27
111 7 REFERENCES Achten, W. M., Mathijs, E., Verchot, L., Singh, V. P., Aerts, R. and Muys, B. (2007). "Jatropha biodiesel fueling sustainability?" Biofuels, Bioproducts and Biorefining 1(4): 283–291. Addison, K. (2008). "Biodiesel processors." Retrieved 11 March 2009, 2009, Retrieve from http://journeytoforever.org/biodiesel_processor.html . Addison, K. (2008). "Make your own biodiesel." Retrieved 11 March 2009, 2009, Retrieve from http://www.journeytoforever.org/biodiesel_make2.html . Al-Widyan, M. I. and Al-Shyoukh, A. O. (2002). "Experimental evaluation of the transesterification of waste palm oil into biodiesel." Bioresource Technology 85(3): 253-256. Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J. and Navarro, A. (2000). "Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow." Biomass and Bioenergy 18(6): 515-527. Alok, K. T., Akhilesh, K. and Hifjur, R. (2007). "Biodiesel production from jatropha oil (jatropha curcas) with high free fatty acids: An optimized process." Biomass and Bioenergy 31(8): 569-575. Banerjee, A. and Chakraborty, R. (2009). "Parametric sensitivity in transesterification of waste cooking oil for biodiesel production--a review." Resources, Conservation and Recycling 53(9): 490-497. Berchmans, H. J. and Hirata, S. (2008). "Biodiesel production from crude jatropha curcas l. Seed oil with a high content of free fatty acids." Bioresource Technology 99(6): 1716-1721. Berrios, M. and Skelton, R. L. (2008). "Comparison of purification methods for biodiesel." Chemical Engineering Journal 144(3): 459-465. Berrios, M., Siles, J., MartÃ-n, M. A. and MartÃ-n, A. (2007). "A kinetic study of the esterification of free fatty acids (ffa) in sunflower oil." Fuel 86(15): 2383-2388. Breure, C. J. (2003). Oil palm – management for large and sustainable yields, T.H. Fairhurst and R. Härdter. Canakci, M, Van, G. and J (2003). A pilot plant to produce biodiesel from high free fatty acid feedstocks. St. Joseph, MI, ETATS-UNIS, American Society of Agricultural Engineers.

thesis 01 29 - print

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

111

7 REFERENCES

Achten, W. M., Mathijs, E., Verchot, L., Singh, V. P., Aerts, R. and Muys, B. (2007). "Jatropha biodiesel fueling sustainability?" Biofuels, Bioproducts and Biorefining 1(4): 283–291. Addison, K. (2008). "Biodiesel processors." Retrieved 11 March 2009, 2009, Retrieve from http://journeytoforever.org/biodiesel_processor.html. Addison, K. (2008). "Make your own biodiesel." Retrieved 11 March 2009, 2009, Retrieve from http://www.journeytoforever.org/biodiesel_make2.html. Al-Widyan, M. I. and Al-Shyoukh, A. O. (2002). "Experimental evaluation of the transesterification of waste palm oil into biodiesel." Bioresource Technology 85(3): 253-256. Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J. and Navarro, A. (2000). "Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow." Biomass and Bioenergy 18(6): 515-527. Alok, K. T., Akhilesh, K. and Hifjur, R. (2007). "Biodiesel production from jatropha oil (jatropha curcas) with high free fatty acids: An optimized process." Biomass and Bioenergy 31(8): 569-575. Banerjee, A. and Chakraborty, R. (2009). "Parametric sensitivity in transesterification of waste cooking oil for biodiesel production--a review." Resources, Conservation and Recycling 53(9): 490-497. Berchmans, H. J. and Hirata, S. (2008). "Biodiesel production from crude jatropha curcas l. Seed oil with a high content of free fatty acids." Bioresource Technology 99(6): 1716-1721. Berrios, M. and Skelton, R. L. (2008). "Comparison of purification methods for biodiesel." Chemical Engineering Journal 144(3): 459-465. Berrios, M., Siles, J., MartÃ-n, M. A. and MartÃ-n, A. (2007). "A kinetic study of the esterification of free fatty acids (ffa) in sunflower oil." Fuel 86(15): 2383-2388. Breure, C. J. (2003). Oil palm – management for large and sustainable yields, T.H. Fairhurst and R. Härdter. Canakci, M, Van, G. and J (2003). A pilot plant to produce biodiesel from high free fatty acid feedstocks. St. Joseph, MI, ETATS-UNIS, American Society of Agricultural Engineers.

112

Canakci, M. and Mustafa (2007). "The potential of restaurant waste lipids as biodiesel feedstocks." Bioresource Technology 98(1): 183-190. Canakci, M. and Van Gerpen, J. (1999). Biodiesel production via acid catalysis. St. Joseph, MI, ETATS-UNIS, American Society of Agricultural Engineers. Canakci, M. and Van Gerpen, J. (2001). "Biodiesel production from oils and fats with high free fatty acids." Transactions of the ASABE 44(6): 1429-1436. Canakci, M. and Van Gerpen, J. (2003). A pilot plant to produce biodiesel from high free fatty acid feedstocks. St. Joseph, MI, ETATS-UNIS, American Society of Agricultural Engineers. Carberry, J. J. (2001). Chemical and catalytic reaction engineering, Dover Publications. castoroil.in. (2007). "Castor oil as biodiesel & biofuel." Retrieved 23 March 2011, 2011, Retrieve from http://www.castoroil.in/uses/fuel/castor_oil_fuel.html. Cheng, S. F., Choo, Y. M., Yung, C. L., Ma, A. N. and Yusof, B. (2005) "Palm biodiesel: Gearing towards malaysian biodiesel standards." Cícero, S. M. and Marcos, J. "Rubber tree seed production." 12 Conceição, M. M., Candeia, R. A., Silva, F. C., Bezerra, A. F., Fernandes, J. V. J. and Souza, A. G. (2007). "Thermoanalytical characterization of castor oil biodiesel." Renewable and Sustainable Energy Reviews 11(5): 964-975. Coulson, J. M. and Richardson, J. F. (1999). Coulson & richardson's chemical engineering: Fluid flow, heat transfer and mass transfer, Butterworth-Heinemann. Dasari, M. A., Kiatsimkul, P.-P., Sutterlin, W. R. and Suppes, G. J. (2005). "Low-pressure hydrogenolysis of glycerol to propylene glycol." Applied Catalysis A: General 281(1-2): 225-231. Demirbas, A. (2005). "Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods." Progress in Energy and Combustion Science 31(5-6): 466-487. Dizge, N., Aydiner, C., Imer, D. Y., Bayramoglu, M., Tanriseven, A. and Keskinler, B. (2009). "Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer." Bioresource Technology 100(6): 1983-1991. Donough, C. R., Witt, C., Fairhurst, T., Griffiths, W. and Kerstan, A. G. (2006). "Proceedings of 5th international planters conference 2006." Incorporated Society of Planters.

113

Eevera, T., Rajendran, K. and Saradha, S. (2009). "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions." Renewable Energy 34(3): 762-765. Ellis, N., Guan, F., Chen, T. and Poon, C. (2008). "Monitoring biodiesel production (transesterification) using in situ viscometer." Chemical Engineering Journal 138(1-3): 200-206. Felizardo, P., Neiva Correia, M. J., Raposo, I., Mendes, J. o. F., Berkemeier, R. and Bordado, J. o. M. (2006). "Production of biodiesel from waste frying oils." Waste Management 26(5): 487-494. Fitzgerald, M. (2006, December 27, 2006). "India's big plans for biodiesel." Technology Review Retrieved 24 August 2010, 2010, Retrieve from http://www.technologyreview.com/energy/17940/page2/. Freedman, B., Pryde, E. H. and Mounts, T. L. (1984). "Variables affecting the yields of fatty esters from transesterified vegetable oils." J. Am. Oil Chem. Soc. 61(10): 1638-1643. Fukuda, H., Kondo, A. and Noda, H. (2001). "Biodiesel fuel production by transesterification of oils." Journal of Bioscience and Bioengineering 92(5): 405-416. Garnica, J. A. G., Silva, N. d. L. d. and Maciel, M. R. W. (2009). "Production and purification of biodiesel and glycerine, since vegetal oils and kinetic of vegetal oils transesterification reaction for wasted frying oil." Chemical Engineering Transactions. Ghadge, S. V. and Raheman, H. (2006). "Process optimization for biodiesel production from mahua (madhuca indica) oil using response surface methodology." Bioresource Technology 97(3): 379-384. Goff, M., Bauer, N., Lopes, S., Sutterlin, W. and Suppes, G. (2004). "Acid-catalyzed alcoholysis of soybean oil." Journal of the American Oil Chemists' Society 81(4): 415-420-420. Gui, M. M., Lee, K. T. and Bhatia, S. (2008). "Feasibility of edible oil vs. Non-edible oil vs. Waste edible oil as biodiesel feedstock." Energy 33(11): 1646-1653. Haas, M. J. (2004). "The interplay between feedstock quality and esterification technology in biodiesel production." Lipid Technology 16(1): 7-11. Hao, g. v. and Liem, D. T. (2003). The utilisation of rubber (hevea brasiliensis) seed cake as protein source for growing goats. Proceedings of Final National Seminar-Workshop on Sustainable Livestock Production on Local Feed Resources, HUAF-SAREC, Hue City.

114

He, H. Y., Guo, X. and Zhu, S. L. (2006). "Comparison of membrane extraction with traditional extraction methods for biodiesel production." JAOCS 83: 457-460. Ikwuagwu, O. E., Ononogbu, I. C. and Njoku, O. U. (2000). "Production of biodiesel using rubber [hevea brasiliensis (kunth. Muell.)] seed oil." Industrial Crops and Products 12(2000): 57-62. Iso, M., Chen, B., Eguchi, M., Kudo, T. and Shrestha, S. (2001). "Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase." Journal of Molecular Catalysis B: Enzymatic 16(1): 53-58. Issariyakul, T., Kulkarni, M. G., Dalai, A. K. and Bakhshi, N. N. (2007). "Production of biodiesel from waste fryer grease using mixed methanol/ethanol system." Fuel Processing Technology 88(5): 429-436. Knothe, G. (2001). "Analytical methods used in the production and fuel quality assessment of biodiesel." Kansedo, J., Lee, K. T. and Bhatia, S. (2009). "Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production." Fuel 88(6): 1148-1150. Karmee, S. K. and Chadha, A. (2005). "Preparation of biodiesel from crude oil of pongamia pinnata." Bioresource Technology 96(13): 1425-1429. Kincs, F. (1985). "Meat fat formulation." Journal of the American Oil Chemists' Society 62(4): 815-818. Knothe, G. (2001). "Analytical methods used in the production and fuel quality assessment of biodiesel." Kywe, T. T. and Oo, M. M. (2009). "Production of biodiesel from jatropha oil (jatropha curcas) in pilot plant." World Academy of Science, Engineering and Technology 88. Lee, K.-T., Foglia, T. and Chang, K.-S. (2002). "Production of alkyl ester as biodiesel from fractionated lard and restaurant grease." Journal of the American Oil Chemists' Society 79(2): 191-195. Lepper, H. and Friesenhagen, L. (1986). Process for the production of fatty acid esters of short-chain aliphatic alcohols from fats and/or oils containing free fatty acids. U.S.A., Henkel Kommanditgesellschaft auf Aktien. Liu, K.-S. (1994). "Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials." Journal of the American Oil Chemists' Society 71(11): 1179-1187.

115

Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A. and Goodwin, J. G. (2005). "Synthesis of biodiesel via acid catalysis." Industrial & Engineering Chemistry Research 44(14): 5353-5363. Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M. and Liang, B. (2009). "Production of biodiesel from jatropha curcas l. Oil." Computers & Chemical Engineering 33(5): 1091-1096. Ma, F., Clements, L. D. and Hanna, M. A. (1998). "The effects of catalyst, free fatty acids, and water on transesterification of beef tallow." Transactions of the ASABE 41(5): 1261-1264. Ma, F. and Hanna, M. A. (1999). "Biodiesel production: A review." Bioresource Technology 70: 1-15. Miao, X., Li, R. and Yao, H. (2009). "Effective acid-catalyzed transesterification for biodiesel production." Energy Conversion and Management 50(10): 2680-2684. NBB. (2007). "Biodiesel production and quality." Retrieve from http://www.biodiesel.org/pdf_files/fuelfactsheets/prod_quality.pdf. Nienow, A. W., Harnby, N. and Edwards, M. F. (1997). Mixing in the process industries: Second edition, Butterworth-Heinemann. NIIR-Board-of-Consultants-and-Engineers (2008). The complete book on jatropha (bio-diesel) with ashwagandha, stevia, brahmi & jatamansi herbs (cultivation, processing & uses), Asia Pacific Business Press Inc. Noiroj, K., Intarapong, P., Luengnaruemitchai, A. and Jai-In, S. (2009). "A comparative study of koh/al2o3 and koh/nay catalysts for biodiesel production via transesterification from palm oil." Renewable Energy 34(4): 1145-1150. Ramadhas, A. S., Jayaraj, S. and Muraleedharan, C. (2005). "Biodiesel production from high ffa rubber seed oil." Fuel 84(4): 335-340. Rice, B., Frohlich, A., Leonard, R. and Korbitz, W. (1997). Bio-diesel production based on waste cooking oil: Promotion of the establishment of an industry in ireland. Centre, O. P. R. Carlow. Royal-Thai-Naval-Dockyard (2005). Biodiesel project in the royal thai navy. Division, R. D. Saka, S. (2005). Production of biodiesel: Current and future technology. Core University program seminar, Universiti Sains Malaysia, JSPS/VCO. Saka, S. and Kusdiana, D. (2001). "Biodiesel fuel from rapeseed oil as prepared in supercritical methanol." Fuel 80(2): 225-231.

116

Saraf, S. and Thomas, B. (2007). "Influence of feedstock and process chemistry on biodiesel quality." Trans IChemE, Part B, Process Safety and Environmental Protection 85(B5): 360–364. Scholl, K. W. and Sorenson, S. C. (1993). "Combustion of soybean oil methyl ester in a direct injection diesel engine." SAE. Schumacher, M. S. J. (2007). Small scale biodiesel production an overview. Agricultural Marketing Policy. Bozeman, Montana State University. Shah, S. and Gupta, M. N. (2007). "Lipase catalyzed preparation of biodiesel from jatropha oil in a solvent free system." Process Biochemistry 42(3): 409-414. Sinnott, R. K. (2005). Coulson & richardson's chemical engineering series, Elsevier Butterworth-Heinemann. The-Hightower-Report (2006). Bio-diesel demand disrupts vegetable oil balance: 4. Thoenes, P. (2007). Biofuels and commodity markets – palm oil focus, FAO, Commodities and Trade Division. Tomasevic, A. V. and Siler-Marinkovic, S. S. (2003). "Methanolysis of used frying oil." Fuel Processing Technology 81(1): 1-6. USDA (2010). Soybeans and oil crops: Sunflowerseed. United-States-Department-of-Agriculture, Economic Research Service. 2010. Van Gerpen, J., B.Shanks, Pruszko, R., Clements, D. and Knothe, G. (2004). Biodiesel production technology. Energy, U. S. D. o., National Renewable Energy Laboratory. Van Kasteren, J. M. N. and Nisworo, A. P. (2007). "A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification." Resources, Conservation and Recycling 50(4): 442-458. Varma, M. N. and Madras, G. (2007). "Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids." Ind. Eng. Chem. Res. 46(1): 1-6. Vellguth, G. (1983). "Performance of vegetable oils and their monoesters as fuels for diesel engines." SAE. Vertellus (2007) "Castor oil and its chemistry." Vicente, G., Martínez, M. and Aracil, J. (2004). "Integrated biodiesel production: A comparison of different homogeneous catalysts systems." Bioresource Technology 92(3): 297-305.

117

www.castoroil.in. (2007). "http://www.castoroil.in/crop/crop.html." Retrieved 24 July 2010, 2010, Retrieve from http://www.castoroil.in/crop/crop.html. www.gardeningplaces.com. (2010). "http://www.gardeningplaces.com/articles/oil-crops-compared1.htm." Retrieved 20 February 2010, 2011, Retrieve from http://www.gardeningplaces.com/articles/oil-crops-compared1.htm. www.hort.purdue.edu. (1998, January 8, 1998). "Pongamia pinnata (l.) pierre." Retrieved 25 November 2010, 2010, Retrieve. Zhang, Y., Dubé, M. A., McLean, D. D. and Kates, M. (2003). "Biodiesel production from waste cooking oil: 1. Process design and technological assessment." Bioresource Technology 89(1): 1-16. Zheng, S., Kates, M., Dubé, M. A. and McLean, D. D. (2006). "Acid-catalyzed production of biodiesel from waste frying oil." Biomass and Bioenergy 30(3): 267-272.

118

8 APPENDICES

Appendix A

International standards of biodiesel (B100) (ASTMD 6751-02)

Property ASTM

method Limits Units

Flash point (closed cup) D93 130.0 min. °C Water and sediment D2709 0.050 max. vol% Kinematic viscosity, 40°C D445 1.9-6.0 mm2/s Sulfated ash D874 0.020 max. mass% Sulfur D5453 0.05 max. mass% Copper strip corrosion D 130 No. 3 max. - Cetane number D613 47 min. - Cloud point D2500 Report °C Carbon residue, 100% sample D4530 0.050 max. mass% Acid number D664 0.80 max. mg KOH/g Free glycerin D6584 0.020 max. mass% Total glycerin D6584 0.240 max. mass% Phosphorus content D4951 0.001 max. mass% Distillation temperature, atmospheric equivalent temperature, 90% recovered

D 1160 360 max. °C

119

Appendix B

Estimation of height and diameter of the reactor unit

Liquid volume of the reactor = 50 liters Volume of the conical section = 3.239 liters Volume of electric heaters = 0.400 liters Liquid volume in cylindrical section = 50 – (3.239 – 0.400) liters

= 47.161 liters Height:diameter ratio of the reactor unit was taken as 1.5.

2

23

47.161 liters4

1.50.047161 m

4342 mm

D h

D D

D

π

π

=

×=

=

Therefore 350 mm is selected as the diameter of the reactor vessel. The resulted liquid height for 50 litre liquid volume is 490 mm.

120

Appendix C

Stratification data for jet mixing

SOURCE - Nienow, A. W., Harnby, N. & Edwards, M. F. (1997) Mixing in the Process

Industries: Second Edition, Butterworth-Heinemann, page 173.

121

Appendix D

Details of the process equipments used in the biodiesel pilot-plant

Centrifugal pump

Pipe diameter Inlet 1.25′′ , Outlet 1′′

Power 0.05 HP / 0.37 kW Current 2.6 A Voltage 230 V, 50 Hz Speed 2,800 RPM Suction head 7.8 m Total head 17 m Max. capacity 67 l/min Impeller material Stainless steel Manufacturer Arpico (Sri Lanka)

Mixing motor and gear box

Motor

Model 4IK25GN-AWU Type Induction Power 25 W Current 0.55 A Voltage 100 VAC, 50 Hz Speed 1,250 RPM Manufacturer Oriental Motor Co. Ltd. (Japan)

Gear Head

Model 4GN12.5-D1 Gear Ratio 12.5:1 Manufacturer Oriental Motor Co. Ltd. (Japan)

Solenoid valves

Model SUW-20

Pipe size 0.75′′

Voltage 220 V, 50/60 Hz Max. Temperature 80°C Manufacturer miT-UNiD-cns (Taiwan)

122

Electric heaters

Power 2000 W 3×

Current 26.1 A Voltage 230 V, 50 Hz Material Stainless Steel Manufacturer Mega Heaters (Sri Lanka)

Pressure gauge

Model K1.1.6 Range 0 – 100 mBar Make JAKO (Nederland)

Thermometer

Range 0 – 250°C Make –

123

Appendix E

Typical design stresses for plate

The appropriate material standards should be consulted for particular grades and plate

thicknesses

SOURCE – Sinnott, R. K. (2005) Coulson & Richardson's Chemical Engineering Series,

Volume-6, Elsevier Butterworth-Heinemann. page-812

Material Tensile Strength (N/mm2)

Design stress at temperature °C (N/mm2)

0 to 50 100 150 200 250 300 350 400 450 500

Carbon steel (semi-killed or silicon killed)

360 135 125 115 105 95 85 80 70

Carbon-manganese steel (semi-killed or silicon killed)

460 180 170 150 140 130 115 105 100

Carbon-molybdenum steel, 0.5per cent Mo

450 180 170 145 140 130 120 110 110

Low alloy steel (Ni, Cr, Mo, V)

550 240 240 240 240 240 235 230 220 190 170

Stainless steel 18Cr/8Ni unstabilised (304)

510 165 145 130 115 110 105 100 100 95 90

Stainless steel 18Cr/8Ni Ti stabilised (321)

540 165 150 140 135 130 130 125 120 120 115

Stainless steel 18Cr/8Ni, Mo 2.5% (316)

520 175 150 135 120 115 110 105 105 100 95

124

Appendix F Complete biodiesel pilot plant

125

Appendix G Full schematic diagram of the PDS

126

Appendix H

Descriptions of the buttons used in CPI

Name Mode selection switch Switch type Selector switch (Auto/Manual) Limitation No limitation – Function under both Auto and Manual modes Description Can be used to shift between Auto and Manual modes at any time

Auto to Manual – System automatically load current status of the unit to manual mode and continue under Manual mode without any change. Manual to Auto – System stops and load next automatic mode (mode indicator light will indicate the loaded mode) and wait for operator’s command to run under the new mode.

Name Level selection switch Switch type Selector switch (Full/Half) Limitation No limitation – Function under both Auto and Manual modes Description Can be used to inform the system about operating liquid level of the reactor

unit System will select the correct jet for mixing depend on the liquid level System avoid using incorrect jet valve under manual mode

Name Reset switch Switch type Push button switch Limitation No limitation – Function under both Auto and Manual modes Description System switches off all the running equipments and reset it’s memory. Name Permission switch Switch type Push button switch Limitation Function only under Automatic mode when system require permission to

proceed a certain operation/process Description System will indicate the required permission through the display unit

System waits until it receive permission Name Mode switches (Mode 1, Mode 2, Mode 3 and Mode 4) Switch type Push button switches Limitation Function only under Automatic mode Description Mode 1 – FFA reduction step

Mode 2 – Layer separation of FFA reduction step

Mode 3 – Biodiesel reduction step

Mode 4 – Layer separation of biodiesel reduction step

System will automatically shifted to next mode when one mode is complete

127

Name Equipment control switches (6 Solenoid valves, Electric heaters, Electric pump and Electric motor)

Switch type Push button switches Limitation Function only under Manual mode

3 heaters cannot be operated individually under Manual mode Description Can be use to control the equipments individually

Can be change the status of a equipment by single press (Off to On or On to Off) System avoid using incorrect jet nozzle selection valve

128

Appendix I

Schematic diagram of the pilot-plant control system

129

Appendix J

Printed circuit board diagram of the pilot-plant control system

130

Appendix K

Printed circuit board diagram of the current amplifying circuit

131

Appendix L

Abstract of patent application I

Title: Quantification of reactants required in the conversion of Free Fatty Acids (FFA) present in vegetable oils and animal fats into Fatty Acid Methyl Esters (FAME) based on the weight of the FFA content Abstract:

A novel method to convert free fatty acids (FFAs) in triglycerides (i.e. vegetable oil and animal fat) to fatty acid methyl esters (FAMEs) is disclosed. In this method, the amounts of methanol and acid catalyst required to convert FFAs to FAMEs is estimated based on the weight of the FFA present in the oil. Oil, appropriate amounts of methanol and acid catalyst mixture is subjected to conditions that allow the fatty acid methyl esters (FAMEs) to form and then the reaction mixture is allowed to settle. The FFA reduced fat or oil is settled into a separate layer and can be separated from the rest of the reaction mixture. Then the FFA reduced oil/fat can be converted to triglycerides into fatty acid methyl esters (i.e. biodiesel). The method of present invention is especially useful for the production of biodiesel using vegetable oil and animal fat feedstocks that contain any level of free fatty acids.

132

Appendix M

Abstract of patent application I

Title: Method of converting free fatty acids to fatty acid methyl esters with extended settling Abstract: A novel method for converting free fatty acids (FFAs) in triglycerides (i.e. vegetable oil, animal fat and waste oi1) is disclosed. The method involves adding a appropriate amounts of methanol and acid catalyst, subjecting the mixture to conditions that allow the fatty acid methyl esters (FAMEs) to form and allowing the reaction mixture to be settled. The FFA reduced fat or oil is settled in to a separate layer and can be separated from rest of the reaction mixture. The remaining FFAs of the separated layer can be further reduced by allow for settling more time. The FFA reduced oil/fat then can be subjected to conditions suitable for converting the triglycerides into fatty acid methyl esters (i.e. biodiesel). The method of present invention is especially useful for a production of biodiesel using vegetable and animal oils and fats that contain a relatively high level of free fatty acids as the feedstock.

01

09/08/2009

D

E

F

C

1 2 3 4

B

A

321 5

C

D

4 6 7 8

A

B

BIODIESEL PILOT-SCALE PLANT

LOW CARBON STEEL

09/08/2009

DR. S.H.P GUNAWARDENA

BREAK SHARP

09/08/2009

A3

SHEET 1 OF 9SCALE:1:8

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURE

WEIGHT:

DR. F.M. ISMAIL

DEBUR AND

EDGES

SS 304L &

NAME

D.R.S. HEWA WALPITADRAWN

CHK'D1

FINISH:

ANGULAR: 2 deg

Q.A

MFG

CHK'D2

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN MILLIMETERS

SURFACE FINISH:

TOLERANCES:

LINEAR: 2 MILLIMETERS

BIODIESEL PILOT-SCALE PLANT

7

5

9

8

2

1

3

6

4

UNIT MATERIAL

1. REACTOR UNIT STAINLESS STEEL 304

2. MIXING UNIT STAINLESS STEEL 304

3. SETTLING UNIT STAINLESS STEEL 304

4. CONDENSER UNIT STAINLESS STEEL 304

5. PIPING SYSTEM STAINLESS STEEL 304

6. AIR BUBBLING SYSTEM STAINLESS STEEL 304

7. PUMP STAINLESS STEEL 304

8. ELECTRIC MOTOR STAINLESS STEEL 304

9. SUPPORTING STRUCTURE LOW CARBON STEEL

PIC

16F

877P

1

7805TV

100uF

10uF

100nF

1N

4004

1N

4004

1N

4004

1N

4004

111111

22pF 22pF

VDD

VD

D1

GND

11

VDD

74LS

148N

1111

VDD

74LS

148N

1

GN

D

VDD

1

1

1 1

VDD

10uF

100nF

VC

C

VDD

GN

D

GN

D

7812TV

GN

D

GN

DG

ND

PIC

16F

877P

22pF 22pF

VDD GN

D

1

GN

D

VDD

TU

XG

R_16X

2_R

2

GN

D

VDD

VDD

100

GN

DG

ND

10KVDD G

ND

1

4N35

1

GND

4N35

1

GND

4N35

1

GND

4N35

1

GND

4N35

1

GND

4N35

1

GND

4N35

1

GN

D4N35

1

GN

D4N35

1

GN

D4N35

1

GN

D4N35

1

GN

D4N35

1

GN

D

4N35

1

GN

D

4N35

1

GN

D

4N35

1

1

MA

X232

GN

D

VDD

GN

D

MA

X232

GN

D

VDD

GN

D

ULN2003AN

GN

D

ULN2003AN

ULN2003AN

GN

D

111111 11 1111

GN

D

VCC

GN

D

MC

LR

/TH

V1

RA

0/A

N0

2

RA

1/A

N1

3

RA

2/A

N2

4

RA

3/A

N3

5

RA

4/T

0C

KI

6

RA

5/A

N4

7

RE

0/R

D/A

N5

8

RE

1/W

R/A

N6

9

RE

2/C

S/A

N7

10

OS

C1/C

LK

IN13

OS

C2/C

LK

OU

T14

RC

0/T

1O

SO

15

RC

1/T

1O

SI

16

RC

2/C

CP

117

RC

3/S

CK

18

RD

0/P

SP

019

RD

1/P

SP

120

RD

2/P

SP

221

RD

3/P

SP

322

SD

I/RC

423

SD

O/R

C5

24

TX

/RC

625

RX

/RC

726

PS

P4/R

D4

27

PS

P5/R

D5

28

PS

P6/R

D6

29

PS

P7/R

D7

30

1211

INT

/RB

033

RB

134

RB

235

PG

M/R

B3

36

RB

437

RB

538

PG

C/R

B6

39

PG

D/R

B7

40

32 31VD

D

VS

S

IC12

12

JP

17

34

56

78

910

1112

13

14

VI

1

2

VO

3

IC13

GN

DC

18

C19

C20

D5

D6

D7

D8

31 2

4

S17

31 2

4

S18

31 2

4

S19

31 2

4

S20

31 2

4

S21

31 2

4

S22

C21 C22

LE

D15

31 2

4

S23

31 2

4

S24

41

52

63

74

EI

5

A2

6A

17

A0

90

10

111

212

313

GS

14

EO

15

31 2

4

S25

31 2

4

S26

31 2

4

S27

31 2

4

S28

41

52

63

74

EI

5

A2

6A

17

A0

90

10

111

212

313

GS

14

EO

15

1

23

JP20

4

123

JP

23

4

31 2

4

S29

31 2

4

S30

31 2

4

S31

C23

C24

VI

1

2

VO

3

IC16

GN

D

2 1

Q3

MC

LR

/TH

V1

RA

0/A

N0

2

RA

1/A

N1

3

RA

2/A

N2

4

RA

3/A

N3

5

RA

4/T

0C

KI

6

RA

5/A

N4

7

RE

0/R

D/A

N5

8

RE

1/W

R/A

N6

9

RE

2/C

S/A

N7

10

OS

C1/C

LK

IN13

OS

C2/C

LK

OU

T14

RC

0/T

1O

SO

15

RC

1/T

1O

SI

16

RC

2/C

CP

117

RC

3/S

CK

18

RD

0/P

SP

019

RD

1/P

SP

120

RD

2/P

SP

221

RD

3/P

SP

322

SD

I/RC

423

SD

O/R

C5

24

TX

/RC

625

RX

/RC

726

PS

P4/R

D4

27

PS

P5/R

D5

28

PS

P6/R

D6

29

PS

P7/R

D7

30

1211

INT

/RB

033

RB

134

RB

235

PG

M/R

B3

36

RB

437

RB

538

PG

C/R

B6

39

PG

D/R

B7

40

32 31VD

D

VS

S

IC17

C25 C26

2 1

Q4

31 2

4

S32

12 3

X4

GND1

VCC2

CONTR3

RS 4

R/W5

E6

D07

D1 8

D29

D310

D411

D5 12

D613

D714

NC15

NC 16

DIS

1

13

2 R32

1 3

2

R3512

JP

27

34

56

78

910

1112

13

14

R36

R37

R38

R39

R40

R41

R42

R43

R44

R45

R46

R47

R48

R49

R50

R51

R52

1

2

6

4

5

OK16

LE

D16

R531

2

6

4

5

OK17

LE

D17

R541

2

6

4

5

OK18

LE

D18

R551

2

6

4

5

OK19

LE

D19

R561

2

6

4

5

OK20

LE

D20

R571

2

6

4

5

OK21

LE

D21

R581

2

6

4

5

OK22

LE

D22

R591

2

6

4

5

OK23

LE

D23

R601

2

6

4

5

OK24

LE

D24

R611

2

6

4

5

OK25

LE

D25

R621

2

6

4

5

OK26

LE

D27

R631

2

6

4

5

OK27

LE

D28

R64

1

2

6

4

5

OK28

LE

D29

R65

1

2

6

4

5

OK29

LE

D30

R66

1

2

6

4

5

OK30

1 2 3

JP

28

4123

JP

29

4

C1+

1

C1-

3

C2+

4

C2-

5

T1IN

11

T2IN

10

R1O

UT

12

R2O

UT

9

V+

2

V-

6

T1O

UT

14

T2O

UT

7

R1IN

13

R2IN

8

IC18

16

2

73

84

95

X5

G1

G2

C27

C28 C29

C30

C1+

1

C1-

3

C2+

4

C2-

5

T1IN

11

T2IN

10

R1O

UT

12

R2O

UT

9

V+

2

V-

6

T1O

UT

14

T2O

UT

7

R1IN

13

R2IN

8

IC19

16

2

73

84

95

X6

G1

G2

C31

C32 C33

C34

I11

I22

I33

I44

I55

I66

I77

O116

O215

O314O4

13O5

12O6

11O710

IC20

CD+9

GND8

I11

I22

I33

I44

I55

I66

I77

O116

O215

O314

O413

O512

O611O7

10

IC21

CD+9

GND8

I11

I22

I33

I44

I55

I66

I77

O116

O215

O314

O413O5

12O6

11O7

10

IC22

CD+9

GND8

31 2

4

S33

31 2

4

S34

31 2

4

S35

31 2

4

S36

31 2

4

S37

31 2

4

S38

31 2

4

S39

31 2

4

S40

31 2

4

S41

31 2

4

S42

31 2

4

S43

31 2

4

S44

LC

D D

ISP

LAY

16x2

EX

TE

RN

AL C

CT

EX

TE

RN

AL C

CT

RE

SE

T

EQUIPMENT CONTROL MODE SELECTION

CPI SWITCHES

CIRCUIT BOARD

SWITCHES

VA

CA

NT

INP

UT

S

DRAFT

INP

UT

SIG

NA

L S

TR

EA

MS

OU

TP

UT

SIG

NA

L S

TR

EA

MS

VA

CA

NT I

NP

UTS

12

34

56

7

12

34

12

34

12

34

12

34

12

34

56

71

23

4

12

34

56

7

12

34

56

7

12

34

56

7

12

34

56

7

1234

12

34

12

34

5

67

89

12

34

5

67

89

1 2 3

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

12

34

1 2 3

12

34

IC1

JP

2

IC2C1

C2

C3

D1 D

2

D3D

4

S12

S13

S14

S15

S1

S2

C4

C5

LED26

S3

S4

IC3

S7

S8

S9

S10

IC4

JP

3JP

4

JP

1

JP

5

JP

6

JP

7

S5

S6

S11

C7

C8

JP

8

JP

9

IC5

JP

10

Q2

IC6

C6C9Q1

S16

X2

R33

R34

JP

11

R8

R23

R2

R3

R4

R5

R6

R7

R25

R26

R28

R29

R30

R31

R20

R1

R27

OK5

LED1R12OK6

LED2R13OK7

LED3R24OK12

LED4

R9

OK1

LED5R10OK2

LED6R11OK3

LED7R14OK4

LED8

R15

OK8

LED9

R16

OK9

LED10

R17

OK10

LED11

R18

OK11

LED12

R19

OK13

LED13

R21

OK14

LED14

R22

OK15

JP12

JP

13

IC8

X1

C10

C11

C12

C13

IC7

X3

C14

C15

C16

C17

R32

R35

R36

R37

R38

R39

R40

R41

R42

R43

R44

R45

R46

R47

R48

PIC

16

F8

77

P

1

7805TV

100uF

10uF

100nF

1N

4004

1N

4004

1N

4004

1N

4004

11

11

11

22pF

22pF

1

11

74LS

148N

11

11

74LS

148N

11

11

1

1

11

1

10uF

100nF

1

1

7812TV

1

PIC

16

F8

77

P

22pF22pF

1

100

10K

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

4N

35

1

1

MA

X232

MA

X232

12

34

56

7

12

34

56

71

23

45

67

IC9

JP

14

JP

15

IC10

IC11

JP

16

J4

J5

J6

J1

J2

J3

J7

J8

UL

N2

00

3A

N

1

1

UL

N2

00

3A

NU

LN

20

03

AN

1