculation speed, since the pursuit of secondary particles is rather time-consuming, espe-cially in the high-energy domain, where the ranges of these particles are long. The kerma approximation is valid as long as there is approximate secondary particle equilibrium, which can be supposed for all points lo-cated well within the body, due to the moderate differences of the photon cross sections for the tissues in the human body and in view of the macro-scopic approach considering mean organ and tissue doses. However, for superficial organs, such as skin and testes, the kerma approximation leads to overestimations of up to a factor of two at photon energy 10 MeV; for these organs, it is valid only below approximately 1 MeV (Saito et al 2001, Chao et al 2001). Nevertheless, since the conversion coefficients calculated with the kerma approximation are overestimations of the true values, they are still useful for radiation protection purposes where conservative esti-mates usually are acceptable. The irradiation conditions considered in this study were idealized beam geometries commonly assumed to represent occupational exposures, i.e., irradiation by broad parallel beams of monoenergetic photons. The direc-tions of photon incidence were anterior-posterior (AP), posterior-anterior (PA), left lateral (LLAT), right lateral (RLAT) and a full 360° rotation of the photon beam around the longitudinal axis of the body (ROT). The field size comprised the total width and height of the body. The monodirectional geometries are considered to approximate radiation fields produced by sin-gle sources and particular body orientations, whereas the ROT geometry is an approximation of a person who moves randomly in the radiation field of a single source, or irradiation from a widely dispersed planar source. The photon energies considered were monochromatic and ranged from 10 keV to 10 MeV. The absorbed dose to an organ or volume was evaluated as the total amount of energy deposited in this organ or volume, divided by its mass. The radiation weighting factor is unity for photons of all energies (ICRP 1991), the equivalent dose is therefore numerically equal to the absorbed dose. As the amount of energy deposited depends on the number of photon histories simulated, a more meaningful dose quantity is evaluated by nor-malizing the resulting equivalent dose to a measurable quantity which is also proportional to the number of histories; therefore, the dose values in this study are not expressed as absolute values of equivalent dose but rather in the form of conversion coefficients by normalization to the quantity air kerma free-in-air.

Page 16: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

14

For each irradiation, 2.5 – 20 million photon histories were simulated. This led to relative statistical uncertainties (in terms of coefficients of variance) for the calculated organ dose conversion coefficients that were generally below approximately 2% for photon energies above 30 keV. For small or-gans, such as adrenals, breast (glandular tissue only), oesophagus, ovaries, testes, thymus, thyroid and uterus, the coefficients of variance sometimes amounted up to 7%, predominantly for geometries where the organ in question was oriented away from the radiation beam, and for eye lenses in PA geometry up to 37%. For photon energies below 30 keV the coeffi-cients of variance were higher than for the higher energies and could amount up to 100%, if the energy deposition is due to one single event. In these cases, however, the organ doses are so small that they can be ne-glected. For large, extended organs, such as muscle, red bone marrow, skeleton and skin the coefficients of variance were below 0.3% for photon energies above 30 keV, and up to 4% below 30 keV.

3.1 Doses to bone and red bone marrow Further approximations were made to derive the doses to bone surface and red bone marrow: Bone surface is a thin layer – typically about 10 μm in thickness (ICRP 1975) – of tissue covering the bones. Being far beyond voxel resolution, it cannot be directly modeled in voxel models (and has not been modeled in mathematical body models either). Below approxi-mately 300 keV, the cross sections for bone are considerably higher than those for soft tissue. Consequently, the dose to bone surface is significantly enhanced by an increased production of secondary electrons in the bones, compared to the dose to soft tissues beyond the range of these secondary electrons, such as the soft tissue organs. This enhanced dose to the tissue closely adjacent to bones is, however, not as high as the mean dose to the bone (Drexler 1968); the latter is, consequently, a conservative estimate of the dose to the bone surface in this photon energy range. For higher photon energies, the cross sections of bone and soft tissues have a similar magni-tude, and the doses are similar as well. Therefore, no attempt has been made to exactly determine the dose to bone surface; instead, the mean dose to the skeleton (including hard bone, red and yellow bone marrow) was taken as a conservative estimate of this dose.

Page 17: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

15

As mentioned above, for each voxel in the skeleton, the relative contents of hard bone, red and yellow bone marrow were estimated from the original grey values and the location of the bone voxels. Following literature data (Cristy 1981, ICRP 1995), all bone marrow below mid of humeri and fe-murs was assumed inactive, i.e., yellow. At all other locations, the marrow was assumed as mixture of equal volumes of red and yellow bone marrow. Based on these volume ratios, the cross sections were combined from those for hard bone, red and yellow bone marrow for each bone voxel individu-ally, and also the mass of each bone voxel was evaluated using the densi-ties of the three compounds and their relative volume contribution. For cal-culating the dose to the red bone marrow, the following procedure, de-scribed by Zankl et al (2002), was adopted: since each bone voxel was considered as composed of various proportions of hard bone, red and yel-low bone marrow, each amount of energy deposited in a bone voxel was also considered as distributed among these constituent tissues. In a first step, the energy amount was subdivided to the different tissues using the mass ratios of these tissues in the voxel. In a second step, the difference of the mass energy absorption coefficients of these tissues was accounted for: the mass energy absorption coefficient of a voxel under consideration was combined from the individual ones, and then the ratio of the mass energy absorption coefficients for red bone marrow and for the mixture was taken as a correction factor for the energy deposited in red bone marrow. Fur-thermore, the dose enhancement to red bone marrow due to an increased amount of secondary electrons released in the hard bone proportion of a voxel was considered by using correction factors suggested by Spiers (1969) that are based on measured chord length distributions in bone mar-row cavities. In summary, the energy deposited in red bone marrow at the occasion of an individual photon interaction in a bone voxel, is evaluated as

)()(

)(

ph

bE

rbmE

rbmbrbm ESrEE

phen

phen

⋅⋅⋅=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

ρμ

ρμ

, (1)

where Erbm is the amount of energy deposited at the occasion of a photon interaction in the red bone marrow proportion of a voxel, Eb is the amount of energy deposited in the entire bone voxel, rrbm is the mass proportion of red bone marrow in the respective bone voxel, Eph is the photon energy be-fore the interaction, and S(Eph) is the dose enhancement correction factor (Spiers 1969) at photon energy Eph;

Page 18: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

16

ybm

enybm

rbm

enrbm

hb

enhb

b

en ErErErE ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⎟⎟

⎞⎜⎜⎝

⎛⋅+⎟⎟

⎞⎜⎜⎝

⎛⋅=⎟⎟

⎞⎜⎜⎝

⎛)()()()(

ρμ

ρμ

ρμ

ρμ

,(2)

where rhb, rrbm and rybm are the mass proportions of hard bone, red and yel-low bone marrow in the bone voxel under consideration,

i

en E ⎟⎟⎠

⎞⎜⎜⎝

⎛)(

ρμ is the

mass energy absorption coefficient at photon energy E for medium i, (i ∈{hb, rbm, ybm} indicating the medium hard bone, red bone marrow or yellow bone marrow, respectively), and

1=++ ybmrbmhb rrr . (3) Eb is used for calculating the dose to the skeleton, Erbm for calculating the dose to red bone marrow. For Voxelman the application of the above method was not possible since the original grey values were not available to the authors of the present work, thus the correction factors S(Eph) from Spiers (1969) have been ap-plied to the energy deposited in the segmented red bone marrow regions.

4 Results and Discussion

4.1 Description of the data presented The organ doses were evaluated in the form of so-called "dose conversion coefficients", i.e., as mean organ equivalent doses normalized to a measur-able quantity. The normalization quantity for the idealised geometries is the "air kerma free-in-air"; the conversion coefficients are given the unit Sv·Gy-1. The organs for which conversion coefficients are given in this re-port are those defined as “sensitive” to ionising radiation by ICRP (1991). For comparison purposes, also a risk-weighted whole body equivalent dose quantity was evaluated, for each voxel model separately. This quantity was calculated as weighted average of the single organ equivalent dose conver-sion coefficients, along the ICRP definition of effective dose, E (ICRP

Page 19: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

17

1991). That means, each individual organ equivalent dose conversion coef-ficient was multiplied with the appropriate tissue weighting factor wT as given in ICRP Publication 60 (ICRP 1991), and these products were summed up. The dose to the remainder was evaluated as arithmetic mean of the single organ doses, and, following ICRP Publication 67 (ICRP 1993), the upper large intestine was not included among the remainder or-gans, thus reducing their number to nine. However, since each model is either male or female, not all gender-specific organs could be included in the evaluation of this model-specific dose quantity. For the male models, dose to breast was not included, and – since the remainder comprises also the uterus – the remainder dose was evaluated as the arithmetic mean of the doses for eight organs only. Consequently, the resulting dose quantity is, although similar to effective dose, in fact a different quantity. For the sake of clarity, it was, therefore, given the name H<model>.

4.2 Comparison of conversion coefficients between voxel and mathematical models

The anatomical differences between voxel and MIRD-type phantoms, dis-cussed in section 2, explain the deviation of the voxel conversion coeffi-cients to those obtained with the mathematical phantoms. Since the mathematical models Adam and Eva represent male and female reference persons, their organ dose conversion coefficients would be expected to lie within the range of data spread out by the individual voxel models of this work, ideally close to those of Golem and Voxelman who have external dimensions similar to those of Reference Man. For many organs, the con-version coefficients for the mathematical models are indeed within the range of the individual voxel values, for example for brain and pancreas PA irradiations. For other organs and irradiation directions like thyroid AP, kidneys AP, lower large intestine PA, and pancreas RLAT, the conversion coefficients for Adam and Eva are more oriented towards the edges of the range of values for the other organs shown in the above figures, thus indi-cating that these organs are in a somewhat extreme location in the mathe-matical models. Although it is obvious that the number of voxel models available for this study is not sufficient to draw conclusions that would be statistically significant, we believe that their spread in body dimension is large enough to give at least an indication of the spread of individual organ equivalent dose conversion coefficients that may be expected for persons of different statures. It is ensured at least that the individual variability of organ doses cannot be smaller than that found in this work.

Page 20: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

18

An extended overview of the comparison between the organ equivalent dose conversion coefficients for the mathematical and 7 voxel models is given in Zankl et al (2002). A detailed interpretation of these results and conclusions drawn about the appropriateness of the organ topology in the mathematical models are given in the following on the basis of the unidi-rectional geometries. (Since ROT geometry is an average of all angles of incidence, the differences are more moderate than those for the unidirec-tional geometries, and the reasons for the differences are the same.) For the photon energies up to ca. 30 keV, where the photons have only lit-tle ability to penetrate, the organ dose conversion coefficients depend strongly on even slight individual variations, and the differences may amount to hundreds of per cent. However, the conversion coefficients are very small in this energy range, and their statistical uncertainty is large compared to the values at higher photon energies. For photon energies above 1 MeV the penetration is relatively high, and individual differences are of minor consequence. Therefore, in the following the conclusions on the influences of individual anatomy on the calculated organ doses refer to the intermediate photon energies, between 60 and 200 keV, where many of the conversion coefficients have their highest values. The organs discussed appear in an alphabetical order and the conclusions were drawn not only on the basis of the 4 voxel phantoms whose conversion coefficients are pre-sented in this report, but also on three additional ones (Zankl et al 2002, Fill et al in preparation). Adrenals: For the adrenals, the equivalent doses for the mathematical models are comparatively low for AP and high for PA photon incidence; that means these organs are at an extremely posterior location, compared with the organ topology found in the voxel models of this study. The doses calculated for the mathematical models are, however, inside the range of values for the voxel models; thus, though extremely posterior, the location of the adrenals does not seem to be outside the spread found among the persons included in this study. Bladder: For the bladder, the equivalent doses for Adam and Eva are high for all geometries except PA; that means they are on average extended more towards the front and both sides than in the voxel models. This is probably not a deficiency of the mathematical models: it can be rather as-sumed that the bladder occupies less than average space in the voxel mod-els due to having been emptied shortly before acquisition of the CT scan.

Page 21: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

19

Brain: The location of the brain in the mathematical models seems to agree well with that in the voxel models when concluded from a first glance of the conversion coefficient; it seems just less than average shielded against irradiation from AP. This is, however, due to a slight defi-ciency in the mathematical models: the brain is represented by the volume contained in the skull and the cerebellum has not been included. This part of the brain, however, is shielded against AP irradiation by the facial skele-ton, thus reducing the AP conversion coefficients for the whole brain for the more realistic model geometries. Breast: The slight difference in the breast dose is probably due to a differ-ent representation of the tissue under consideration in both model types: whereas for Eva the mean dose to the entire breast has been calculated, for the voxel model Donna the dose to glandular tissue only has been consid-ered. Colon: The colon seems at an "average" location in the mathematical mod-els with respect to AP irradiation, and more than average shielded against RLAT irradiation, whereas the colon dose for the mathematical models overestimates the maximum dose for the voxel models by 4-10% for PA irradiation, and underestimates the minimum voxel model dose by 12-18% for LLAT irradiation. With respect to organ topology this means that the colon is located too far in the back and less extended to both sides (espe-cially towards the left side) in the mathematical models. More details are given below for the lower and upper large intestines, which are the two parts of the colon. Eye lenses: The organ equivalent dose conversion coefficients for the eye lenses evaluated for the mathematical models are inside the spread of val-ues calculated for the voxel models for all geometries involved in this study. Kidneys: The kidneys are more than average shielded against AP irradia-tion in Adam and Eva and moreover the maximum dose among the voxel models is overestimated by 16-26% for PA irradiation in the mathematical models. This means that the kidneys are clearly located more in the front in reality than in the mathematical models. Liver: The liver doses for mathematical and voxel models are in good agreement only in relation to RLAT irradiation; for AP and ROT, the con-

Page 22: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

20

version coefficients for the mathematical models are high, for LLAT they are low, and for PA they overestimate by 6-13% the respective values for voxel models. The low values for LLAT, combined with average values for RLAT geometry, must be due to the highly eccentric elliptical cross section of the mathematical models (including both arms) that leads to a rather large lateral diameter. Furthermore, the high values for AP together with an overestimation for PA irradiation result from this peculiar shape that leads to small front-to-back diameters at the sides of the trunk (and, consequently, a tendency to too shallow locations for laterally positioned organs) compared to the realistic cross sections that tend to be more "rec-tangular". Lower large intestine: For the lower large intestine (i.e., descending and sigmoid colon including rectum), the conversion coefficients for Adam and Eva are high compared to those for the voxel models for AP and PA irra-diation, and low for both lateral directions. Since a large part of this organ is also placed at one side of the body, this is again due to the small front-to-back diameter at the sides of the trunk together with the large lateral di-ameter. With respect to exact positioning it should be noted that the organs of the alimentary tract are highly variable also within an individual, so that an "erroneous" location of such an organ in the mathematical models could be concluded only on the basis of large deviations between mathematical and voxel models together with a low variability among the different voxel models, which is not the case. Lungs: For the lungs, the Adam and Eva conversion coefficients are high for all directions of photon incidence, and for PA they present an overesti-mation of 1-13%. This is due to the fact that the lungs extend to very su-perficial locations at their bottom in the mathematical models, whereas in reality are shielded by thicker layers of overlying tissues. Moreover, shielding by the ribs seems to be more effective in reality than in the mathematical models, especially for the PA geometry, and to some extent also for the lateral geometries. Muscles: The muscle dose conversion coefficients for Adam and Eva are high for all geometries, however without a true overestimation. Since in the mathematical models this tissue has not been explicitly modelled, the quality of the estimated dose depends strongly on the volume chosen to approximate the muscles. In the present study, for the mathematical models the entire amount of "tissue" not assigned to any other organ has been taken to represent muscle. As this volume is shielded from the incoming

Page 23: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

21

radiation only by the skin, whereas in reality the muscles are shielded by subcutaneous adipose tissue, it is clear that the mean "tissue" dose results in a conservative estimate of the muscle dose. This should, however, not be considered as a deficiency of the mathematical models, since muscles were included among the tissues of interest long after the mathematical models had been designed, and due to the low weighting factor assigned to this tis-sue (as part of the remainder) no additional effort seemed necessary for a respective revision of the mathematical models. Oesophagus: Adam's and Eva's equivalent dose conversion coefficients for the oesophagus are low for AP and high for both lateral irradiation geome-tries; for PA they present an overestimation by 7-13%. This means that the oesophagus is at an extremely posterior location in these models; with re-spect to lateral irradiation, probably again the less effective shielding by the ribs is the reason for the comparably high doses for the mathematical models. Ovaries: On the basis of one voxel phantom only, no conclusion can be drawn for the location of the ovaries. However, a further study (Fill et al in preparation) including two more female voxel models indicated a possible exaggerated anterior location and a more lateral position of Eva's ovaries, compared to voxel models. Moreover, the ovaries seem not to be entirely symmetrical in the voxel models, probably as a consequence of the asym-metry of the intestines that occupy the larger part of the pelvic volume. Pancreas: The pancreas equivalent dose conversion coefficients for the mathematical models agree with those for the voxel models for LLAT, are low for RLAT, high for AP, and they present an overestimation of 7-24% for PA irradiation. The pancreas is an asymmetrical organ, and its lateral extension is greater in the mathematical models than observed in the voxel models. Since a larger proportion of this organ extends to a more lateral position in Adam and Eva, the reason for the conversion coefficients being high both for AP and PA irradiation is again due to the small front-to-back diameter at the sides of the trunk. With respect to its lateral position, its position to the right side agrees for all body models, whereas it extends fur-ther towards the left side in the mathematical ones. That this is, at a first glance, not properly reflected by the relation of the conversion coefficients for the lateral geometries, is again due to a bias resulting from the ex-tremely large lateral diameter of the mathematical models leading to more shielding and, thus, to dose reduction for lateral radiations.

Page 24: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

22

Red bone marrow and skeleton: The red bone marrow dose for the mathematical models is low for AP and high for both lateral geometries, whereas it overestimates the voxel values by 9-15% for PA geometry. On the other hand, the mean conversion coefficients for the whole skeleton are in good agreement for all geometries, thus indicating good agreement of the average shielding of the skeleton for mathematical and voxel models. Nevertheless, single bones appear to have more shallow locations in the mathematical models than in the voxel models. Spine and pelvis are also situated at an extremely posterior location in the mathematical models, whereas the ribs have a very superficial position with respect to lateral ra-diation. These bone groups, however, happen to contain the larger amounts of red bone marrow; consequently, the location of these bones influences the red bone marrow dose more than that of other bones. This leads to the observed differences in red bone marrow equivalent dose conversion coef-ficients for mathematical and voxel models. Skin: For skin dose, there is good agreement between the different body models, whereby the conversion coefficients for the mathematical models tend to be high for PA and both lateral geometries. Whereas the skin of the mathematical models is fully symmetrical with respect to AP and PA irra-diation (with the exception of female breast only), the shapes of the voxel models are different: they are flatter at the posterior than at the anterior side, which is only partly due to their lying position and would be true also for standing persons. Therefore, the amount of skin at the front side is higher than that at the rear side of the body, and this leads to somewhat lower skin doses for PA irradiation than for AP. For lateral incidence, the whole amount of skin at the side of the body facing the radiation field is superficial due to the elliptical cross section for the mathematical models, whereas the more rectangular trunk cross sections of the voxel models re-sult in self-shielding of the skin layers along the anterior and posterior body surfaces. Small intestine: The small intestine equivalent dose conversion coeffi-cients for the mathematical models agree with those for the voxel models for AP and RLAT irradiation, are low for LLAT and overestimate the voxel values by 15-20% for PA irradiation. This means that the small in-testine in Adam and Eva is highly shielded against radiation from the left side, again due to the large lateral diameter, and is more posteriorly located compared to the voxel models. The organs of the alimentary tract are, however, considered to have a large intra-individual variability, depending also strongly on the time after a meal and the composition of the latter.

Page 25: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

23

Hence, the moderate discrepancies of the mathematical versus voxel model dose values (together with a relatively high inter-individual variability for PA and LLAT geometries among the voxel models) are not evidence enough to conclude an unrealistic position of the small intestine in the mathematical models. Spleen: The spleen dose conversion coefficients are generally high for the mathematical models, with the exception of RLAT irradiation, where they are low; for PA geometry, they present an overestimation of 2-7%. In the mathematical models the spleen is very shallowly located with respect to PA irradiation, and also its front-to-back extension is very small compared with the appearance in the voxel model. With respect to RLAT geometry, again the large lateral diameter of the mathematical models results in the high amount of tissue shielding the organ from radiation. Stomach: The stomach wall dose conversion coefficients for the mathe-matical models overestimate those for the voxel models by 11-16% for AP irradiation, are high for PA, low for RLAT and in the centre of the spread for LLAT irradiation. For the AP geometry, again an extremely shallow position of the organ is the reason for the overestimation and for PA the reduced front-to-back diameter leads to a reduced shielding and, conse-quently, relatively high doses. With respect to the lateral position, it seems at a reasonable depth below the left surface, but the distance to the right body surface is large, again due to the large lateral diameter of the trunk. For the RLAT geometry, the doses for the mathematical models present underestimations by 34-45%. Although the stomach location usually is considered to vary largely among different individuals and also in a single individual during the course of a day, the overestimation of the stomach AP doses for the mathematical models seems to be a systematic deviation, compared to the moderate variations between the voxel models, as can be judged from figure A.21. Testes: Adam's testes equivalent dose conversion coefficients overestimate those for the voxel models by 3-9% for AP irradiation, slightly underesti-mates them for LLAT irradiation and agrees with those for the voxel mod-els for PA and RLAT irradiation. Although the Visible Human had only one testicle, there is no obvious reason for the lateral asymmetry found for Golem and Voxelman, except that none of the persons assumed an entirely symmetric position during the CT scan. The overestimation for AP irradia-tion is only small and probably due to the somewhat oversimplified repre-sentation of the male genitalia region in the mathematical model.

Page 26: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

24

Thymus: The thymus doses for the mathematical models are high for most geometries, with the exception of PA irradiation where they are low. Thus, this organ seems a bit more superficially located in the mathematical mod-els than in the voxel models, and at this shallow depth the lateral diameter of the mathematical models' trunk is small, leading thus to relatively high doses for lateral radiation incidence. Thyroid: Another interesting case is the thyroid: here the doses for the mathematical models are high for AP and low for PA irradiation, and for LLAT and RLAT incidence, they present overestimations by 44-58% and 40-49%, respectively. In relation to AP irradiation, the thyroid is situated at a shallow depth for all body models considered, for the mathematical mod-els the depth is similar to the smallest depth found among the voxel mod-els. The posterior part of the neck of the mathematical body models has not been designed too carefully and is, thus, rather stocky, corresponding to the stockier among the voxel models of this study, therefore resulting in com-paratively low thyroid doses for PA irradiation. Furthermore, in the mathematical models the thyroid is located in the neck which is sharply separated from the trunk and has only a small lateral extension; in reality, however, the neck and trunk are not separated by a clear line, and the thy-roid is located in the height of the shoulders where the lateral extension of the body is slowly decreasing with increasing height. Thus, the thyroid is much more shielded from lateral radiation incidence in a real body than in the mathematical models, which is the reason for the large overestimations observed for lateral photon incidence. Upper large intestine: For the upper large intestine (i.e., ascending and transverse colon), the equivalent dose conversion coefficients for the mathematical models present good estimates of the doses for voxel models for AP and RLAT irradiation, whereas they present overestimations by 15-27% for PA and underestimations by 26-37% for LLAT irradiation. The reasons are again the unrealistic front-to-back and lateral diameters of the trunk ellipses of the mathematical models, compared to the more rectangu-lar cross sections of real bodies: as the upper large intestine is not centrally located but situated towards the right side of the body, a proper distance from the anterior body surface leads to a too shallow distance from the posterior surface, and a proper distance from the right side of the body means too large a distance from the left side. However, here again a large variability among the dose values among the voxel models can be seen,

Page 27: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

25

and thus an unrealistic position of the organ in the mathematical models cannot really be concluded. Uterus: As for the ovaries, no conclusion can be drawn for the precision of the location of Eva’s uterus on the basis of the conversion coefficients. Risk-weighted dose quantity: This dose quantity, H<model>, similar to effec-tive dose, defined for the sake of this study, is compared to the effective dose evaluated using both mathematical models Adam and Eva (ICRP 1996, Zankl et al 1997, ICRU 1998). For all geometries, the effective dose for the mathematical models is close to the upper edge of the individual voxel values. Due to averaging over a series of organs, no pronounced over- or underestimation of the voxel models' values occurs.

4.3 Comparison of conversion coefficients for voxel mod-els

The conversion coefficients vary from individual to individual. For exter-nal radiation, size plays the predominant role. Thus, it is expected that the conversion coefficients for smaller or slender individuals – in this case for Golem and Voxelman –are higher than those for bigger individuals like Donna and Visible Human due to the reduced shielding of the single or-gans from the incident photon beams from the overlying tissue. This is, however, not always the case, as it can be seen in the graphical representa-tions of the conversion coefficients shown in the Appendices A-E. These indicate that differences in organ topology from individual to individual have an influence that may overrule that of the external body dimensions. For reasons described in 4.2, the following discussion refers to photon en-ergies between 60 and 200 keV, where many of the conversion coefficients have their highest values, and includes the conclusions for 3 further voxel phantoms (Zankl et al 2002). For brain and skin, the conversion coefficients are similar for all voxel models of this study, and the differences in the energy range considered are between 2 and 30% for all irradiation geometries. For breasts, colon, eye lenses, lungs, oesophagus, ovaries, pancreas, red bone marrow, skeleton, small intestine, stomach, testes, thymus, thyroid, upper large intestine and uterus, the variations are in the range up to approximately 30% for those directions of photon incidence where the organ is located at a shallower

Page 28: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

26

depth. For the photon beam directions from which the organs are averted, the differences are significantly higher for these organs, typically between 30 and 100%. For adrenals, bladder, kidneys, liver, lower large intestine and spleen, the variations are higher for all unidirectional photon beams. For most of these organs, this is probably due to a relatively central loca-tion in the body that results in a higher variability of the thickness of over-lying tissue in all directions. For the liver, a large front-to-back and left-to-right extension results additionally in a relatively large variability of self-shielding by the organ itself. The rotational photon beam tends to result in a lower variability of conversion coefficients than the unidirectional beams for all organs. The risk-weighted dose quantity H<model> varies also between the individual voxel models, but the "smearing" effect of the averaging re-sults in a moderate variability compared to most of the individual organs.

5 Conclusions

Conversion coefficients for external photon beams were evaluated and given in Appendices using Monte Carlo methods and voxel phantoms. The latter are realistic representations of the human body obtained from whole body computer tomograms of real patients. The most important advantage of the voxel phantoms is their realism con-cerning anatomy: the organ shape as well as the organ location is realistic, since computed tomographic images from a real person were employed for their construction. However, voxel phantoms represent rather an individual and not a reference man or woman. To compensate for this an emphasis was given at the GSF to construct a large number of phantoms, covering various ages and sizes, rather than a single male or female (Petoussi-Henss et al 2002). The present report contains extensive tables and graphical representations of the conversion coefficients of 4 voxel phantoms of different stature. In the graphs, the respective values of the mathematical phantoms Adam and Eva who represent a reference male and female are also shown. The irra-diation geometries covered are idealized beam geometries commonly as-sumed to represent occupational exposures, i.e., irradiation by broad paral-

Page 29: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

27

lel beams of monoenergetic photons. The directions of photon incidence were anterior-posterior (AP), posterior-anterior (PA), left lateral (LLAT), right lateral (RLAT) and a full 360° rotation of the photon beam around the longitudinal axis of the body (ROT). The field size comprised the total width and height of the body and the photon energies were monochromatic in the range of 10 keV to 10 MeV. Conversion coefficients for further 3 GSF voxel phantoms (2 female and a male) were calculated and part of these data appeared at Zankl et al (2002). Complete set of tables of conversion coefficients for the 3 GSF female models will appear at Fill et al (in preparation). Several comparisons were performed at the GSF between doses calculated with voxel phantoms versus those with MIRD-type mathematical phan-toms. For external whole body irradiation the most complete one can be found at Zankl et al (2002) and its most important findings are included in this report. These showed that for ca. 30% of the organs and geometries, the organ doses calculated for the mathematical models are right near the centre of the range of values for the voxel models of this study but great differences can occur and they are attributed to the different sizes, shapes and locations of the organs. Similar findings were reported by Jones (1998), Xu et al (2000) and Chao et al (2002). On the basis of the conversion coefficients, the anatomical accuracy of the organs of the mathematical models was discussed (see also Zankl et al (2002)). A clear deviation of the mathematical models from the whole of the voxel models was found, indicating an unrealistic position of single or-gans in the mathematical models and leading to over- or underestimations of the doses for real persons. Examples are the kidneys, spleen and stom-ach that are located too superficially, and the extension of which into greater depths of the body is not correctly mirrored in the mathematical models. Often, a larger impact on the calculated doses than that of organ positioning results from the exterior shape of the trunk; this is a highly ec-centric elliptical cylinder in the mathematical models, in contrast to the trunk cross sections of the voxel models that are much more "rectangular". Consequently, the front-to-back distance tends to be too low in the mathe-matical models at both sides of the trunk. While the lateral extension is too large at the front-to-back centre, it is too small at more anterior and poste-rior locations. This leads to smaller thicknesses of overlying tissues shield-ing those single organs from the incoming radiation that are not positioned

Page 30: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

28

centrally and, thus, to dose conversion coefficients for these organs that tend to be significantly higher than those occurring in reality. Furthermore, the trunk cross-section of the mathematical models is constant with height, whereas it varies by several tens of per cent in the voxel models. The variability of some organ dose values among the individual voxel models of this study was found to range from 2-5% (testes AP) to 84-132% (thymus LLAT) for photon energies between 60 and 200 keV. This showed that a voxel model can represent an individual person and not a whole population or a reference person. However, since the models used here and other GSF studies presented elsewhere (Petoussi-Henss et al 2002, Zankl et al 2002, Fill et al in preparation) range from very slim to bigger and heavier persons, it is believed that they can be used to estimate the doses to an individual by selecting those for the voxel model fitting best to the per-son under consideration. Furthermore, the values of this study give a dose range in which an individual dose may be expected to lie, together with a clear indication of the magnitude of dose differences to be expected be-tween individual persons, for each organ and irradiation geometry sepa-rately. If modelling of a reference individual is required, reference voxel human phantoms should be employed. These can be obtained by modifying a voxel phantom of an individual so as the organ volumes and shapes com-ply with reference values, retaining on the same time their realistic anat-omy. This is achieved by suitable software and by consulting anatomical guides, atlases of CT data and the masses of the ICRP Reference Man. In this way, a complete set of “reference phantoms” as needed by interna-tional bodies like the ICRP can be developed and conversion coefficients could be then calculated, which will substitute those estimated with the help of MIRD-type phantoms. This development is already under process at the GSF and elsewhere and will be reported to a later article.

Page 31: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

29

References

Caon, M, Bibbo, G and Pattison, J 1999 An EGS4-ready tomographic

computational model of a forteen year-old female torso for calculating organ doses from CT examinations Phys. Med. Biol. 44(9) 2213-25

Chao T C, Bozkurt A and Xu X G 2001 Conversion coefficients based on

the VIP-Man anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV Health Phys. 81 163-183

Cristy, M 1980 Mathematical phantoms representing children of various

ages for use in estimates of internal dose Oak Ridge National Labora-tory Report No. ORNL/NUREG/TM-367 (Oak Ridge, TN)

Cristy, M 1981 Active bone marrow distribution as a function of age in

humans Phys. Med. Biol. 26 389-400 Cristy, M and Eckerman, K F 1987 (a-f) Specific absorbed fractions of en-

ergy at various ages from internal photon sources, Part I: Methods Oak Ridge National Laboratory; Report ORNL/TM-8381 vol.1-7 (Oak Ridge, TN)

Dimbylow, P J 1996 The development of realistic voxel phantoms for elec-

tromagnetic field dosimetry Proc. Voxel phantom development 6-7 July 1996 ed P J Dimbylow (Chilton, UK: National Radiological Protection Board) pp 1-7

Drexler, G 1968 Verlauf der Ionendosis an Grenzschichten. In Microdo-

simetry, Proc. Symp. Microdosimetry, Ispra, 13-15 November 1967 ed. H. G. Ebert, EUR 3747 d-f-e (European Communities, Brussels) pp. 433-442

Fill, U, Zankl, M and Regulla, D Adult female models of different stature

and photon conversion coefficients for radiation protection (submitted) Gibbs, S J; Pujol, A, Chen, T-S; Malcolm, A W and James, A E 1984 Pa-

tient risk from interproximal radiography. Oral Surgery, Oral Medi-cine, Oral Pathology 58 347-54

Page 32: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

30

International Commission on Radiation Units and Measurements 1989 Tis-

sue Substitutes in Radiation Dosimetry and Measurement ICRU Report 44 (Bethesda, MD: ICRU)

International Commission on Radiation Units and Measurements 1992

Phantoms and computational models in therapy, diagnosis and protec-tion. ICRU Report 48 (Bethesda, MD: ICRU)

International Commission on Radiation Units and Measurements 1998

Conversion coefficients for use in radiological protection against exter-nal radiation ICRU Report 57 (Bethesda, MD: International Commis-sion on Radiation Units and Measurements)

International Commission on Radiological Protection 1975 Reference man:

Anatomical, physiological and metabolic characteristics ICRP Publica-tion 23 (Oxford, Pergamon)

International Commission on Radiological Protection 1991 1990 Recom-mendations of the International Commission on Radiological Protection ICRP Publication 60 (Oxford, UK: Pergamon Press)

International Commission on Radiological Protection 1993 Age-dependent

doses for members of the public from intake of Radionuclides, Part 2: Ingestion dose coefficients ICRP Publication 67 (Oxford, UK: Perga-mon Press)

International Commission on Radiological Protection 1995 Basic anatomi-

cal and physiological data for use in radiological protection: the skele-ton ICRP Publication 70 (Oxford, UK: Pergamon Press)

International Commission on Radiological Protection 1996 Conversion co-

efficients for use in radiological protection against external radiation ICRP Publication 74 (Oxford, UK: Pergamon Press)

Jones, R M, Poston, J W, Hwang, J L, Jones, T D and Warner, G G 1976 The development and use of a fifteen year old equivalent mathematical phantom for internal dose calculations Oak Ridge National Laboratory; Report No. ORNL/TM-5278 (Oak Ridge, TN)

Page 33: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

31

Jones, D G 1998 A realistic anthropomorphic phantom for calculating spe-cific absorbed fractions of energy deposited from internal gamma emit-ters. Radiat Prot Dosim 79(1-4) 411-14

Kramer, R, Zankl, M, Williams, G and Drexler, G 1982 The calculation of

dose from external photon exposures using reference human phantoms and Monte Carlo methods, Part I: The male (Adam) and female (Eva) adult mathematical phantoms GSF-Report S-885 (Neuherberg, Ger-many: GSF-National Research Center for Environment and Health)

Petoussi-Henss N, Zankl M, Fill U and Regulla D 2002 The GSF family of

voxel phantoms Phys. Med. Biol. 47 89-106 Roussin R W, Knight J R, Hubbell J H and Howerton R J 1983 Description

of the DLC-99/HUGO package of photon interaction data in ENDF/B-V format ORNL-RSIC-46 (ENDF-335) (Oak Ridge, TN: Radiation Shielding Information Center, Oak Ridge National Laboratory)

Saito, K, Wittmann, A, Koga, S, Ida, Y, Kamei, K and Zankl, M 2001 The

construction of a computed tomographic phantom for a Japanese male adult and the dose calculation system Radiat. Environ. Bioph. 40 69-76

Spiers F W 1969 Beta dosimetry in trabecular bone Delayed Effects of

Bone-Seeking Radionuclides eds C W Mays, W S S Jee, R D Lloyd, B J Stover, J H Dougherty, G Taylor (Salt Lake City: University of Utah Press) pp 95-108

Spitzer, V M and Whitlock, D G 1989 Atlas of the Visible Human Male

(Sudbury, MA: Jones and Bartlett) Stabin M G, Tagesson, M, Thomas S R, Ljungberg M and Strand S E 1999

Radiation dosimetry in nuclear medicine Appl. Radiat. Isot. 50 73-87 Tanaka, G, Nakahara ,Y and Nakajima Y 1989 Japanese Reference Man

1988-IV: studies on the weight and size of internal organs of normal Japanese Nippon Igaku Hoshasen Gakkai Zasshi 49 344

Veit, R, Zankl, M, Petoussi, N, Mannweiler, E, Williams, G and Drexler, G

1989 Tomographic anthropomorphic models, Part I: Construction tech-nique and description of models of an 8 week old baby and a 7 year old

Page 34: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

32

child GSF-Bericht 3/89 (Neuherberg: GSF - National Research Center for Environment and Health)

Veit, R and Zankl, M 1992 Influence of patient size on organ doses in di-

agnostic radiology Radiat. Prot. Dosim. 43 (1/4) 241-43 Veit, R and Zankl, M 1993 Variation of organ doses in paediatric radiology

due to patient diameter, calculated with phantoms of varying voxel size Radiat. Prot. Dosim. 49 (1/3) 353-56

Xu, X G, Chao and T C, Bozkurt A 2000 VIP-MAN: An image-based

whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations Health Phys. 78 476-86

Zankl M, Fill U, Petoussi-Henss N and Regulla D 2002 Organ dose con-

version coefficients for external photon irradiation of male and female voxel models Phys. Med. Biol. 47 2367-2385

Zankl M, Petoussi-Henss N, Drexler G and Saito K 1997 The calculation

of dose from external photon exposures using reference human phan-toms and Monte Carlo methods. Part VII: Organ doses due to parallel and environmental exposure geometries GSF-Bericht 8/97 (Neuher-berg, Germany: GSF - National Research Center for Environment and Health)

Zankl, M, Veit, R, Williams, G, Schneider, K, Fendel, H, Petoussi, N and

Drexler, G 1988 The construction of computer tomographic phantoms and their application in radiology and radiation protection Radiat. Envi-ron. Biophys. 27 153-64

Zankl, M and Wittmann, A 2001 The adult male voxel model “Golem”

segmented from whole body CT patient data Radiat. Environ. Biophys 40 153-62

Zubal, I G, Harrell, C R, Smith, E O, Rattner, Z, Gindi, G and Hoffer, P B

1994 Computerized three-dimensional segmented human anatomy Med. Phys. 21(2) 299-302

Zubal, I G, Harrell, C R, Smith, E O and Smith, A L 1996 Two dedicated

software, voxel-based, anthropomorphic (torso and head) phantoms

Page 35: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

33

Proc. Voxel phantom development 6-7 July 1996 ed P J Dimbylow (Chilton, UK: National Radiological Protection Board) pp 105-111

Page 36: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

34

Page 37: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

35

Appendix A

Conversion coefficients for anterior-posterior (AP) broad parallel beams

Equivalent doses normalized to air kerma free-in-air

in Sv·Gy-1

Page 38: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

36

A.1 Adrenals AP

Photon energy

Adrenals equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00003 0.00000 0.00000 0.00040 0.025 0.003 0.030 0.025 0.025 0.014 0.056 0.035 0.074 0.040 0.160 0.178 0.109 0.275 0.050 0.348 0.391 0.279 0.554 0.060 0.520 0.585 0.450 0.802 0.070 0.619 0.744 0.561 0.939 0.080 0.666 0.799 0.642 0.965 0.100 0.701 0.806 0.671 0.991 0.150 0.647 0.791 0.649 0.909 0.200 0.636 0.736 0.616 0.854 0.500 0.638 0.681 0.627 0.777 1.000 0.673 0.728 0.683 0.794 2.000 0.832 3.000 0.764 0.817 0.850 4.000 0.903 6.000 0.774 0.873 0.885 0.963 10.000 0.845 0.883 0.860 0.938

Page 39: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

37

A.2 Bladder AP

Photon energy

Bladder equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00426 0.00235 0.020 0.06089 0.02808 0.00887 0.04504 0.025 0.182 0.030 0.374 0.314 0.134 0.361 0.035 0.573 0.040 0.789 0.743 0.390 0.791 0.050 1.145 1.129 0.686 1.159 0.060 1.381 1.375 0.927 1.442 0.070 1.522 1.517 1.076 1.567 0.080 1.533 1.538 1.146 1.575 0.100 1.490 1.497 1.130 1.545 0.150 1.347 1.337 1.074 1.374 0.200 1.269 1.245 1.039 1.282 0.500 1.076 1.072 0.927 1.112 1.000 1.045 1.023 0.932 1.035 2.000 1.016 3.000 1.033 1.002 0.956 4.000 1.019 6.000 0.992 0.987 0.936 0.995 10.000 0.963 0.970 0.893 1.031

Page 40: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

38

A.3 Brain AP

Photon energy

Brain equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00001 0.00006 0.00000 0.015 0.00002 0.00012 0.020 0.00085 0.00787 0.00302 0.00194 0.025 0.009 0.030 0.044 0.113 0.059 0.055 0.035 0.108 0.040 0.205 0.337 0.216 0.230 0.050 0.406 0.549 0.401 0.437 0.060 0.563 0.691 0.548 0.590 0.070 0.662 0.777 0.646 0.691 0.080 0.705 0.798 0.689 0.727 0.100 0.733 0.802 0.716 0.747 0.150 0.724 0.775 0.711 0.740 0.200 0.723 0.760 0.711 0.731 0.500 0.752 0.772 0.737 0.751 1.000 0.800 0.817 0.782 0.802 2.000 0.864 3.000 0.888 0.895 0.881 4.000 0.912 6.000 0.909 0.918 0.901 0.928 10.000 0.897 0.921 0.904 0.935

Page 41: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

39

A.4 Breast AP

Photon energy

Breast equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.01275 0.015 0.13940 0.020 0.39000 0.025 0.030 0.862 0.035 0.040 1.188 0.050 1.427 0.060 1.507 0.070 1.609 0.080 1.578 0.100 1.533 0.150 1.393 0.200 1.339 0.500 1.147 1.000 1.104 2.000 1.081 3.000 4.000 1.120 6.000 1.076 10.000 1.088

Page 42: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

40

A.5 Colon AP

Photon energy

Colon equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00001 0.00000 0.00000 0.00000 0.015 0.00577 0.00127 0.020 0.06394 0.02622 0.02960 0.03012 0.025 0.200 0.030 0.411 0.288 0.244 0.289 0.035 0.625 0.040 0.856 0.696 0.591 0.690 0.050 1.213 1.063 0.924 1.051 0.060 1.423 1.297 1.142 1.280 0.070 1.534 1.429 1.271 1.419 0.080 1.522 1.442 1.286 1.431 0.100 1.455 1.400 1.260 1.377 0.150 1.282 1.251 1.130 1.221 0.200 1.188 1.170 1.052 1.135 0.500 1.028 1.024 0.932 0.994 1.000 1.010 0.990 0.920 0.965 2.000 0.963 3.000 0.992 0.993 0.940 4.000 0.977 6.000 0.987 0.984 0.939 0.995 10.000 0.969 0.970 0.937 0.991

Page 43: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

41

A.6 Upper large intestine AP

Photon energy

Upper large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00527 0.00205 0.020 0.06753 0.04615 0.04294 0.025 0.219 0.030 0.453 0.335 0.354 0.035 0.687 0.040 0.937 0.757 0.804 0.050 1.320 1.137 1.188 0.060 1.534 1.372 1.423 0.070 1.650 1.502 1.556 0.080 1.629 1.492 1.560 0.100 1.545 1.449 1.485 0.150 1.350 1.278 1.305 0.200 1.240 1.173 1.206 0.500 1.057 1.019 1.040 1.000 1.030 0.983 0.988 2.000 0.984 3.000 1.009 0.976 4.000 0.991 6.000 0.995 0.961 1.010 10.000 0.982 0.967 1.013

Page 44: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

42

A.7 Lower large intestine AP

Photon energy

Lower large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00003 0.00000 0.00000 0.015 0.00661 0.00026 0.020 0.05792 0.01157 0.01353 0.025 0.169 0.030 0.341 0.144 0.204 0.035 0.521 0.040 0.721 0.410 0.544 0.050 1.033 0.692 0.874 0.060 1.237 0.893 1.094 0.070 1.340 1.019 1.242 0.080 1.342 1.062 1.264 0.100 1.305 1.054 1.238 0.150 1.167 0.969 1.114 0.200 1.100 0.919 1.043 0.500 0.980 0.838 0.935 1.000 0.977 0.852 0.935 2.000 0.935 3.000 0.964 0.901 4.000 0.958 6.000 0.973 0.916 0.976 10.000 0.948 0.903 0.963

Page 45: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

43

A.8 Eye lenses AP

Photon energy

Eye lenses equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.11270 0.24450 0.01315 0.09103 0.015 0.54160 0.45660 0.020 0.87100 0.89350 0.67460 0.77630 0.025 1.105 0.030 1.246 1.232 1.089 1.136 0.035 1.279 0.040 1.413 1.398 1.540 1.448 0.050 1.574 1.559 1.597 1.558 0.060 1.808 1.673 1.568 1.644 0.070 1.584 1.708 1.600 1.674 0.080 1.667 1.587 1.579 1.648 0.100 1.426 1.620 1.679 1.676 0.150 1.511 1.431 1.283 1.512 0.200 1.293 1.418 1.504 1.329 0.500 1.160 1.189 1.103 1.210 1.000 1.043 1.200 1.154 1.151 2.000 1.076 3.000 1.039 1.212 0.942 4.000 0.977 6.000 1.232 1.147 1.201 1.036 10.000 1.122 0.950 0.814 1.114

Page 46: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

44

A.9 Kidneys AP

Photon energy

Kidneys equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00035 0.00005 0.00006 0.00017 0.025 0.007 0.030 0.043 0.019 0.022 0.033 0.035 0.109 0.040 0.214 0.127 0.140 0.187 0.050 0.436 0.297 0.322 0.400 0.060 0.611 0.454 0.477 0.586 0.070 0.719 0.565 0.591 0.702 0.080 0.763 0.613 0.636 0.758 0.100 0.770 0.651 0.669 0.785 0.150 0.712 0.628 0.642 0.732 0.200 0.680 0.614 0.618 0.701 0.500 0.669 0.631 0.623 0.680 1.000 0.710 0.682 0.671 0.728 2.000 0.784 3.000 0.816 0.798 0.774 4.000 0.835 6.000 0.850 0.832 0.816 0.857 10.000 0.853 0.837 0.816 0.886

Page 47: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

45

A.10 Liver AP

Photon energy

Liver equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00114 0.00106 0.020 0.02254 0.00959 0.00786 0.02124 0.025 0.091 0.030 0.225 0.147 0.124 0.215 0.035 0.386 0.040 0.582 0.444 0.384 0.563 0.050 0.920 0.758 0.668 0.897 0.060 1.144 0.981 0.880 1.115 0.070 1.275 1.115 1.008 1.241 0.080 1.286 1.145 1.042 1.257 0.100 1.249 1.133 1.040 1.229 0.150 1.113 1.030 0.946 1.097 0.200 1.041 0.970 0.895 1.023 0.500 0.927 0.878 0.822 0.916 1.000 0.910 0.875 0.833 0.908 2.000 0.921 3.000 0.936 0.914 0.887 4.000 0.950 6.000 0.944 0.923 0.895 0.961 10.000 0.935 0.921 0.892 0.967

Page 48: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

46

A.11 Lung AP

Photon energy

Lungs equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00447 0.00141 0.020 0.05898 0.01442 0.02353 0.03218 0.025 0.185 0.030 0.366 0.186 0.230 0.274 0.035 0.546 0.040 0.738 0.490 0.550 0.611 0.050 1.042 0.781 0.836 0.901 0.060 1.233 0.983 1.038 1.084 0.070 1.344 1.108 1.158 1.190 0.080 1.338 1.141 1.183 1.196 0.100 1.316 1.139 1.175 1.168 0.150 1.206 1.064 1.086 1.064 0.200 1.138 1.023 1.037 1.021 0.500 1.030 0.952 0.956 0.947 1.000 1.005 0.950 0.953 0.942 2.000 0.966 3.000 1.008 0.970 0.980 4.000 0.980 6.000 0.999 0.968 0.965 0.999 10.000 0.988 0.959 0.954 1.012

Page 49: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

47

A.12 Muscle AP

Photon energy

Muscle equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00102 0.00128 0.00063 0.015 0.02805 0.01466 0.020 0.11150 0.07405 0.07109 0.025 0.234 0.030 0.373 0.276 0.305 0.035 0.515 0.040 0.663 0.526 0.605 0.050 0.904 0.749 0.869 0.060 1.058 0.898 1.041 0.070 1.153 0.988 1.143 0.080 1.157 1.001 1.151 0.100 1.139 0.991 1.130 0.150 1.059 0.922 1.040 0.200 1.015 0.884 0.991 0.500 0.947 0.842 0.919 1.000 0.942 0.855 0.918 2.000 0.940 3.000 0.968 0.906 4.000 0.961 6.000 0.966 0.918 0.966 10.000 0.957 0.914 0.971

Page 50: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

48

A.13 Oesophagus AP

Photon energy

Oesophagus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00001 0.00000 0.00000 0.00000 0.015 0.00513 0.00349 0.020 0.04570 0.00416 0.02642 0.03201 0.025 0.121 0.030 0.241 0.087 0.175 0.192 0.035 0.392 0.040 0.565 0.317 0.439 0.481 0.050 0.858 0.600 0.723 0.794 0.060 1.072 0.810 0.936 1.003 0.070 1.191 0.946 1.080 1.130 0.080 1.221 1.009 1.117 1.155 0.100 1.207 1.003 1.113 1.158 0.150 1.103 0.941 1.034 1.074 0.200 1.054 0.894 0.980 1.001 0.500 0.952 0.836 0.886 0.921 1.000 0.932 0.835 0.891 0.917 2.000 0.930 3.000 0.915 0.909 0.922 4.000 0.975 6.000 0.980 0.912 0.943 0.982 10.000 0.940 0.903 0.946 0.976

Page 51: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

49

A.14 Ovaries AP

Photon energy

Ovaries equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00023 0.025 0.030 0.046 0.035 0.040 0.212 0.050 0.443 0.060 0.617 0.070 0.783 0.080 0.826 0.100 0.855 0.150 0.826 0.200 0.823 0.500 0.778 1.000 0.777 2.000 0.809 3.000 4.000 0.936 6.000 0.854 10.000 0.958

Page 52: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

50

A.15 Pancreas AP

Photon energy

Pancreas equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00001 0.00000 0.020 0.00422 0.00061 0.00091 0.00181 0.025 0.040 0.030 0.152 0.068 0.073 0.119 0.035 0.297 0.040 0.503 0.307 0.313 0.445 0.050 0.872 0.606 0.604 0.800 0.060 1.128 0.842 0.849 1.046 0.070 1.288 0.992 0.985 1.209 0.080 1.318 1.054 1.050 1.258 0.100 1.274 1.055 1.041 1.231 0.150 1.145 0.957 0.967 1.115 0.200 1.039 0.901 0.892 1.031 0.500 0.914 0.848 0.807 0.916 1.000 0.898 0.830 0.811 0.896 2.000 0.909 3.000 0.956 0.890 0.868 4.000 0.949 6.000 0.959 0.897 0.885 0.948 10.000 0.909 0.921 0.934 0.933

Page 53: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

51

A.16 Red bone marrow AP

Photon energy

Red bone marrow equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00007 0.00000 0.00013 0.00011 0.015 0.00269 0.00274 0.020 0.01619 0.00464 0.00986 0.01529 0.025 0.049 0.030 0.112 0.083 0.068 0.105 0.035 0.198 0.040 0.316 0.290 0.204 0.299 0.050 0.572 0.550 0.392 0.544 0.060 0.792 0.769 0.567 0.757 0.070 0.959 0.923 0.707 0.918 0.080 1.027 0.990 0.773 0.984 0.100 1.081 1.028 0.837 1.037 0.150 1.037 0.977 0.834 0.996 0.200 0.973 0.915 0.794 0.936 0.500 0.896 0.844 0.767 0.868 1.000 0.900 0.858 0.796 0.877 2.000 0.915 3.000 0.941 0.903 0.866 4.000 0.942 6.000 0.944 0.906 0.875 0.948 10.000 0.932 0.892 0.879 0.950

Page 54: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

52

A.17 Skeleton AP

Photon energy

Skeleton equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00067 0.00018 0.00137 0.00051 0.015 0.01987 0.01618 0.020 0.11110 0.05136 0.07408 0.09542 0.025 0.322 0.030 0.701 0.388 0.427 0.647 0.035 1.147 0.040 1.680 1.017 1.085 1.606 0.050 2.493 1.611 1.732 2.433 0.060 2.843 1.940 2.100 2.820 0.070 2.871 2.039 2.221 2.873 0.080 2.618 1.940 2.108 2.648 0.100 2.142 1.679 1.812 2.184 0.150 1.463 1.235 1.294 1.492 0.200 1.208 1.050 1.069 1.222 0.500 0.940 0.843 0.821 0.925 1.000 0.911 0.837 0.808 0.891 2.000 0.906 3.000 0.936 0.885 0.861 4.000 0.940 6.000 0.965 0.913 0.897 0.968 10.000 0.993 0.931 0.935 1.007

Page 55: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

53

A.18 Skin AP

Photon energy

Skin equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.17270 0.03646 0.24990 0.18420 0.015 0.36080 0.35490 0.020 0.49640 0.21330 0.49090 0.47590 0.025 0.639 0.030 0.713 0.420 0.673 0.689 0.035 0.814 0.040 0.891 0.623 0.849 0.872 0.050 1.026 0.792 0.981 1.008 0.060 1.110 0.903 1.067 1.088 0.070 1.176 0.979 1.128 1.149 0.080 1.164 0.983 1.113 1.130 0.100 1.150 0.977 1.097 1.112 0.150 1.100 0.925 1.039 1.052 0.200 1.068 0.896 1.007 1.023 0.500 1.010 0.859 0.944 0.971 1.000 1.004 0.874 0.945 0.971 2.000 0.987 3.000 1.014 0.924 0.978 4.000 1.005 6.000 1.003 0.934 0.972 1.010 10.000 0.988 0.926 0.967 1.010

Page 56: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

54

A.19 Small intestine AP

Photon energy

Small intestine equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00001 0.00000 0.015 0.00271 0.00257 0.020 0.04124 0.01247 0.02944 0.04476 0.025 0.147 0.030 0.331 0.218 0.267 0.369 0.035 0.527 0.040 0.750 0.605 0.663 0.824 0.050 1.114 0.977 1.036 1.213 0.060 1.339 1.224 1.271 1.451 0.070 1.461 1.368 1.406 1.588 0.080 1.458 1.386 1.423 1.584 0.100 1.405 1.358 1.380 1.520 0.150 1.241 1.211 1.210 1.337 0.200 1.146 1.132 1.122 1.231 0.500 1.002 0.992 0.970 1.055 1.000 0.966 0.962 0.941 1.006 2.000 0.996 3.000 0.975 0.970 0.971 4.000 1.003 6.000 0.973 0.967 0.948 1.005 10.000 0.953 0.947 0.952 1.002

Page 57: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

55

A.20 Spleen AP

Photon energy

Spleen equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00001 0.00001 0.020 0.00099 0.00065 0.00024 0.00158 0.025 0.012 0.030 0.059 0.042 0.022 0.077 0.035 0.132 0.040 0.247 0.200 0.129 0.308 0.050 0.468 0.407 0.278 0.578 0.060 0.640 0.581 0.418 0.776 0.070 0.747 0.686 0.507 0.900 0.080 0.786 0.734 0.556 0.945 0.100 0.794 0.749 0.577 0.932 0.150 0.734 0.715 0.553 0.860 0.200 0.701 0.688 0.549 0.812 0.500 0.689 0.696 0.565 0.774 1.000 0.744 0.735 0.627 0.793 2.000 0.846 3.000 0.848 0.827 0.758 4.000 0.879 6.000 0.880 0.856 0.794 0.899 10.000 0.878 0.863 0.812 0.906

Page 58: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

56

A.21 Stomach AP

Photon energy

Stomach equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00181 0.00242 0.020 0.03889 0.00904 0.02924 0.03788 0.025 0.146 0.030 0.333 0.156 0.253 0.298 0.035 0.533 0.040 0.762 0.486 0.616 0.708 0.050 1.149 0.838 0.957 1.077 0.060 1.372 1.085 1.197 1.317 0.070 1.504 1.227 1.321 1.460 0.080 1.501 1.263 1.342 1.456 0.100 1.434 1.235 1.286 1.408 0.150 1.259 1.112 1.139 1.235 0.200 1.165 1.034 1.062 1.144 0.500 1.010 0.913 0.918 0.998 1.000 0.982 0.900 0.911 0.960 2.000 0.972 3.000 0.963 0.940 0.934 4.000 0.997 6.000 0.989 0.940 0.936 0.977 10.000 0.968 0.917 0.935 0.985

Page 59: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

57

A.22 Testes AP

Photon energy

Testes equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00270 0.02684 0.00332 0.015 0.05802 0.020 0.24260 0.37460 0.19050 0.025 0.540 0.030 0.821 0.911 0.738 0.035 1.102 0.040 1.335 1.321 1.278 0.050 1.662 1.575 1.620 0.060 1.846 1.681 1.813 0.070 1.899 1.739 1.882 0.080 1.858 1.697 1.826 0.100 1.717 1.592 1.758 0.150 1.516 1.417 1.471 0.200 1.367 1.351 1.342 0.500 1.176 1.166 1.154 1.000 1.120 1.105 1.092 2.000 3.000 1.059 1.075 1.085 4.000 6.000 1.063 1.080 1.041 10.000 0.989 1.043 0.984

Page 60: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

58

A.23 Thymus AP

Photon energy

Thymus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00048 0.00059 0.00000 0.015 0.03292 0.00233 0.020 0.13320 0.29470 0.04337 0.025 0.322 0.030 0.558 0.840 0.396 0.035 0.805 0.040 1.061 1.228 0.926 0.050 1.444 1.581 1.377 0.060 1.651 1.782 1.613 0.070 1.769 1.895 1.775 0.080 1.766 1.866 1.748 0.100 1.693 1.816 1.652 0.150 1.511 1.593 1.486 0.200 1.397 1.467 1.376 0.500 1.204 1.310 1.205 1.000 1.121 1.186 1.121 2.000 1.056 3.000 1.102 1.103 4.000 1.034 6.000 1.039 1.082 1.099 10.000 1.056 1.017 1.062

Page 61: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

59

A.24 Thyroid AP

Photon energy

Thyroid equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00200 0.00000 0.00048 0.01492 0.015 0.07435 0.20740 0.020 0.31950 0.12440 0.21150 0.54100 0.025 0.614 0.030 0.877 0.611 0.764 1.113 0.035 1.104 0.040 1.322 1.102 1.235 1.512 0.050 1.579 1.440 1.565 1.764 0.060 1.711 1.666 1.752 1.872 0.070 1.821 1.790 1.874 1.978 0.080 1.774 1.767 1.814 1.882 0.100 1.695 1.728 1.742 1.783 0.150 1.541 1.575 1.567 1.611 0.200 1.429 1.415 1.452 1.499 0.500 1.187 1.225 1.194 1.296 1.000 1.136 1.141 1.135 1.139 2.000 1.173 3.000 1.085 1.162 1.093 4.000 1.059 6.000 1.083 1.109 1.051 1.121 10.000 1.049 1.039 1.106 1.080

Page 62: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

60

A.25 Uterus AP

Photon energy

Uterus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00002 0.020 0.00236 0.025 0.030 0.109 0.035 0.040 0.390 0.050 0.704 0.060 0.948 0.070 1.111 0.080 1.165 0.100 1.156 0.150 1.073 0.200 1.013 0.500 0.914 1.000 0.916 2.000 0.929 3.000 4.000 0.927 6.000 0.967 10.000 0.957

Page 63: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

61

A.26 Risk-weighted equivalent dose AP

Photon energy

Risk-weighted equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00239 0.00574 0.00323 0.00325 0.015 0.0218 0.0225 0.020 0.100 0.0930 0.0701 0.0720 0.025 0.243 0.030 0.421 0.339 0.324 0.284 0.035 0.607 0.040 0.800 0.663 0.654 0.594 0.050 1.107 0.952 0.939 0.892 0.060 1.300 1.140 1.134 1.091 0.070 1.404 1.253 1.244 1.227 0.080 1.401 1.268 1.253 1.241 0.100 1.346 1.235 1.228 1.222 0.150 1.207 1.121 1.097 1.112 0.200 1.117 1.054 1.024 1.051 0.500 0.980 0.938 0.909 0.945 1.000 0.955 0.916 0.896 0.923 2.000 0.940 3.000 0.944 0.933 0.919 4.000 0.977 6.000 0.949 0.932 0.909 0.966 10.000 0.921 0.912 0.898 0.989

Page 64: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

62

Page 65: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

63

Appendix B

Conversion coefficients for posterior- anterior (PA) broad parallel beams

Equivalent doses normalized to air kerma free-in-air

in Sv·Gy-1

Page 66: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

64

B.1 Adrenals PA

Photon energy

Adrenals equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00044 0.00000 0.020 0.02598 0.00001 0.00073 0.00083 0.025 0.121 0.030 0.308 0.037 0.060 0.073 0.035 0.508 0.040 0.744 0.231 0.259 0.319 0.050 1.144 0.510 0.522 0.599 0.060 1.394 0.716 0.748 0.854 0.070 1.545 0.946 0.910 1.005 0.080 1.558 0.948 1.004 1.073 0.100 1.538 1.005 1.040 1.094 0.150 1.428 0.934 1.038 1.015 0.200 1.286 0.899 0.963 0.983 0.500 1.101 0.842 0.911 0.897 1.000 1.053 0.858 0.921 0.905 2.000 0.915 3.000 1.030 0.946 0.854 4.000 0.916 6.000 1.010 0.897 0.922 0.937 10.000 0.973 0.823 0.906 0.929

Page 67: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

65

B.2 Bladder PA

Photon energy

Bladder equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00155 0.00004 0.00029 0.00062 0.025 0.015 0.030 0.063 0.014 0.033 0.046 0.035 0.128 0.040 0.230 0.097 0.163 0.203 0.050 0.471 0.243 0.346 0.410 0.060 0.664 0.388 0.518 0.594 0.070 0.774 0.501 0.651 0.720 0.080 0.835 0.558 0.704 0.766 0.100 0.884 0.615 0.755 0.799 0.150 0.836 0.606 0.748 0.781 0.200 0.826 0.607 0.743 0.752 0.500 0.779 0.630 0.732 0.753 1.000 0.812 0.689 0.788 0.805 2.000 0.840 3.000 0.865 0.797 0.870 4.000 0.868 6.000 0.887 0.828 0.855 0.899 10.000 0.880 0.841 0.877 0.926

Page 68: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

66

B.3 Brain PA

Photon energy

Brain equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00008 0.00000 0.015 0.00000 0.00007 0.020 0.00038 0.00658 0.00036 0.00125 0.025 0.008 0.030 0.048 0.126 0.034 0.066 0.035 0.131 0.040 0.251 0.374 0.207 0.296 0.050 0.496 0.603 0.439 0.556 0.060 0.673 0.745 0.622 0.736 0.070 0.785 0.834 0.743 0.849 0.080 0.822 0.851 0.794 0.890 0.100 0.852 0.848 0.828 0.904 0.150 0.828 0.810 0.817 0.880 0.200 0.814 0.790 0.802 0.861 0.500 0.817 0.792 0.801 0.849 1.000 0.851 0.835 0.840 0.877 2.000 0.913 3.000 0.918 0.910 0.907 4.000 0.955 6.000 0.931 0.929 0.931 0.966 10.000 0.933 0.930 0.922 0.971

Page 69: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

67

B.4 Breast PA

Photon energy

Breast equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00003 0.020 0.00014 0.025 0.030 0.015 0.035 0.040 0.079 0.050 0.163 0.060 0.233 0.070 0.274 0.080 0.319 0.100 0.351 0.150 0.370 0.200 0.394 0.500 0.498 1.000 0.590 2.000 0.714 3.000 4.000 0.770 6.000 0.831 10.000 0.871

Page 70: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

68

B.5 Colon PA

Photon energy

Colon equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00003 0.00002 0.020 0.00285 0.00020 0.00254 0.00271 0.025 0.022 0.030 0.079 0.024 0.049 0.064 0.035 0.161 0.040 0.275 0.133 0.177 0.234 0.050 0.496 0.298 0.341 0.444 0.060 0.664 0.445 0.484 0.627 0.070 0.773 0.551 0.586 0.745 0.080 0.807 0.603 0.630 0.799 0.100 0.821 0.641 0.662 0.823 0.150 0.773 0.627 0.642 0.788 0.200 0.753 0.617 0.627 0.756 0.500 0.747 0.640 0.632 0.745 1.000 0.784 0.698 0.684 0.782 2.000 0.826 3.000 0.870 0.803 0.792 4.000 0.866 6.000 0.884 0.833 0.829 0.887 10.000 0.884 0.833 0.832 0.910

Page 71: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

69

B.6 Upper large intestine PA

Photon energy

Upper large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00145 0.00008 0.00028 0.025 0.013 0.030 0.052 0.011 0.029 0.035 0.115 0.040 0.206 0.074 0.150 0.050 0.400 0.181 0.326 0.060 0.546 0.292 0.493 0.070 0.653 0.376 0.605 0.080 0.685 0.421 0.664 0.100 0.705 0.464 0.698 0.150 0.678 0.467 0.684 0.200 0.665 0.469 0.665 0.500 0.683 0.512 0.678 1.000 0.734 0.591 0.735 2.000 0.783 3.000 0.840 0.729 4.000 0.842 6.000 0.859 0.782 0.861 10.000 0.866 0.792 0.877

Page 72: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

70

B.7 Lower large intestine PA

Photon energy

Lower large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00007 0.00006 0.020 0.00519 0.00522 0.00586 0.025 0.037 0.030 0.123 0.090 0.111 0.035 0.237 0.040 0.389 0.289 0.343 0.050 0.656 0.514 0.597 0.060 0.861 0.694 0.800 0.070 0.974 0.814 0.925 0.080 1.012 0.857 0.973 0.100 1.015 0.878 0.985 0.150 0.932 0.832 0.922 0.200 0.901 0.798 0.874 0.500 0.854 0.762 0.832 1.000 0.868 0.786 0.843 2.000 0.881 3.000 0.920 0.860 4.000 0.897 6.000 0.926 0.879 0.920 10.000 0.916 0.875 0.953

Page 73: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

71

B.8 Eye lenses PA

Photon energy

Eye lenses equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00012 0.015 0.00030 0.00011 0.020 0.00105 0.00000 0.00002 0.00027 0.025 0.000 0.030 0.002 0.002 0.002 0.003 0.035 0.007 0.040 0.015 0.025 0.007 0.017 0.050 0.075 0.069 0.053 0.056 0.060 0.150 0.136 0.087 0.115 0.070 0.181 0.172 0.148 0.157 0.080 0.222 0.205 0.126 0.167 0.100 0.271 0.182 0.184 0.207 0.150 0.225 0.236 0.231 0.247 0.200 0.293 0.301 0.228 0.360 0.500 0.403 0.352 0.338 0.390 1.000 0.489 0.459 0.384 0.492 2.000 0.557 3.000 0.716 0.730 0.702 4.000 0.667 6.000 0.832 0.801 0.823 0.747 10.000 0.844 0.681 0.771 0.896

Page 74: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

72

B.9 Kidneys PA

Photon energy

Kidneys equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00043 0.00005 0.020 0.02154 0.00508 0.00283 0.00847 0.025 0.112 0.030 0.293 0.160 0.114 0.194 0.035 0.504 0.040 0.737 0.508 0.400 0.563 0.050 1.131 0.864 0.713 0.933 0.060 1.375 1.120 0.945 1.192 0.070 1.525 1.272 1.098 1.353 0.080 1.529 1.308 1.144 1.372 0.100 1.493 1.295 1.152 1.369 0.150 1.344 1.183 1.053 1.240 0.200 1.245 1.113 0.994 1.150 0.500 1.072 0.981 0.906 1.015 1.000 1.025 0.954 0.892 0.970 2.000 0.970 3.000 1.005 0.960 0.928 4.000 0.978 6.000 0.992 0.953 0.916 0.979 10.000 0.971 0.950 0.932 0.988

Page 75: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

73

B.10 Liver PA

Photon energy

Liver equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00009 0.00009 0.020 0.00383 0.00140 0.00201 0.00470 0.025 0.025 0.030 0.082 0.049 0.064 0.099 0.035 0.169 0.040 0.289 0.203 0.245 0.330 0.050 0.539 0.406 0.472 0.594 0.060 0.732 0.576 0.661 0.791 0.070 0.862 0.695 0.793 0.922 0.080 0.906 0.739 0.837 0.958 0.100 0.922 0.767 0.869 0.965 0.150 0.865 0.738 0.823 0.897 0.200 0.827 0.712 0.790 0.850 0.500 0.792 0.707 0.757 0.806 1.000 0.814 0.750 0.783 0.822 2.000 0.859 3.000 0.878 0.833 0.853 4.000 0.898 6.000 0.892 0.858 0.872 0.916 10.000 0.888 0.858 0.873 0.923

Page 76: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

74

B.11 Lungs PA

Photon energy

Lungs equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00031 0.00119 0.020 0.01046 0.00260 0.00687 0.02637 0.025 0.057 0.030 0.161 0.098 0.126 0.262 0.035 0.296 0.040 0.458 0.354 0.383 0.623 0.050 0.758 0.637 0.657 0.943 0.060 0.968 0.853 0.867 1.154 0.070 1.097 0.997 1.005 1.281 0.080 1.137 1.046 1.051 1.297 0.100 1.139 1.069 1.074 1.274 0.150 1.069 1.020 1.023 1.180 0.200 1.029 0.988 0.988 1.120 0.500 0.962 0.940 0.937 1.023 1.000 0.956 0.938 0.938 1.003 2.000 1.006 3.000 0.983 0.964 0.965 4.000 1.021 6.000 0.974 0.962 0.965 1.030 10.000 0.967 0.953 0.958 1.036

Page 77: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

75

B.12 Muscle PA

Photon energy

Muscle equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00089 0.00069 0.00089 0.015 0.02798 0.01718 0.020 0.11890 0.06787 0.08090 0.025 0.258 0.030 0.418 0.286 0.343 0.035 0.574 0.040 0.732 0.558 0.663 0.050 0.981 0.792 0.931 0.060 1.134 0.947 1.101 0.070 1.224 1.041 1.199 0.080 1.221 1.052 1.201 0.100 1.194 1.039 1.173 0.150 1.100 0.963 1.074 0.200 1.051 0.921 1.020 0.500 0.969 0.865 0.941 1.000 0.959 0.874 0.934 2.000 0.951 3.000 0.976 0.919 4.000 0.970 6.000 0.975 0.928 0.977 10.000 0.966 0.923 0.981

Page 78: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

76

B.13 Oesophagus PA

Photon energy

Oesophagus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00001 0.020 0.00047 0.00009 0.00016 0.00041 0.025 0.007 0.030 0.041 0.025 0.025 0.045 0.035 0.110 0.040 0.235 0.191 0.165 0.250 0.050 0.511 0.442 0.391 0.542 0.060 0.743 0.669 0.603 0.789 0.070 0.894 0.826 0.752 0.956 0.080 0.972 0.887 0.819 1.034 0.100 1.021 0.919 0.867 1.027 0.150 0.931 0.865 0.829 0.959 0.200 0.919 0.828 0.795 0.911 0.500 0.852 0.784 0.745 0.854 1.000 0.863 0.804 0.779 0.872 2.000 0.878 3.000 0.915 0.895 0.827 4.000 0.922 6.000 0.940 0.887 0.871 0.923 10.000 0.902 0.917 0.873 0.955

Page 79: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

77

B.14 Ovaries PA

Photon energy

Ovaries equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00679 0.025 0.030 0.203 0.035 0.040 0.585 0.050 0.938 0.060 1.210 0.070 1.355 0.080 1.386 0.100 1.396 0.150 1.239 0.200 1.148 0.500 1.021 1.000 0.964 2.000 0.961 3.000 4.000 1.044 6.000 1.003 10.000 0.979

Page 80: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

78

B.15 Pancreas PA

Photon energy

Pancreas equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00027 0.00002 0.00011 0.00028 0.025 0.005 0.030 0.033 0.020 0.016 0.032 0.035 0.089 0.040 0.190 0.148 0.112 0.170 0.050 0.429 0.358 0.285 0.397 0.060 0.644 0.552 0.458 0.601 0.070 0.808 0.701 0.595 0.748 0.080 0.862 0.769 0.665 0.814 0.100 0.898 0.819 0.726 0.855 0.150 0.846 0.771 0.707 0.806 0.200 0.807 0.742 0.688 0.793 0.500 0.773 0.726 0.682 0.772 1.000 0.802 0.753 0.708 0.783 2.000 0.825 3.000 0.886 0.828 0.812 4.000 0.861 6.000 0.885 0.863 0.844 0.894 10.000 0.856 0.868 0.831 0.890

Page 81: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

79

B.16 Red bone marrow PA

Photon energy

Red bone marrow equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00001 0.00000 0.00003 0.00007 0.015 0.00137 0.00209 0.020 0.01279 0.00093 0.00717 0.01321 0.025 0.046 0.030 0.115 0.058 0.068 0.104 0.035 0.210 0.040 0.341 0.264 0.228 0.310 0.050 0.625 0.542 0.455 0.575 0.060 0.870 0.783 0.667 0.805 0.070 1.053 0.957 0.835 0.982 0.080 1.126 1.035 0.918 1.051 0.100 1.184 1.087 0.993 1.107 0.150 1.132 1.033 0.980 1.064 0.200 1.058 0.970 0.929 0.994 0.500 0.955 0.887 0.865 0.911 1.000 0.942 0.887 0.873 0.909 2.000 0.934 3.000 0.964 0.918 0.919 4.000 0.955 6.000 0.959 0.922 0.925 0.964 10.000 0.944 0.897 0.916 0.959

Page 82: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

80

B.17 Skeleton PA

Photon energy

Skeleton equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00024 0.00010 0.00008 0.00031 0.015 0.01039 0.01159 0.020 0.07750 0.04379 0.03784 0.07722 0.025 0.259 0.030 0.616 0.440 0.356 0.586 0.035 1.046 0.040 1.573 1.199 1.047 1.517 0.050 2.401 1.896 1.769 2.353 0.060 2.775 2.265 2.202 2.757 0.070 2.822 2.371 2.357 2.837 0.080 2.592 2.241 2.260 2.625 0.100 2.135 1.926 1.953 2.177 0.150 1.465 1.396 1.391 1.498 0.200 1.208 1.176 1.147 1.224 0.500 0.937 0.919 0.865 0.928 1.000 0.909 0.891 0.840 0.897 2.000 0.910 3.000 0.935 0.918 0.879 4.000 0.944 6.000 0.964 0.940 0.916 0.975 10.000 0.993 0.955 0.947 1.010

Page 83: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

81

B.18 Skin PA

Photon energy

Skin equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.17950 0.03772 0.23710 0.17990 0.015 0.34000 0.32680 0.020 0.45940 0.23210 0.44420 0.44030 0.025 0.595 0.030 0.672 0.465 0.601 0.662 0.035 0.775 0.040 0.853 0.685 0.746 0.860 0.050 0.988 0.863 0.856 1.003 0.060 1.070 0.976 0.927 1.087 0.070 1.133 1.054 0.984 1.146 0.080 1.121 1.054 0.972 1.128 0.100 1.107 1.044 0.963 1.105 0.150 1.056 0.981 0.917 1.041 0.200 1.024 0.945 0.893 1.007 0.500 0.974 0.890 0.862 0.951 1.000 0.974 0.896 0.877 0.954 2.000 0.973 3.000 0.995 0.936 0.925 4.000 1.000 6.000 0.990 0.942 0.939 1.003 10.000 0.982 0.936 0.939 1.009

Page 84: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

82

B.19 Small intestine PA

Photon energy

Small intestine equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00001 0.00000 0.020 0.00140 0.00014 0.00002 0.00011 0.025 0.015 0.030 0.066 0.022 0.010 0.018 0.035 0.145 0.040 0.262 0.132 0.073 0.117 0.050 0.507 0.303 0.191 0.279 0.060 0.707 0.461 0.313 0.438 0.070 0.837 0.577 0.411 0.552 0.080 0.891 0.631 0.464 0.620 0.100 0.912 0.674 0.515 0.663 0.150 0.862 0.662 0.516 0.661 0.200 0.828 0.649 0.513 0.654 0.500 0.796 0.669 0.555 0.671 1.000 0.824 0.722 0.626 0.722 2.000 0.781 3.000 0.885 0.817 0.748 4.000 0.841 6.000 0.902 0.843 0.787 0.854 10.000 0.893 0.848 0.796 0.870

Page 85: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

83

B.20 Spleen PA

Photon energy

Spleen equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00074 0.00007 0.020 0.02254 0.00498 0.00888 0.00682 0.025 0.109 0.030 0.293 0.143 0.193 0.166 0.035 0.492 0.040 0.741 0.453 0.572 0.514 0.050 1.125 0.769 0.946 0.868 0.060 1.389 0.988 1.192 1.105 0.070 1.527 1.121 1.348 1.245 0.080 1.531 1.158 1.373 1.278 0.100 1.495 1.160 1.356 1.261 0.150 1.337 1.070 1.229 1.145 0.200 1.264 1.014 1.154 1.066 0.500 1.082 0.930 1.006 0.959 1.000 1.034 0.932 0.976 0.946 2.000 0.949 3.000 1.017 0.962 0.990 4.000 0.952 6.000 1.002 0.955 0.983 0.982 10.000 0.994 0.939 0.967 0.965

Page 86: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

84

B.21 Stomach PA

Photon energy

Stomach equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00064 0.00013 0.00062 0.00041 0.025 0.009 0.030 0.044 0.022 0.034 0.037 0.035 0.105 0.040 0.202 0.135 0.155 0.183 0.050 0.419 0.312 0.326 0.388 0.060 0.602 0.471 0.478 0.564 0.070 0.715 0.585 0.596 0.693 0.080 0.771 0.636 0.636 0.742 0.100 0.788 0.669 0.674 0.772 0.150 0.740 0.654 0.651 0.729 0.200 0.718 0.626 0.630 0.703 0.500 0.709 0.637 0.632 0.696 1.000 0.757 0.690 0.685 0.734 2.000 0.779 3.000 0.829 0.792 0.783 4.000 0.847 6.000 0.862 0.824 0.816 0.874 10.000 0.877 0.828 0.818 0.878

Page 87: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

85

B.22 Testes PA

Photon energy

Testes equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00012 0.020 0.00518 0.00411 0.00096 0.025 0.035 0.030 0.125 0.028 0.032 0.035 0.217 0.040 0.363 0.082 0.119 0.050 0.566 0.148 0.234 0.060 0.726 0.208 0.341 0.070 0.794 0.255 0.409 0.080 0.802 0.278 0.451 0.100 0.833 0.305 0.470 0.150 0.774 0.328 0.488 0.200 0.757 0.348 0.489 0.500 0.775 0.453 0.586 1.000 0.840 0.557 0.684 2.000 3.000 0.867 0.726 0.782 4.000 6.000 0.928 0.780 0.854 10.000 0.906 0.808 0.818

Page 88: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

86

B.23 Thymus PA

Photon energy

Thymus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00025 0.00003 0.00020 0.025 0.002 0.030 0.019 0.013 0.026 0.035 0.058 0.040 0.135 0.103 0.166 0.050 0.301 0.261 0.372 0.060 0.481 0.380 0.534 0.070 0.603 0.504 0.654 0.080 0.605 0.540 0.693 0.100 0.661 0.593 0.705 0.150 0.627 0.599 0.674 0.200 0.646 0.589 0.666 0.500 0.696 0.623 0.676 1.000 0.748 0.684 0.710 2.000 0.783 3.000 0.807 0.779 4.000 0.830 6.000 0.878 0.850 0.867 10.000 0.859 0.846 0.877

Page 89: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

87

B.24 Thyroid PA

Photon energy

Thyroid equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00003 0.00004 0.020 0.00048 0.00003 0.00003 0.00034 0.025 0.005 0.030 0.032 0.017 0.012 0.028 0.035 0.089 0.040 0.166 0.133 0.095 0.162 0.050 0.364 0.341 0.239 0.337 0.060 0.528 0.520 0.375 0.481 0.070 0.624 0.651 0.472 0.590 0.080 0.692 0.700 0.522 0.632 0.100 0.698 0.760 0.559 0.654 0.150 0.702 0.735 0.564 0.636 0.200 0.695 0.704 0.561 0.648 0.500 0.730 0.685 0.609 0.694 1.000 0.787 0.783 0.694 0.726 2.000 0.827 3.000 0.881 0.806 0.799 4.000 0.899 6.000 0.889 0.878 0.823 0.840 10.000 0.863 0.959 0.812 0.887

Page 90: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

88

B.25 Uterus PA

Photon energy

Uterus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00002 0.020 0.00385 0.025 0.030 0.140 0.035 0.040 0.440 0.050 0.747 0.060 0.986 0.070 1.145 0.080 1.197 0.100 1.199 0.150 1.094 0.200 1.041 0.500 0.922 1.000 0.906 2.000 0.905 3.000 4.000 0.965 6.000 0.963 10.000 0.975

Page 91: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

89

B.26 Risk-weighted equivalent dose PA

Photon energy

Risk-weighted equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00181 0.00038 0.00238 0.00182 0.015 0.00392 0.00389 0.020 0.0111 0.00466 0.00771 0.0125 0.025 0.0381 0.030 0.106 0.0499 0.0604 0.127 0.035 0.195 0.040 0.320 0.190 0.202 0.372 0.050 0.555 0.374 0.385 0.637 0.060 0.738 0.528 0.542 0.845 0.070 0.848 0.636 0.653 0.977 0.080 0.885 0.679 0.699 1.018 0.100 0.904 0.709 0.730 1.030 0.150 0.845 0.682 0.708 0.954 0.200 0.814 0.661 0.685 0.904 0.500 0.782 0.663 0.684 0.851 1.000 0.809 0.709 0.729 0.857 2.000 0.887 3.000 0.854 0.793 0.800 4.000 0.935 6.000 0.874 0.818 0.829 0.938 10.000 0.865 0.826 0.822 0.945

Page 92: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

90

Page 93: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

91

Appendix C

Conversion coefficients for left lateral (LLAT) broad parallel beams

Equivalent doses normalized to air kerma free-in-air in

Sv·Gy-1

Page 94: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

92

C.1 Adrenals LLAT

Photon energy

Adrenals equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00012 0.00005 0.00000 0.00061 0.025 0.030 0.018 0.011 0.008 0.034 0.035 0.040 0.100 0.093 0.065 0.157 0.050 0.217 0.236 0.171 0.310 0.060 0.322 0.379 0.273 0.428 0.070 0.377 0.477 0.340 0.531 0.080 0.408 0.536 0.370 0.547 0.100 0.436 0.555 0.418 0.573 0.150 0.413 0.560 0.431 0.565 0.200 0.413 0.542 0.412 0.554 0.500 0.451 0.571 0.459 0.602 1.000 0.514 0.671 0.538 0.662 2.000 0.742 3.000 0.685 0.806 0.690 4.000 0.842 6.000 0.742 0.839 0.736 0.853 10.000 0.783 0.817 0.727 0.891

Page 95: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

93

C.2 Bladder LLAT

Photon energy

Bladder equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00001 0.00000 0.020 0.00049 0.00016 0.00007 0.00010 0.025 0.030 0.018 0.019 0.006 0.010 0.035 0.040 0.084 0.105 0.043 0.058 0.050 0.181 0.232 0.118 0.141 0.060 0.276 0.345 0.203 0.218 0.070 0.347 0.422 0.270 0.280 0.080 0.384 0.459 0.316 0.307 0.100 0.419 0.486 0.363 0.346 0.150 0.432 0.492 0.384 0.364 0.200 0.432 0.491 0.392 0.378 0.500 0.505 0.547 0.450 0.443 1.000 0.599 0.627 0.540 0.541 2.000 0.632 3.000 0.746 0.767 0.682 4.000 0.741 6.000 0.801 0.813 0.759 0.767 10.000 0.826 0.810 0.737 0.781

Page 96: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

94

C.3 Brain LLAT

Photon energy

Brain equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00001 0.00000 0.00000 0.015 0.00003 0.00013 0.020 0.00304 0.02063 0.00148 0.00317 0.025 0.030 0.109 0.216 0.082 0.100 0.035 0.040 0.381 0.527 0.333 0.361 0.050 0.660 0.789 0.610 0.631 0.060 0.847 0.944 0.808 0.818 0.070 0.967 1.030 0.933 0.929 0.080 0.996 1.035 0.974 0.960 0.100 1.008 1.016 0.996 0.971 0.150 0.966 0.958 0.955 0.932 0.200 0.936 0.931 0.931 0.911 0.500 0.908 0.906 0.900 0.885 1.000 0.921 0.922 0.915 0.904 2.000 0.941 3.000 0.966 0.966 0.955 4.000 0.968 6.000 0.962 0.969 0.958 0.975 10.000 0.961 0.959 0.947 0.978

Page 97: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

95

C.4 Breast LLAT

Photon energy

Breast equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00108 0.015 0.03314 0.020 0.13190 0.025 0.030 0.350 0.035 0.040 0.498 0.050 0.611 0.060 0.656 0.070 0.713 0.080 0.714 0.100 0.707 0.150 0.686 0.200 0.662 0.500 0.660 1.000 0.703 2.000 0.780 3.000 4.000 0.869 6.000 0.883 10.000 0.874

Page 98: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

96

C.5 Colon LLAT

Photon energy

Colon equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00164 0.00010 0.020 0.02905 0.00512 0.00834 0.00722 0.025 0.030 0.218 0.078 0.092 0.128 0.035 0.040 0.466 0.228 0.253 0.357 0.050 0.678 0.391 0.426 0.582 0.060 0.805 0.513 0.554 0.732 0.070 0.876 0.594 0.635 0.822 0.080 0.879 0.621 0.661 0.838 0.100 0.859 0.632 0.668 0.837 0.150 0.790 0.605 0.633 0.776 0.200 0.760 0.592 0.614 0.747 0.500 0.740 0.611 0.627 0.742 1.000 0.775 0.672 0.680 0.783 2.000 0.833 3.000 0.856 0.785 0.785 4.000 0.889 6.000 0.886 0.823 0.830 0.897 10.000 0.881 0.830 0.833 0.916

Page 99: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

97

C.6 Upper large intestine LLAT

Photon energy

Upper large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00118 0.00009 0.020 0.01825 0.00681 0.00697 0.025 0.030 0.147 0.074 0.126 0.035 0.040 0.339 0.198 0.350 0.050 0.511 0.325 0.562 0.060 0.617 0.422 0.702 0.070 0.680 0.484 0.784 0.080 0.690 0.508 0.798 0.100 0.676 0.518 0.795 0.150 0.636 0.501 0.740 0.200 0.618 0.493 0.712 0.500 0.638 0.537 0.720 1.000 0.696 0.607 0.765 2.000 0.815 3.000 0.811 0.735 4.000 0.878 6.000 0.844 0.791 0.886 10.000 0.854 0.801 0.911

Page 100: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

98

C.7 Lower large intestine LLAT

Photon energy

Lower large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00242 0.00010 0.020 0.04714 0.01002 0.00754 0.025 0.030 0.335 0.111 0.129 0.035 0.040 0.679 0.314 0.366 0.050 0.958 0.535 0.608 0.060 1.121 0.697 0.771 0.070 1.204 0.801 0.871 0.080 1.198 0.827 0.891 0.100 1.166 0.832 0.892 0.150 1.048 0.777 0.823 0.200 0.998 0.746 0.793 0.500 0.911 0.725 0.772 1.000 0.906 0.761 0.805 2.000 0.855 3.000 0.931 0.840 4.000 0.904 6.000 0.956 0.871 0.912 10.000 0.926 0.868 0.923

Page 101: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

99

C.8 Eye lenses LLAT

Photon energy

Eye lenses equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.01163 0.07410 0.00001 0.00381 0.015 0.15860 0.09841 0.020 0.34810 0.39370 0.19900 0.28090 0.025 0.030 0.676 0.637 0.456 0.602 0.035 0.040 0.859 0.918 0.698 0.805 0.050 1.001 1.111 0.797 0.974 0.060 1.161 1.178 0.947 1.064 0.070 1.221 1.242 1.010 1.110 0.080 1.223 1.288 0.947 1.112 0.100 1.267 1.248 1.114 1.048 0.150 1.168 1.160 1.035 1.072 0.200 1.122 1.174 0.986 1.098 0.500 1.148 1.120 0.941 1.009 1.000 1.043 1.128 0.847 1.062 2.000 1.134 3.000 1.092 1.096 1.067 4.000 1.030 6.000 1.025 1.035 1.143 1.058 10.000 0.900 1.003 0.831 1.089

Page 102: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

100

C.9 Kidneys LLAT

Photon energy

Kidneys equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00009 0.00000 0.020 0.00392 0.00159 0.00030 0.00047 0.025 0.030 0.063 0.065 0.031 0.027 0.035 0.040 0.192 0.235 0.146 0.121 0.050 0.336 0.428 0.301 0.244 0.060 0.443 0.572 0.427 0.346 0.070 0.511 0.668 0.510 0.419 0.080 0.530 0.697 0.543 0.450 0.100 0.539 0.712 0.558 0.472 0.150 0.514 0.674 0.530 0.461 0.200 0.508 0.647 0.508 0.458 0.500 0.533 0.645 0.513 0.505 1.000 0.596 0.688 0.578 0.585 2.000 0.686 3.000 0.732 0.792 0.699 4.000 0.759 6.000 0.783 0.826 0.754 0.790 10.000 0.793 0.839 0.775 0.820

Page 103: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

101

C.10 Liver LLAT

Photon energy

Liver equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00018 0.00003 0.00005 0.00013 0.025 0.030 0.012 0.006 0.006 0.008 0.035 0.040 0.066 0.046 0.038 0.045 0.050 0.146 0.120 0.097 0.105 0.060 0.217 0.195 0.156 0.163 0.070 0.268 0.250 0.204 0.204 0.080 0.294 0.282 0.231 0.229 0.100 0.315 0.312 0.259 0.250 0.150 0.322 0.325 0.274 0.262 0.200 0.331 0.333 0.283 0.271 0.500 0.407 0.403 0.353 0.350 1.000 0.505 0.496 0.443 0.446 2.000 0.564 3.000 0.675 0.659 0.616 4.000 0.671 6.000 0.738 0.725 0.690 0.716 10.000 0.759 0.745 0.714 0.748

Page 104: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

102

C.11 Lungs LLAT

Photon energy

Lungs equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00031 0.00003 0.020 0.00529 0.00186 0.00220 0.00178 0.025 0.030 0.062 0.057 0.040 0.035 0.035 0.040 0.179 0.204 0.144 0.119 0.050 0.309 0.372 0.273 0.221 0.060 0.405 0.502 0.378 0.302 0.070 0.468 0.587 0.450 0.356 0.080 0.492 0.618 0.480 0.376 0.100 0.508 0.639 0.504 0.388 0.150 0.498 0.624 0.496 0.384 0.200 0.498 0.616 0.498 0.384 0.500 0.549 0.654 0.549 0.445 1.000 0.629 0.720 0.627 0.533 2.000 0.642 3.000 0.772 0.830 0.772 4.000 0.741 6.000 0.814 0.871 0.816 0.795 10.000 0.833 0.872 0.830 0.849

Page 105: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

103

C.12 Muscle LLAT

Photon energy

Muscle equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00068 0.00161 0.00064 0.015 0.01521 0.00990 0.020 0.05679 0.04790 0.04048 0.025 0.030 0.190 0.174 0.164 0.035 0.040 0.342 0.331 0.322 0.050 0.472 0.469 0.462 0.060 0.558 0.561 0.556 0.070 0.614 0.620 0.614 0.080 0.622 0.630 0.624 0.100 0.623 0.628 0.622 0.150 0.599 0.595 0.592 0.200 0.591 0.579 0.581 0.500 0.611 0.587 0.599 1.000 0.665 0.638 0.654 2.000 0.731 3.000 0.779 0.754 4.000 0.801 6.000 0.823 0.801 0.832 10.000 0.836 0.814 0.855

Page 106: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

104

C.13 Oesophagus LLAT

Photon energy

Oesophagus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00017 0.00001 0.020 0.00616 0.00005 0.00037 0.00112 0.025 0.030 0.065 0.019 0.016 0.019 0.035 0.040 0.179 0.125 0.090 0.084 0.050 0.317 0.281 0.205 0.183 0.060 0.429 0.418 0.315 0.266 0.070 0.509 0.513 0.388 0.335 0.080 0.533 0.563 0.427 0.366 0.100 0.552 0.589 0.457 0.385 0.150 0.549 0.584 0.457 0.393 0.200 0.538 0.581 0.459 0.392 0.500 0.592 0.617 0.504 0.464 1.000 0.668 0.681 0.578 0.549 2.000 0.647 3.000 0.768 0.804 0.734 4.000 0.756 6.000 0.797 0.840 0.778 0.797 10.000 0.845 0.835 0.802 0.794

Page 107: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

105

C.14 Ovaries LLAT

Photon energy

Ovaries equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00004 0.025 0.030 0.010 0.035 0.040 0.066 0.050 0.163 0.060 0.245 0.070 0.329 0.080 0.374 0.100 0.401 0.150 0.417 0.200 0.434 0.500 0.486 1.000 0.575 2.000 0.659 3.000 4.000 0.738 6.000 0.775 10.000 0.798

Page 108: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

106

C.15 Pancreas LLAT

Photon energy

Pancreas equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00019 0.00011 0.00008 0.00027 0.025 0.030 0.032 0.033 0.020 0.044 0.035 0.040 0.161 0.192 0.131 0.210 0.050 0.331 0.420 0.297 0.429 0.060 0.468 0.613 0.451 0.586 0.070 0.561 0.733 0.556 0.697 0.080 0.595 0.795 0.596 0.725 0.100 0.608 0.808 0.629 0.745 0.150 0.582 0.765 0.608 0.702 0.200 0.571 0.749 0.595 0.692 0.500 0.610 0.727 0.630 0.712 1.000 0.696 0.766 0.686 0.777 2.000 0.837 3.000 0.803 0.856 0.802 4.000 0.902 6.000 0.846 0.852 0.830 0.891 10.000 0.831 0.888 0.859 0.900

Page 109: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

107

C.16 Red bone marrow LLAT

Photon energy

Red bone marrow equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00003 0.00000 0.00006 0.00009 0.015 0.00156 0.00214 0.020 0.00885 0.00121 0.00687 0.01004 0.025 0.030 0.053 0.034 0.044 0.058 0.035 0.040 0.148 0.135 0.135 0.162 0.050 0.273 0.275 0.262 0.296 0.060 0.385 0.402 0.383 0.416 0.070 0.474 0.494 0.481 0.511 0.080 0.515 0.538 0.530 0.551 0.100 0.554 0.576 0.579 0.590 0.150 0.554 0.564 0.586 0.586 0.200 0.537 0.543 0.568 0.565 0.500 0.557 0.552 0.581 0.579 1.000 0.619 0.607 0.637 0.637 2.000 0.716 3.000 0.743 0.725 0.757 4.000 0.788 6.000 0.789 0.769 0.798 0.817 10.000 0.801 0.772 0.806 0.838

Page 110: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

108

C.17 Skeleton LLAT

Photon energy

Skeleton equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00033 0.00014 0.00098 0.00037 0.015 0.01258 0.01233 0.020 0.07265 0.04015 0.05996 0.07019 0.025 0.030 0.421 0.266 0.327 0.422 0.035 0.040 0.980 0.668 0.802 1.004 0.050 1.458 1.046 1.260 1.505 0.060 1.670 1.254 1.516 1.737 0.070 1.694 1.320 1.594 1.767 0.080 1.552 1.258 1.507 1.628 0.100 1.279 1.096 1.291 1.348 0.150 0.893 0.821 0.927 0.938 0.200 0.754 0.710 0.777 0.786 0.500 0.642 0.614 0.631 0.653 1.000 0.671 0.648 0.652 0.678 2.000 0.738 3.000 0.772 0.753 0.750 4.000 0.811 6.000 0.835 0.812 0.812 0.853 10.000

Page 111: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

109

C.18 Skin LLAT

Photon energy

Skin equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.09707 0.02404 0.16780 0.10590 0.015 0.19620 0.20580 0.020 0.27440 0.14990 0.32260 0.28390 0.025 0.030 0.411 0.313 0.454 0.430 0.035 0.040 0.529 0.466 0.575 0.556 0.050 0.619 0.589 0.668 0.650 0.060 0.679 0.668 0.726 0.708 0.070 0.729 0.723 0.774 0.754 0.080 0.728 0.726 0.767 0.749 0.100 0.734 0.725 0.764 0.747 0.150 0.724 0.699 0.740 0.728 0.200 0.721 0.686 0.727 0.721 0.500 0.738 0.690 0.729 0.731 1.000 0.780 0.732 0.762 0.771 2.000 0.828 3.000 0.865 0.823 0.847 4.000 0.881 6.000 0.891 0.855 0.877 0.902 10.000 0.896 0.862 0.878 0.917

Page 112: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

110

C.19 Small intestine LLAT

Photon energy

Small intestine equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00014 0.00002 0.020 0.00769 0.00475 0.00836 0.00169 0.025 0.030 0.126 0.115 0.109 0.048 0.035 0.040 0.351 0.369 0.322 0.169 0.050 0.564 0.636 0.554 0.308 0.060 0.706 0.825 0.723 0.418 0.070 0.785 0.939 0.821 0.488 0.080 0.804 0.964 0.851 0.514 0.100 0.794 0.960 0.849 0.527 0.150 0.741 0.886 0.785 0.520 0.200 0.716 0.846 0.747 0.518 0.500 0.722 0.805 0.731 0.564 1.000 0.771 0.830 0.769 0.644 2.000 0.725 3.000 0.854 0.891 0.850 4.000 0.799 6.000 0.877 0.910 0.873 0.837 10.000 0.879 0.903 0.872 0.849

Page 113: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

111

C.20 Spleen LLAT

Photon energy

Spleen equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00026 0.00029 0.020 0.00519 0.02102 0.00250 0.01027 0.025 0.030 0.087 0.275 0.097 0.143 0.035 0.040 0.290 0.702 0.353 0.404 0.050 0.519 1.082 0.634 0.671 0.060 0.689 1.323 0.837 0.855 0.070 0.784 1.451 0.950 0.962 0.080 0.812 1.456 0.980 0.979 0.100 0.803 1.420 0.973 0.960 0.150 0.740 1.274 0.894 0.882 0.200 0.707 1.193 0.848 0.837 0.500 0.686 1.046 0.804 0.789 1.000 0.730 1.006 0.815 0.807 2.000 0.856 3.000 0.826 1.006 0.885 4.000 0.902 6.000 0.862 0.992 0.910 0.914 10.000 0.863 0.981 0.912 0.940

Page 114: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

112

C.21 Stomach LLAT

Photon energy

Stomach equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00030 0.00024 0.020 0.01193 0.00246 0.00280 0.00937 0.025 0.030 0.183 0.100 0.096 0.143 0.035 0.040 0.501 0.372 0.333 0.402 0.050 0.789 0.678 0.593 0.659 0.060 0.978 0.895 0.778 0.831 0.070 1.081 1.027 0.891 0.924 0.080 1.095 1.059 0.918 0.945 0.100 1.069 1.059 0.912 0.935 0.150 0.980 0.970 0.841 0.862 0.200 0.939 0.925 0.807 0.836 0.500 0.896 0.864 0.780 0.816 1.000 0.904 0.873 0.810 0.841 2.000 0.891 3.000 0.950 0.919 0.872 4.000 0.923 6.000 0.951 0.929 0.905 0.929 10.000 0.936 0.921 0.904 0.955

Page 115: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

113

C.22 Testes LLAT

Photon energy

Testes equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00001 0.00244 0.00000 0.015 0.00014 0.020 0.00137 0.06953 0.00082 0.025 0.030 0.038 0.197 0.023 0.035 0.040 0.136 0.333 0.099 0.050 0.248 0.440 0.192 0.060 0.325 0.505 0.280 0.070 0.387 0.552 0.326 0.080 0.404 0.551 0.351 0.100 0.433 0.565 0.381 0.150 0.440 0.568 0.384 0.200 0.430 0.572 0.390 0.500 0.509 0.650 0.474 1.000 0.610 0.728 0.581 2.000 3.000 0.771 0.853 0.737 4.000 6.000 0.831 0.903 0.783 10.000 0.848 0.895 0.794

Page 116: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

114

C.23 Thymus LLAT

Photon energy

Thymus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00005 0.00000 0.020 0.00120 0.00105 0.00026 0.025 0.030 0.032 0.022 0.019 0.035 0.040 0.121 0.085 0.098 0.050 0.226 0.170 0.197 0.060 0.324 0.247 0.282 0.070 0.384 0.304 0.340 0.080 0.404 0.318 0.369 0.100 0.430 0.336 0.383 0.150 0.447 0.325 0.405 0.200 0.427 0.347 0.410 0.500 0.489 0.387 0.502 1.000 0.559 0.448 0.603 2.000 0.698 3.000 0.740 0.628 4.000 0.808 6.000 0.811 0.687 0.834 10.000 0.859 0.738 0.876

Page 117: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

115

C.24 Thyroid LLAT

Photon energy

Thyroid equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00002 0.015 0.00575 0.00379 0.020 0.04833 0.00003 0.00720 0.04230 0.025 0.030 0.233 0.006 0.099 0.223 0.035 0.040 0.411 0.051 0.242 0.416 0.050 0.556 0.138 0.367 0.567 0.060 0.660 0.221 0.461 0.662 0.070 0.718 0.289 0.529 0.725 0.080 0.726 0.313 0.544 0.729 0.100 0.731 0.316 0.559 0.747 0.150 0.720 0.347 0.541 0.731 0.200 0.701 0.339 0.535 0.727 0.500 0.725 0.376 0.568 0.767 1.000 0.753 0.466 0.612 0.830 2.000 0.900 3.000 0.866 0.644 0.767 4.000 0.930 6.000 0.878 0.706 0.817 0.890 10.000 0.895 0.719 0.829 0.923

Page 118: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

116

C.25 Uterus LLAT

Photon energy

Uterus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00002 0.025 0.030 0.003 0.035 0.040 0.035 0.050 0.110 0.060 0.186 0.070 0.254 0.080 0.292 0.100 0.329 0.150 0.338 0.200 0.353 0.500 0.420 1.000 0.501 2.000 0.597 3.000 4.000 0.700 6.000 0.748 10.000 0.776

Page 119: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

117

C.26 Risk-weighted equivalent dose LLAT

Photon energy

Risk-weighted equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00098 0.00073 0.00171 0.00113 0.015 0.00297 0.00583 0.00305 0.00439 0.020 0.0136 0.0177 0.00719 0.0161 0.025 0.030 0.0981 0.0859 0.0548 0.0879 0.035 0.040 0.247 0.224 0.169 0.219 0.050 0.397 0.378 0.304 0.364 0.060 0.504 0.494 0.413 0.470 0.070 0.573 0.571 0.485 0.547 0.080 0.591 0.595 0.512 0.571 0.100 0.599 0.609 0.532 0.584 0.150 0.575 0.588 0.515 0.565 0.200 0.559 0.576 0.506 0.557 0.500 0.587 0.600 0.538 0.586 1.000 0.648 0.657 0.603 0.652 2.000 0.731 3.000 0.762 0.765 0.725 4.000 0.805 6.000 0.799 0.803 0.768 0.831 10.000 0.810 0.803 0.777 0.855

Page 120: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

118

Page 121: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

119

Appendix D

Conversion coefficients for right lateral (RLAT) broad parallel beams

Equivalent doses normalized to air kerma free-in-air

in Sv·Gy-1

Page 122: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

120

D.1 Adrenals RLAT

Photon energy

Adrenals equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00007 0.00000 0.00010 0.00011 0.025 0.030 0.015 0.017 0.009 0.024 0.035 0.040 0.086 0.119 0.075 0.128 0.050 0.189 0.294 0.204 0.281 0.060 0.282 0.455 0.307 0.411 0.070 0.349 0.568 0.388 0.495 0.080 0.379 0.630 0.431 0.532 0.100 0.403 0.656 0.478 0.548 0.150 0.390 0.619 0.465 0.535 0.200 0.383 0.627 0.465 0.527 0.500 0.433 0.619 0.499 0.569 1.000 0.512 0.662 0.565 0.645 2.000 0.725 3.000 0.668 0.805 0.715 4.000 0.859 6.000 0.716 0.903 0.803 0.825 10.000 0.721 0.833 0.722 0.887

Page 123: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

121

D.2 Bladder RLAT

Photon energy

Bladder equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00001 0.00000 0.020 0.00025 0.00010 0.00006 0.00033 0.025 0.030 0.010 0.015 0.006 0.015 0.035 0.040 0.060 0.092 0.046 0.071 0.050 0.150 0.209 0.130 0.162 0.060 0.236 0.317 0.227 0.241 0.070 0.301 0.396 0.306 0.299 0.080 0.339 0.434 0.357 0.337 0.100 0.378 0.465 0.405 0.367 0.150 0.398 0.471 0.419 0.379 0.200 0.410 0.476 0.432 0.383 0.500 0.479 0.538 0.494 0.453 1.000 0.589 0.616 0.591 0.530 2.000 0.647 3.000 0.721 0.757 0.708 4.000 0.741 6.000 0.797 0.807 0.770 0.770 10.000 0.788 0.808 0.778 0.812

Page 124: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

122

D.3 Brain RLAT

Photon energy

Brain equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00001 0.00002 0.00000 0.015 0.00004 0.00016 0.020 0.00294 0.02316 0.00148 0.00354 0.025 0.030 0.107 0.225 0.077 0.111 0.035 0.040 0.384 0.541 0.318 0.391 0.050 0.669 0.801 0.588 0.668 0.060 0.863 0.957 0.785 0.856 0.070 0.982 1.046 0.912 0.967 0.080 1.014 1.051 0.951 1.000 0.100 1.023 1.033 0.974 1.005 0.150 0.976 0.969 0.940 0.959 0.200 0.946 0.941 0.916 0.932 0.500 0.912 0.911 0.888 0.901 1.000 0.923 0.929 0.907 0.914 2.000 0.946 3.000 0.964 0.966 0.957 4.000 0.977 6.000 0.966 0.969 0.952 0.984 10.000 0.964 0.966 0.950 0.988

Page 125: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

123

D.4 Breast RLAT

Photon energy

Breast equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00143 0.015 0.05115 0.020 0.17480 0.025 0.030 0.415 0.035 0.040 0.582 0.050 0.692 0.060 0.771 0.070 0.814 0.080 0.813 0.100 0.795 0.150 0.767 0.200 0.750 0.500 0.727 1.000 0.770 2.000 0.803 3.000 4.000 0.849 6.000 0.885 10.000 0.906

Page 126: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

124

D.5 Colon RLAT

Photon energy

Colon equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00032 0.00000 0.020 0.01195 0.00302 0.00600 0.00033 0.025 0.030 0.128 0.086 0.072 0.022 0.035 0.040 0.312 0.285 0.209 0.096 0.050 0.477 0.502 0.362 0.194 0.060 0.584 0.658 0.481 0.276 0.070 0.644 0.754 0.557 0.335 0.080 0.656 0.781 0.583 0.363 0.100 0.649 0.788 0.599 0.380 0.150 0.606 0.734 0.573 0.380 0.200 0.589 0.708 0.561 0.384 0.500 0.616 0.699 0.580 0.449 1.000 0.674 0.738 0.642 0.543 2.000 0.650 3.000 0.790 0.832 0.762 4.000 0.732 6.000 0.822 0.860 0.807 0.776 10.000 0.832 0.861 0.817 0.800

Page 127: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

125

D.6 Upper large intestine RLAT

Photon energy

Upper large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00052 0.00000 0.020 0.01906 0.01146 0.00057 0.025 0.030 0.203 0.132 0.036 0.035 0.040 0.483 0.365 0.152 0.050 0.720 0.600 0.292 0.060 0.862 0.767 0.400 0.070 0.938 0.866 0.473 0.080 0.942 0.887 0.503 0.100 0.918 0.888 0.517 0.150 0.839 0.823 0.500 0.200 0.804 0.790 0.499 0.500 0.791 0.766 0.550 1.000 0.822 0.801 0.635 2.000 0.729 3.000 0.893 0.877 4.000 0.790 6.000 0.895 0.895 0.831 10.000 0.901 0.893 0.852

Page 128: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

126

D.7 Lower large intestine RLAT

Photon energy

Lower large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00004 0.00006 0.00001 0.025 0.030 0.003 0.006 0.003 0.035 0.040 0.026 0.039 0.024 0.050 0.071 0.102 0.068 0.060 0.117 0.168 0.116 0.070 0.151 0.221 0.155 0.080 0.176 0.252 0.181 0.100 0.198 0.283 0.204 0.150 0.216 0.301 0.224 0.200 0.229 0.311 0.236 0.500 0.322 0.377 0.318 1.000 0.427 0.469 0.424 2.000 0.548 3.000 0.618 0.636 4.000 0.658 6.000 0.699 0.711 0.705 10.000 0.716 0.734 0.733

Page 129: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

127

D.8 Eye lenses RLAT

Photon energy

Eye lenses equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00055 0.00223 0.00005 0.02292 0.015 0.04553 0.13370 0.020 0.17740 0.24070 0.17970 0.26980 0.025 0.030 0.352 0.488 0.435 0.507 0.035 0.040 0.592 0.690 0.721 0.702 0.050 0.650 0.832 0.837 0.843 0.060 0.908 0.987 0.919 0.959 0.070 0.861 0.974 1.158 1.051 0.080 0.901 1.006 0.967 0.978 0.100 0.961 1.021 1.043 1.056 0.150 0.902 1.037 0.948 1.027 0.200 0.938 1.005 0.939 1.001 0.500 0.822 0.951 0.922 1.027 1.000 1.034 0.996 0.911 0.980 2.000 0.946 3.000 1.053 1.003 0.942 4.000 1.046 6.000 0.880 0.968 0.852 1.108 10.000 1.119 1.045 1.034 1.106

Page 130: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

128

D.9 Kidneys RLAT

Photon energy

Kidneys equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00012 0.00000 0.020 0.00490 0.00077 0.00017 0.00065 0.025 0.030 0.073 0.047 0.021 0.040 0.035 0.040 0.213 0.193 0.113 0.158 0.050 0.364 0.375 0.242 0.304 0.060 0.475 0.516 0.355 0.423 0.070 0.550 0.609 0.433 0.498 0.080 0.571 0.646 0.465 0.530 0.100 0.578 0.663 0.483 0.551 0.150 0.549 0.631 0.465 0.530 0.200 0.537 0.611 0.452 0.526 0.500 0.564 0.616 0.473 0.571 1.000 0.626 0.665 0.537 0.632 2.000 0.716 3.000 0.743 0.776 0.680 4.000 0.793 6.000 0.797 0.812 0.735 0.814 10.000 0.809 0.819 0.756 0.845

Page 131: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

129

D.10 Liver RLAT

Photon energy

Liver equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00098 0.00035 0.020 0.01612 0.00833 0.00620 0.01120 0.025 0.030 0.171 0.148 0.105 0.158 0.035 0.040 0.459 0.460 0.336 0.444 0.050 0.732 0.779 0.590 0.725 0.060 0.914 1.000 0.777 0.910 0.070 1.020 1.130 0.891 1.017 0.080 1.033 1.156 0.924 1.032 0.100 1.021 1.144 0.927 1.013 0.150 0.939 1.044 0.855 0.927 0.200 0.900 0.990 0.820 0.882 0.500 0.856 0.907 0.780 0.836 1.000 0.871 0.902 0.803 0.852 2.000 0.890 3.000 0.922 0.939 0.874 4.000 0.931 6.000 0.928 0.943 0.896 0.945 10.000 0.924 0.936 0.893 0.955

Page 132: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

130

D.11 Lung RLAT

Photon energy

Lungs equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00013 0.00006 0.020 0.00447 0.00211 0.00090 0.00355 0.025 0.030 0.063 0.059 0.029 0.063 0.035 0.040 0.182 0.208 0.121 0.195 0.050 0.309 0.376 0.240 0.338 0.060 0.403 0.504 0.341 0.445 0.070 0.468 0.589 0.414 0.510 0.080 0.491 0.623 0.446 0.533 0.100 0.502 0.641 0.468 0.540 0.150 0.496 0.628 0.468 0.525 0.200 0.494 0.622 0.471 0.520 0.500 0.547 0.658 0.525 0.570 1.000 0.625 0.720 0.604 0.648 2.000 0.739 3.000 0.761 0.836 0.752 4.000 0.824 6.000 0.815 0.866 0.803 0.868 10.000 0.823 0.872 0.821 0.910

Page 133: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

131

D.12 Muscle RLAT

Photon energy

Muscle equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00066 0.00170 0.00113 0.015 0.01484 0.01219 0.020 0.05614 0.04993 0.04369 0.025 0.030 0.190 0.179 0.165 0.035 0.040 0.343 0.339 0.319 0.050 0.475 0.480 0.455 0.060 0.562 0.574 0.546 0.070 0.618 0.634 0.602 0.080 0.627 0.643 0.610 0.100 0.627 0.641 0.609 0.150 0.603 0.607 0.580 0.200 0.594 0.591 0.569 0.500 0.614 0.597 0.588 1.000 0.668 0.646 0.645 2.000 0.723 3.000 0.780 0.759 4.000 0.797 6.000 0.825 0.804 0.828 10.000 0.838 0.818 0.854

Page 134: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

132

D.13 Oesophagus RLAT

Photon energy

Oesophagus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00006 0.00000 0.020 0.00374 0.00008 0.00031 0.00031 0.025 0.030 0.052 0.020 0.016 0.017 0.035 0.040 0.150 0.121 0.081 0.091 0.050 0.271 0.267 0.184 0.205 0.060 0.365 0.399 0.285 0.305 0.070 0.437 0.486 0.358 0.380 0.080 0.470 0.526 0.394 0.411 0.100 0.482 0.562 0.432 0.442 0.150 0.502 0.573 0.430 0.451 0.200 0.485 0.558 0.437 0.455 0.500 0.546 0.600 0.492 0.525 1.000 0.613 0.672 0.567 0.616 2.000 0.706 3.000 0.765 0.790 0.717 4.000 0.794 6.000 0.805 0.837 0.763 0.845 10.000 0.836 0.840 0.776 0.859

Page 135: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

133

D.14 Ovaries RLAT

Photon energy

Ovaries equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00000 0.025 0.030 0.004 0.035 0.040 0.032 0.050 0.091 0.060 0.168 0.070 0.210 0.080 0.241 0.100 0.273 0.150 0.285 0.200 0.309 0.500 0.368 1.000 0.467 2.000 0.579 3.000 4.000 0.702 6.000 0.763 10.000 0.763

Page 136: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

134

D.15 Pancreas RLAT

Photon energy

Pancreas equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00016 0.00000 0.00002 0.00002 0.025 0.030 0.036 0.005 0.010 0.009 0.035 0.040 0.188 0.059 0.086 0.074 0.050 0.382 0.167 0.211 0.178 0.060 0.530 0.277 0.334 0.278 0.070 0.633 0.367 0.413 0.360 0.080 0.668 0.412 0.455 0.395 0.100 0.681 0.455 0.494 0.416 0.150 0.646 0.455 0.492 0.422 0.200 0.625 0.447 0.486 0.435 0.500 0.661 0.495 0.533 0.497 1.000 0.737 0.587 0.606 0.582 2.000 0.682 3.000 0.833 0.735 0.745 4.000 0.789 6.000 0.852 0.777 0.782 0.803 10.000 0.871 0.780 0.798 0.812

Page 137: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

135

D.16 Red bone marrow RLAT

Photon energy

Red bone marrow equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00004 0.00000 0.00004 0.00009 0.015 0.00160 0.00226 0.020 0.00889 0.00093 0.00629 0.01045 0.025 0.030 0.054 0.032 0.042 0.060 0.035 0.040 0.149 0.132 0.130 0.168 0.050 0.276 0.270 0.255 0.307 0.060 0.390 0.396 0.375 0.431 0.070 0.479 0.487 0.471 0.528 0.080 0.520 0.532 0.519 0.570 0.100 0.560 0.569 0.569 0.609 0.150 0.560 0.561 0.576 0.605 0.200 0.541 0.541 0.560 0.581 0.500 0.561 0.552 0.573 0.595 1.000 0.622 0.610 0.629 0.651 2.000 0.733 3.000 0.747 0.734 0.750 4.000 0.802 6.000 0.794 0.774 0.791 0.831 10.000 0.802 0.780 0.800 0.851

Page 138: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

136

D.17 Skeleton RLAT

Photon energy

Skeleton equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00036 0.00022 0.00058 0.00062 0.015 0.01310 0.01353 0.020 0.07403 0.04557 0.05122 0.06823 0.025 0.030 0.426 0.290 0.311 0.389 0.035 0.040 0.988 0.712 0.783 0.925 0.050 1.467 1.105 1.243 1.396 0.060 1.679 1.317 1.501 1.618 0.070 1.702 1.381 1.579 1.655 0.080 1.559 1.313 1.495 1.528 0.100 1.284 1.141 1.283 1.270 0.150 0.897 0.852 0.920 0.891 0.200 0.756 0.734 0.770 0.748 0.500 0.643 0.630 0.626 0.628 1.000 0.673 0.662 0.646 0.656 2.000 0.721 3.000 0.772 0.763 0.746 4.000 0.796 6.000 0.836 0.816 0.808 0.841 10.000 0.878 0.846 0.850 0.896

Page 139: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

137

D.18 Skin RLAT

Photon energy

Skin equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.09756 0.02361 0.16770 0.10630 0.015 0.19460 0.20320 0.020 0.27030 0.14500 0.32830 0.28560 0.025 0.030 0.404 0.300 0.460 0.440 0.035 0.040 0.522 0.445 0.579 0.567 0.050 0.613 0.562 0.669 0.660 0.060 0.672 0.637 0.727 0.716 0.070 0.721 0.691 0.774 0.761 0.080 0.723 0.695 0.769 0.754 0.100 0.727 0.696 0.765 0.751 0.150 0.718 0.672 0.743 0.732 0.200 0.715 0.661 0.731 0.723 0.500 0.733 0.670 0.732 0.732 1.000 0.775 0.715 0.766 0.771 2.000 0.829 3.000 0.863 0.811 0.851 4.000 0.884 6.000 0.889 0.846 0.880 0.906 10.000 0.894 0.853 0.881 0.923

Page 140: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

138

D.19 Small intestine RLAT

Photon energy

Small intestine equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00006 0.00000 0.020 0.00287 0.00016 0.00054 0.00075 0.025 0.030 0.056 0.018 0.021 0.038 0.035 0.040 0.184 0.094 0.096 0.154 0.050 0.328 0.205 0.204 0.294 0.060 0.437 0.306 0.299 0.408 0.070 0.506 0.376 0.368 0.480 0.080 0.528 0.410 0.400 0.514 0.100 0.542 0.439 0.422 0.530 0.150 0.528 0.440 0.421 0.519 0.200 0.522 0.440 0.417 0.517 0.500 0.572 0.496 0.470 0.568 1.000 0.650 0.579 0.553 0.643 2.000 0.731 3.000 0.783 0.723 0.702 4.000 0.812 6.000 0.824 0.770 0.756 0.840 10.000 0.830 0.787 0.773 0.863

Page 141: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

139

D.20 Spleen RLAT

Photon energy

Spleen equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00000 0.00000 0.00000 0.00000 0.025 0.030 0.001 0.001 0.000 0.001 0.035 0.040 0.011 0.013 0.007 0.012 0.050 0.039 0.050 0.029 0.042 0.060 0.072 0.095 0.061 0.080 0.070 0.099 0.134 0.090 0.112 0.080 0.116 0.159 0.111 0.137 0.100 0.137 0.189 0.137 0.157 0.150 0.152 0.208 0.160 0.177 0.200 0.160 0.222 0.171 0.188 0.500 0.222 0.298 0.240 0.266 1.000 0.307 0.392 0.328 0.368 2.000 0.493 3.000 0.492 0.581 0.518 4.000 0.603 6.000 0.586 0.662 0.605 0.654 10.000 0.628 0.689 0.645 0.710

Page 142: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

140

D.21 Stomach RLAT

Photon energy

Stomach equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00004 0.00000 0.00009 0.00020 0.025 0.030 0.010 0.003 0.009 0.012 0.035 0.040 0.068 0.040 0.057 0.067 0.050 0.159 0.118 0.134 0.147 0.060 0.238 0.199 0.208 0.223 0.070 0.293 0.262 0.264 0.279 0.080 0.324 0.299 0.294 0.305 0.100 0.347 0.334 0.324 0.329 0.150 0.350 0.345 0.332 0.340 0.200 0.359 0.351 0.339 0.345 0.500 0.436 0.419 0.407 0.425 1.000 0.535 0.512 0.498 0.515 2.000 0.627 3.000 0.706 0.675 0.666 4.000 0.724 6.000 0.759 0.732 0.722 0.771 10.000 0.789 0.746 0.758 0.788

Page 143: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

141

D.22 Testes RLAT

Photon energy

Testes equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00001 0.00075 0.00000 0.015 0.00011 0.020 0.00072 0.01200 0.00036 0.025 0.030 0.021 0.087 0.012 0.035 0.040 0.091 0.196 0.065 0.050 0.186 0.293 0.139 0.060 0.260 0.355 0.202 0.070 0.300 0.399 0.249 0.080 0.321 0.412 0.275 0.100 0.354 0.428 0.287 0.150 0.365 0.440 0.311 0.200 0.375 0.459 0.322 0.500 0.487 0.554 0.404 1.000 0.592 0.658 0.540 2.000 3.000 0.749 0.803 0.684 4.000 6.000 0.807 0.856 0.772 10.000 0.785 0.862 0.790

Page 144: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

142

D.23 Thymus RLAT

Photon energy

Thymus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00003 0.00000 0.020 0.00115 0.00232 0.00036 0.025 0.030 0.028 0.033 0.039 0.035 0.040 0.111 0.102 0.147 0.050 0.212 0.196 0.284 0.060 0.300 0.271 0.376 0.070 0.356 0.333 0.448 0.080 0.367 0.353 0.475 0.100 0.385 0.356 0.510 0.150 0.396 0.347 0.498 0.200 0.394 0.344 0.511 0.500 0.454 0.371 0.568 1.000 0.527 0.439 0.661 2.000 0.770 3.000 0.716 0.608 4.000 0.798 6.000 0.769 0.691 0.902 10.000 0.800 0.719 0.860

Page 145: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

143

D.24 Thyroid RLAT

Photon energy

Thyroid equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00005 0.015 0.00760 0.00406 0.020 0.06467 0.00010 0.01639 0.02917 0.025 0.030 0.284 0.010 0.173 0.158 0.035 0.040 0.482 0.064 0.374 0.309 0.050 0.628 0.156 0.540 0.432 0.060 0.721 0.259 0.647 0.520 0.070 0.788 0.322 0.707 0.592 0.080 0.793 0.344 0.734 0.612 0.100 0.792 0.381 0.742 0.618 0.150 0.758 0.368 0.718 0.621 0.200 0.755 0.380 0.721 0.638 0.500 0.763 0.425 0.756 0.656 1.000 0.798 0.539 0.791 0.724 2.000 0.810 3.000 0.915 0.700 0.895 4.000 0.845 6.000 0.899 0.750 0.890 0.898 10.000 0.924 0.772 0.908 0.897

Page 146: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

144

D.25 Uterus RLAT

Photon energy

Uterus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00001 0.025 0.030 0.003 0.035 0.040 0.034 0.050 0.104 0.060 0.174 0.070 0.232 0.080 0.269 0.100 0.300 0.150 0.318 0.200 0.326 0.500 0.380 1.000 0.474 2.000 0.577 3.000 4.000 0.688 6.000 0.715 10.000 0.764

Page 147: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

145

D.26 Risk-weighted equivalent dose RLAT

Photon energy

Risk-weighted equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00099 0.00039 0.00170 0.00116 0.015 0.00287 0.00157 0.00301 0.00529 0.020 0.0113 0.006 0.00695 0.0164 0.025 0.030 0.0721 0.0580 0.0455 0.0683 0.035 0.040 0.186 0.177 0.138 0.167 0.050 0.310 0.314 0.252 0.282 0.060 0.403 0.423 0.347 0.379 0.070 0.463 0.495 0.413 0.443 0.080 0.484 0.522 0.443 0.469 0.100 0.499 0.540 0.463 0.485 0.150 0.487 0.526 0.458 0.478 0.200 0.481 0.520 0.456 0.477 0.500 0.530 0.555 0.496 0.519 1.000 0.602 0.623 0.573 0.596 2.000 0.689 3.000 0.730 0.743 0.700 4.000 0.775 6.000 0.773 0.783 0.750 0.818 10.000 0.778 0.789 0.765 0.836

Page 148: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

146

Page 149: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

147

Appendix E

Conversion coefficients for rotational (ROT) broad parallel beams

Equivalent doses normalized to air kerma free-in-air in

Sv·Gy-1

Page 150: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

148

E.1 Adrenals ROT

Photon energy

Adrenals equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00011 0.00000 0.020 0.00524 0.00040 0.00007 0.00032 0.025 0.030 0.094 0.020 0.021 0.042 0.035 0.040 0.303 0.139 0.131 0.205 0.050 0.539 0.354 0.300 0.421 0.060 0.700 0.524 0.464 0.609 0.070 0.812 0.657 0.585 0.730 0.080 0.839 0.712 0.631 0.780 0.100 0.867 0.769 0.666 0.803 0.150 0.799 0.737 0.666 0.739 0.200 0.762 0.668 0.643 0.715 0.500 0.742 0.680 0.648 0.688 1.000 0.744 0.766 0.699 0.750 2.000 0.804 3.000 0.826 0.704 0.776 4.000 0.862 6.000 0.887 0.889 0.825 0.828 10.000 0.841 0.823 0.894 0.865

Page 151: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

149

E.2 Bladder ROT

Photon energy

Bladder equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00089 0.00039 0.020 0.01521 0.00605 0.00148 0.01041 0.025 0.030 0.124 0.097 0.040 0.111 0.035 0.040 0.320 0.280 0.152 0.300 0.050 0.528 0.479 0.321 0.496 0.060 0.678 0.641 0.467 0.656 0.070 0.799 0.748 0.577 0.766 0.080 0.829 0.784 0.628 0.797 0.100 0.853 0.796 0.674 0.807 0.150 0.798 0.753 0.666 0.762 0.200 0.767 0.729 0.654 0.739 0.500 0.739 0.712 0.657 0.718 1.000 0.765 0.747 0.692 0.736 2.000 0.796 3.000 0.840 0.838 0.795 4.000 0.855 6.000 0.874 0.868 0.830 0.887 10.000 0.900 0.863 0.846 0.890

Page 152: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

150

E.3 Brain ROT

Photon energy

Brain equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00001 0.00006 0.00000 0.015 0.00002 0.00013 0.020 0.00171 0.01414 0.00140 0.00229 0.025 0.030 0.076 0.170 0.061 0.083 0.035 0.040 0.307 0.449 0.269 0.320 0.050 0.561 0.695 0.512 0.574 0.060 0.742 0.850 0.696 0.757 0.070 0.855 0.934 0.813 0.864 0.080 0.891 0.947 0.858 0.898 0.100 0.910 0.939 0.889 0.915 0.150 0.884 0.890 0.864 0.882 0.200 0.865 0.865 0.846 0.865 0.500 0.849 0.853 0.838 0.850 1.000 0.878 0.881 0.864 0.877 2.000 0.921 3.000 0.938 0.936 0.922 4.000 0.953 6.000 0.945 0.950 0.936 0.960 10.000 0.938 0.948 0.937 0.974

Page 153: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

151

E.4 Breast ROT

Photon energy

Breast equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00292 0.015 0.05593 0.020 0.17270 0.025 0.030 0.417 0.035 0.040 0.606 0.050 0.757 0.060 0.848 0.070 0.901 0.080 0.901 0.100 0.889 0.150 0.854 0.200 0.838 0.500 0.811 1.000 0.837 2.000 0.879 3.000 4.000 0.905 6.000 0.920 10.000 0.934

Page 154: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

152

E.5 Colon ROT

Photon energy

Colon equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00186 0.00032 0.020 0.02574 0.00838 0.01135 0.00952 0.025 0.030 0.201 0.119 0.112 0.122 0.035 0.040 0.463 0.338 0.305 0.336 0.050 0.696 0.566 0.508 0.562 0.060 0.848 0.735 0.664 0.723 0.070 0.943 0.840 0.764 0.823 0.080 0.951 0.874 0.789 0.853 0.100 0.939 0.874 0.798 0.850 0.150 0.850 0.814 0.741 0.788 0.200 0.816 0.779 0.709 0.743 0.500 0.774 0.749 0.691 0.722 1.000 0.802 0.775 0.727 0.747 2.000 0.811 3.000 0.875 0.854 0.820 4.000 0.877 6.000 0.890 0.875 0.851 0.881 10.000 0.893 0.877 0.853 0.886

Page 155: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

153

E.6 Upper large intestine ROT

Photon energy

Upper large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00154 0.00046 0.020 0.02513 0.01649 0.01228 0.025 0.030 0.206 0.138 0.135 0.035 0.040 0.474 0.348 0.356 0.050 0.714 0.554 0.583 0.060 0.862 0.711 0.745 0.070 0.959 0.809 0.842 0.080 0.961 0.828 0.872 0.100 0.947 0.828 0.863 0.150 0.851 0.765 0.800 0.200 0.816 0.727 0.757 0.500 0.775 0.703 0.729 1.000 0.797 0.733 0.755 2.000 0.805 3.000 0.870 0.828 4.000 0.887 6.000 0.896 0.850 0.898 10.000 0.903 0.856 0.893

Page 156: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

154

E.7 Lower large intestine ROT

Photon energy

Lower large intestine equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00000 0.00000 0.00000 0.015 0.00241 0.00014 0.020 0.02675 0.00574 0.00594 0.025 0.030 0.192 0.083 0.105 0.035 0.040 0.444 0.258 0.310 0.050 0.667 0.458 0.534 0.060 0.825 0.612 0.695 0.070 0.917 0.715 0.798 0.080 0.934 0.746 0.827 0.100 0.926 0.766 0.832 0.150 0.848 0.716 0.772 0.200 0.815 0.689 0.725 0.500 0.771 0.679 0.714 1.000 0.810 0.720 0.738 2.000 0.818 3.000 0.883 0.812 4.000 0.865 6.000 0.880 0.853 0.858 10.000 0.877 0.849 0.877

Page 157: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

155

E.8 Eye lenses ROT

Photon energy

Eye lenses equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.02659 0.09146 0.00151 0.03634 0.015 0.18130 0.16720 0.020 0.33090 0.43220 0.27020 0.34720 0.025 0.030 0.591 0.659 0.522 0.584 0.035 0.040 0.781 0.782 0.795 0.744 0.050 0.856 0.923 0.893 0.825 0.060 0.933 1.004 0.916 0.949 0.070 1.010 1.043 1.109 1.029 0.080 1.050 1.128 1.162 1.073 0.100 0.993 1.040 1.002 0.954 0.150 1.052 1.005 1.126 1.064 0.200 0.861 0.964 0.922 1.005 0.500 1.147 0.955 0.956 1.027 1.000 1.037 0.961 0.877 0.985 2.000 0.972 3.000 1.037 1.094 1.003 4.000 0.876 6.000 0.965 0.900 1.110 0.816 10.000 1.201 0.983 0.766 0.875

Page 158: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

156

E.9 Kidneys ROT

Photon energy

Kidneys equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00012 0.00000 0.020 0.00680 0.00182 0.00137 0.00186 0.025 0.030 0.118 0.071 0.058 0.070 0.035 0.040 0.358 0.267 0.227 0.260 0.050 0.601 0.497 0.437 0.486 0.060 0.774 0.678 0.604 0.661 0.070 0.878 0.791 0.715 0.771 0.080 0.908 0.831 0.759 0.810 0.100 0.902 0.846 0.771 0.825 0.150 0.831 0.798 0.727 0.767 0.200 0.791 0.763 0.699 0.734 0.500 0.762 0.730 0.683 0.708 1.000 0.786 0.761 0.717 0.748 2.000 0.808 3.000 0.855 0.843 0.816 4.000 0.852 6.000 0.884 0.860 0.850 0.874 10.000 0.884 0.861 0.841 0.897

Page 159: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

157

E.10 Liver ROT

Photon energy

Liver equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00054 0.00030 0.020 0.01009 0.00463 0.00423 0.00840 0.025 0.030 0.119 0.087 0.077 0.116 0.035 0.040 0.343 0.289 0.257 0.342 0.050 0.579 0.520 0.469 0.576 0.060 0.748 0.695 0.634 0.749 0.070 0.854 0.806 0.743 0.852 0.080 0.881 0.842 0.778 0.876 0.100 0.876 0.847 0.794 0.870 0.150 0.812 0.795 0.744 0.802 0.200 0.770 0.758 0.714 0.759 0.500 0.738 0.729 0.689 0.730 1.000 0.771 0.761 0.725 0.758 2.000 0.816 3.000 0.844 0.840 0.816 4.000 0.864 6.000 0.873 0.869 0.841 0.894 10.000 0.876 0.872 0.852 0.898

Page 160: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

158

E.11 Lungs ROT

Photon energy

Lungs equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00109 0.00059 0.020 0.01823 0.00467 0.00734 0.01458 0.025 0.030 0.165 0.096 0.102 0.160 0.035 0.040 0.407 0.309 0.301 0.403 0.050 0.633 0.541 0.513 0.635 0.060 0.795 0.718 0.673 0.788 0.070 0.889 0.831 0.780 0.884 0.080 0.915 0.868 0.813 0.904 0.100 0.912 0.886 0.828 0.897 0.150 0.863 0.845 0.791 0.832 0.200 0.834 0.822 0.767 0.804 0.500 0.812 0.805 0.756 0.783 1.000 0.837 0.832 0.794 0.817 2.000 0.869 3.000 0.900 0.900 0.872 4.000 0.919 6.000 0.920 0.918 0.900 0.935 10.000 0.923 0.910 0.905 0.966

Page 161: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

159

E.12 Muscle ROT

Photon energy

Muscle equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00082 0.00134 0.00083 0.015 0.02231 0.01390 0.020 0.09085 0.06282 0.06162 0.025 0.030 0.316 0.243 0.259 0.035 0.040 0.564 0.467 0.509 0.050 0.767 0.662 0.725 0.060 0.896 0.792 0.864 0.070 0.975 0.872 0.947 0.080 0.978 0.883 0.956 0.100 0.966 0.875 0.941 0.150 0.906 0.818 0.873 0.200 0.874 0.788 0.840 0.500 0.841 0.762 0.805 1.000 0.860 0.791 0.828 2.000 0.871 3.000 0.914 0.864 4.000 0.910 6.000 0.927 0.885 0.925 10.000 0.925 0.888 0.937

Page 162: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

160

E.13 Oesophagus ROT

Photon energy

Oesophagus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00001 0.00000 0.00000 0.00000 0.015 0.00114 0.00041 0.020 0.01454 0.00111 0.00450 0.00850 0.025 0.030 0.113 0.043 0.062 0.081 0.035 0.040 0.316 0.201 0.214 0.266 0.050 0.536 0.427 0.421 0.480 0.060 0.715 0.607 0.576 0.660 0.070 0.829 0.729 0.694 0.768 0.080 0.870 0.783 0.743 0.826 0.100 0.865 0.805 0.780 0.826 0.150 0.837 0.771 0.742 0.776 0.200 0.794 0.749 0.717 0.741 0.500 0.777 0.733 0.710 0.744 1.000 0.780 0.789 0.763 0.750 2.000 0.868 3.000 0.903 0.856 0.840 4.000 0.913 6.000 0.887 0.852 0.873 0.896 10.000 0.941 0.861 0.867 0.897

Page 163: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

161

E.14 Ovaries ROT

Photon energy

Ovaries equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00148 0.025 0.030 0.063 0.035 0.040 0.233 0.050 0.416 0.060 0.593 0.070 0.691 0.080 0.743 0.100 0.765 0.150 0.712 0.200 0.712 0.500 0.692 1.000 0.701 2.000 0.808 3.000 4.000 0.906 6.000 0.873 10.000 0.932

Page 164: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

162

E.15 Pancreas ROT

Photon energy

Pancreas equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00000 0.00000 0.020 0.00066 0.00012 0.00024 0.00045 0.025 0.030 0.055 0.027 0.026 0.047 0.035 0.040 0.239 0.165 0.154 0.216 0.050 0.479 0.379 0.340 0.434 0.060 0.661 0.569 0.514 0.625 0.070 0.785 0.689 0.629 0.738 0.080 0.821 0.747 0.688 0.782 0.100 0.846 0.777 0.719 0.812 0.150 0.762 0.725 0.691 0.748 0.200 0.735 0.700 0.653 0.704 0.500 0.719 0.682 0.651 0.692 1.000 0.754 0.727 0.691 0.726 2.000 0.809 3.000 0.845 0.828 0.798 4.000 0.855 6.000 0.894 0.849 0.834 0.865 10.000 0.845 0.847 0.801 0.846

Page 165: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

163

E.16 Red bone marrow ROT

Photon energy

Red bone marrow equivalent dose per air kerma free-in-air

(Sv·Gy-1) (MeV) Golem Voxelman Visible

Human Donna

0.010 0.00004 0.00000 0.00006 0.00009 0.015 0.00174 0.00227 0.020 0.01146 0.00179 0.00744 0.01206 0.025 0.030 0.085 0.051 0.056 0.083 0.035 0.040 0.248 0.203 0.179 0.242 0.050 0.457 0.411 0.352 0.447 0.060 0.640 0.595 0.515 0.626 0.070 0.780 0.721 0.645 0.765 0.080 0.839 0.784 0.709 0.823 0.100 0.890 0.830 0.771 0.871 0.150 0.867 0.800 0.770 0.846 0.200 0.820 0.754 0.736 0.802 0.500 0.781 0.725 0.720 0.770 1.000 0.811 0.760 0.756 0.798 2.000 0.852 3.000 0.883 0.839 0.844 4.000 0.897 6.000 0.898 0.856 0.864 0.910 10.000 0.894 0.854 0.860 0.920

Page 166: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

164

E.17 Skeleton ROT

Photon energy

Skeleton equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00040 0.00016 0.00079 0.00046 0.015 0.01448 0.01393 0.020 0.08722 0.04481 0.05667 0.08153 0.025 0.030 0.569 0.349 0.364 0.541 0.035 0.040 1.386 0.920 0.960 1.339 0.050 2.080 1.459 1.556 2.040 0.060 2.387 1.752 1.902 2.366 0.070 2.420 1.842 2.017 2.419 0.080 2.216 1.750 1.918 2.232 0.100 1.822 1.514 1.650 1.847 0.150 1.256 1.117 1.179 1.272 0.200 1.044 0.951 0.978 1.051 0.500 0.835 0.782 0.764 0.824 1.000 0.834 0.787 0.761 0.815 2.000 0.850 3.000 0.886 0.853 0.831 4.000 0.899 6.000 0.926 0.887 0.877 0.931 10.000 0.958 0.910 0.910 0.976

Page 167: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

165

E.18 Skin ROT

Photon energy

Skin equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.14830 0.03180 0.22220 0.15850 0.015 0.29650 0.30200 0.020 0.40650 0.19520 0.42650 0.41040 0.025 0.030 0.590 0.396 0.585 0.606 0.035 0.040 0.745 0.584 0.729 0.772 0.050 0.863 0.735 0.839 0.893 0.060 0.936 0.833 0.908 0.967 0.070 0.995 0.902 0.966 1.020 0.080 0.988 0.903 0.954 1.005 0.100 0.981 0.898 0.943 0.991 0.150 0.945 0.854 0.902 0.945 0.200 0.923 0.830 0.879 0.920 0.500 0.898 0.804 0.847 0.887 1.000 0.907 0.828 0.866 0.898 2.000 0.927 3.000 0.946 0.892 0.912 4.000 0.961 6.000 0.954 0.908 0.925 0.970 10.000 0.948 0.904 0.924 0.974

Page 168: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

166

E.19 Small intestine ROT

Photon energy

Small intestine equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00061 0.00052 0.020 0.01264 0.00421 0.00925 0.01135 0.025 0.030 0.139 0.091 0.101 0.123 0.035 0.040 0.377 0.299 0.290 0.323 0.050 0.612 0.529 0.498 0.532 0.060 0.788 0.704 0.656 0.689 0.070 0.883 0.817 0.758 0.792 0.080 0.910 0.849 0.788 0.814 0.100 0.903 0.859 0.790 0.818 0.150 0.828 0.800 0.734 0.761 0.200 0.791 0.766 0.702 0.734 0.500 0.758 0.735 0.679 0.712 1.000 0.781 0.767 0.715 0.742 2.000 0.795 3.000 0.859 0.846 0.819 4.000 0.853 6.000 0.884 0.870 0.848 0.883 10.000 0.885 0.872 0.841 0.901

Page 169: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

167

E.20 Spleen ROT

Photon energy

Spleen equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00021 0.00010 0.020 0.00773 0.00699 0.00463 0.00408 0.025 0.030 0.121 0.114 0.095 0.096 0.035 0.040 0.360 0.345 0.302 0.315 0.050 0.607 0.585 0.524 0.554 0.060 0.771 0.756 0.685 0.728 0.070 0.867 0.865 0.789 0.835 0.080 0.899 0.890 0.826 0.866 0.100 0.898 0.896 0.829 0.868 0.150 0.825 0.833 0.773 0.800 0.200 0.792 0.799 0.742 0.755 0.500 0.757 0.755 0.712 0.725 1.000 0.781 0.785 0.740 0.754 2.000 0.813 3.000 0.854 0.865 0.822 4.000 0.861 6.000 0.874 0.871 0.852 0.883 10.000 0.886 0.887 0.852 0.899

Page 170: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

168

E.21 Stomach ROT

Photon energy

Stomach equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.00000 0.00000 0.00000 0.015 0.00052 0.00058 0.020 0.01214 0.00270 0.00773 0.01146 0.025 0.030 0.134 0.069 0.098 0.117 0.035 0.040 0.368 0.260 0.292 0.332 0.050 0.606 0.485 0.502 0.556 0.060 0.779 0.666 0.668 0.723 0.070 0.876 0.783 0.774 0.826 0.080 0.895 0.821 0.802 0.854 0.100 0.893 0.832 0.806 0.851 0.150 0.816 0.777 0.751 0.785 0.200 0.774 0.736 0.717 0.749 0.500 0.737 0.710 0.689 0.721 1.000 0.768 0.748 0.717 0.758 2.000 0.808 3.000 0.835 0.837 0.815 4.000 0.857 6.000 0.874 0.862 0.835 0.869 10.000 0.873 0.857 0.849 0.880

Page 171: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

169

E.22 Testes ROT

Photon energy

Testes equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00107 0.01003 0.00126 0.015 0.02788 0.020 0.10280 0.14340 0.08886 0.025 0.030 0.344 0.372 0.304 0.035 0.040 0.616 0.557 0.516 0.050 0.792 0.700 0.697 0.060 0.906 0.763 0.808 0.070 1.030 0.818 0.869 0.080 0.981 0.803 0.881 0.100 0.966 0.795 0.867 0.150 0.890 0.750 0.779 0.200 0.845 0.733 0.756 0.500 0.788 0.725 0.721 1.000 0.824 0.765 0.740 2.000 3.000 0.881 0.853 0.839 4.000 6.000 0.911 0.880 0.854 10.000 0.923 0.892 0.861

Page 172: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

170

E.23 Thymus ROT

Photon energy

Thymus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00008 0.00008 0.00000 0.015 0.00606 0.00055 0.020 0.03358 0.07515 0.00905 0.025 0.030 0.187 0.267 0.119 0.035 0.040 0.415 0.457 0.353 0.050 0.630 0.663 0.565 0.060 0.808 0.793 0.738 0.070 0.910 0.877 0.833 0.080 0.896 0.892 0.856 0.100 0.930 0.894 0.846 0.150 0.874 0.844 0.826 0.200 0.856 0.815 0.770 0.500 0.802 0.786 0.748 1.000 0.851 0.790 0.800 2.000 0.854 3.000 0.874 0.857 4.000 0.968 6.000 0.959 0.913 0.945 10.000 0.950 0.911 0.896

Page 173: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

171

E.24 Thyroid ROT

Photon energy

Thyroid equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00040 0.00000 0.00009 0.00329 0.015 0.02385 0.05900 0.020 0.11430 0.02776 0.06266 0.18310 0.025 0.030 0.372 0.158 0.292 0.461 0.035 0.040 0.615 0.360 0.536 0.709 0.050 0.818 0.574 0.732 0.884 0.060 0.942 0.706 0.852 0.996 0.070 1.034 0.816 0.939 1.088 0.080 1.050 0.850 0.966 1.059 0.100 1.013 0.817 0.938 1.082 0.150 0.953 0.783 0.893 1.010 0.200 0.934 0.775 0.856 0.984 0.500 0.881 0.710 0.800 0.922 1.000 0.870 0.758 0.824 0.914 2.000 0.980 3.000 0.945 0.793 0.891 4.000 1.002 6.000 0.922 0.879 0.890 0.973 10.000 0.908 0.831 0.895 0.979

Page 174: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

172

E.25 Uterus ROT

Photon energy

Uterus equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00000 0.015 0.00000 0.020 0.00084 0.025 0.030 0.056 0.035 0.040 0.222 0.050 0.433 0.060 0.603 0.070 0.719 0.080 0.767 0.100 0.768 0.150 0.741 0.200 0.702 0.500 0.685 1.000 0.728 2.000 0.800 3.000 4.000 0.843 6.000 0.850 10.000 0.885

Page 175: Tomographic Anthropomorphic Models Part IV: Organ Doses ... · Appendix E Conversion coefficients for rotational (ROT) broad parallel beams 147 . 1 Abstract The present report contains

173

E.26 Risk-weighted equivalent dose ROT

Photon energy

Risk-weighted equivalent dose per air kerma free-in-air (Sv·Gy-1)

(MeV) Golem Voxelman Visible Human

Donna

0.010 0.00173 0.00233 0.00250 0.00192 0.015 0.0108 0.0108 0.00929 0.00950 0.020 0.0423 0.0357 0.0313 0.0306 0.025 0.030 0.194 0.146 0.144 0.146 0.035 0.040 0.421 0.331 0.322 0.352 0.050 0.628 0.529 0.510 0.562 0.060 0.774 0.671 0.651 0.725 0.070 0.878 0.767 0.745 0.827 0.080 0.886 0.793 0.774 0.858 0.100 0.883 0.800 0.783 0.864 0.150 0.819 0.753 0.733 0.805 0.200 0.782 0.724 0.705 0.775 0.500 0.743 0.701 0.682 0.748 1.000 0.768 0.735 0.711 0.770 2.000 0.839 3.000 0.834 0.808 0.796 4.000 0.897 6.000 0.854 0.833 0.818 0.898 10.000 0.860 0.831 0.823 0.919