Time Lags Due to Thermal and Bulk Comptonization

Embed Size (px)

Citation preview

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    1/25

    Time lags due tothermal and bulk

    ComptonizationJuan C Luna

    George Mason University

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    2/25

    Variable Sources

    AGN (Active Galactic Nucleus)

    Neutron Star / White Dwarf

    Black Hole Candidate

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    3/25

    Compact Objects

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    4/25

    White Dwarf (Mira)

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    5/25

    Neutron StarAfter a supernova explosion, the central region of the star collapses

    combining protons and electrons and forcing them to produce neutrons. A

    pulsar is a rotating neutron star.

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    6/25

    Black HoleThe star collapse up to a point of infinite mass an zero volume,

    becoming a singularity.

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    7/25

    Black Holes

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    8/25

    Telescopes

    Rossi XTEXMM NewtonChandra

    1

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    9/25

    Slide 8

    j1 Rossi XTEjcl,10/3/2006

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    10/25

    Tools & Files

    FTOOLS

    CIAO 3.1

    XSPEC

    Sherpa

    Xronos

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    11/25

    Xspec output:

    Spectrum and Light Curve

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    12/25

    Accretion Disc

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    13/25

    Accretion Models

    Standard Disk(Shakura & Sunyaev 1973)

    optically thick, geometrically thin,energy produced by viscousheating emitted locally asblackbody radiation (cool disk)

    Two temperature Disks

    (Shapiro, Lightman & Eardley1976)

    The inner region of the disk is hot

    geometrically thicker than the cooldisk, but optically thin to absorption(gas pressure is dominant hotdisk)

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    14/25

    Advection Dominated Accretion FlowAccretion flow in which as the gas spirals in and gets very

    hot, it does not radiate its heat energy efficiently. Instead

    of radiating and cooling down, the gas remains hot and

    spirals in to the center. The heat energy released byviscous dissipation is not radiated immediately, as in a

    thin disk, but is stored in the gas as thermal energy and

    advected with the flow Narayan 06

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    15/25

    Main spectral states of

    accreting black holesunabsorbed spectra

    predicted detection by

    Z. & Gierliski 2004

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    16/25

    black

    holecold accretion

    disk

    active region soft seed

    photonsreflectedphotons

    scattered

    hard

    photons

    Spectral States:

    A. Zdziarski 05

    cold outer disk

    direct soft

    photonsscattered

    hard photonsreflected

    photons

    hot inner disk

    variable inner radius

    gravity +

    Coulomb

    black hole

    outflow/jet

    emitting

    radio/IR/...

    Soft State

    Hard State

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    17/25

    cold outer disk

    direct softphotons scatteredhard photonsreflected

    photons

    hot inner disk

    variable inner radius

    gravity +

    Coulomb

    black hole

    outflow/jet

    emittingradio/IR/...

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    18/25

    Power Spectra(Powspec & FFT)

    QPO: quasiperidodical oscillationsFFT & PSD StatisticsTerms:

    Power Spectral Density (PSD) FFT of

    the auto-correlation function

    Cross Spectral Density (CSD) FFT of

    the Cross-correlation function

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    19/25

    Phase Info (autocorrelation FFT):

    Time Lag

    Difference in Photon Arrival times gives us information about source

    size and propagation speed

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    20/25

    Advection model references

    Blandford & Begelman (1999)

    non-relativistic advection dominated inflow-outflow solution

    Becker, Subramanian & Kazanas (2001)

    pseudo-newtonian process in the event horizon RADIOS (self-similar relativistic advection dominated inflow-outflow solution)

    Truong V. Le & Becker (2005)

    relativistic outflows in advection dominated accretion disks withshocks

    Becker & Wolff (2006)

    Thermal and Bulk Comptonization in accretion powered X-raypulsars

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    21/25

    Transport Equation

    2 2 0 0 0 02 2 2 20 0

    ( ) ( ) ( )1 1v v

    3 4

    N r r t t f f d f f r r

    t r r dr r r r r

    H H I I H I O

    I T I

    x x x x x !

    x x x x x

    First order Fermi energization Diffusion term

    4

    2 2

    1e T

    e

    e

    n cf ff kT

    t m c

    WI

    I I I

    x x x x x x -

    Kompaneets Equation

    Recoil

    lossesStochastic energization

    by thermal electrons

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    22/25

    2 2 0 0 0 02 2 2 20 0

    ( ) ( ) ( )1 1v v

    3 4

    N r r t t f f d f f r r

    t r dr r r r r r

    H H I I H I

    I I

    x x x x x

    x x x x x

    0

    9 31/ 21/ 4 2

    0 00

    3 30 0

    0 0

    3 2, , exp

    1 18 2 1

    x

    t

    xx x xN eF x w I

    xxr xxF

    \I \I

    I \ \T I T \

    !

    -

    % %

    % %%

    0( ) 21

    ( , )2

    iw t t

    eF t dt observed fluxe I I

    T

    g

    g

    * ! %

    22

    2

    164 81 9

    ln4 2 1

    AB

    AB

    v

    v

    \T \

    N \T \

    ! -

    %

    % %%%

    % %

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    23/25

    5 10 15 20

    -2.25

    -2

    -1.75

    -1.5

    -1.25

    -1

    -0.75

    -0.5

    M. Van Der Klis et Al. 1987

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    24/25

    Future Work

    4

    2 2

    1e

    B e

    e

    n c f f k T

    c

    W

    II II

    x x x x -

    2 2 40 0 0 02 2 2 2 2 20 0

    ( ) ( ) ( )1 1 1v v

    3 4

    e T

    B e

    e

    N r r t t n c f f d f f fr r f k T

    t r dr r r r r r m c

    H H I I H WI

    I

    I I I I I

    x x x x x x x

    x x x x x x x -

    Add stochastic energization by thermal

    electrons, and the effect of the electrons

    recoil (Kompaneets equation)The transport equation has to be

    solved considering a disc geometry.

    Kompaneets equation term

  • 8/8/2019 Time Lags Due to Thermal and Bulk Comptonization

    25/25

    References

    The Why & How of X-Ray timing

    Z. Arzoumanian. 2003 X-Ray Summer School

    X-Ray Timing Analysis

    Michael Novak- Chandra X-Ray Science Center / MIT

    Chandra X-ray Observatory

    http://chandra.harvard.edu/ Dr. Rita M. Sambruna Class Notes

    Dr. Peter Becker- Class Notes, Verbal Communication

    Dr. Lev Titarchuk- Class Notes, Seminars

    [1] A Catalog of Candidate Intermediate-luminosity X-rayObjects V2. ApJS 2002. E.J.M Colbert, and A.F. Ptak.

    Gravitys Fatal AttractionMitchell Begelman