100
KfK 2863 Februar 1981 Thermophysical Properties 01 Sodium in the Liquid and Gaseous States K. Thurnay Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Kernforschungszentrum Karlsruhe

Thermophysical Properties 01 Sodium in the Liquid and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermophysical Properties 01 Sodium in the Liquid and

KfK 2863Februar 1981

Thermophysical Properties 01Sodium in the Liquid and

Gaseous States

K. Thurnay

Institut für Neutronenphysik und ReaktortechnikProjekt Schneller Brüter

Kernforschungszentrum Karlsruhe

Page 2: Thermophysical Properties 01 Sodium in the Liquid and
Page 3: Thermophysical Properties 01 Sodium in the Liquid and

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

KfK 2863

Thermophysical Properties of Sodium

in the Liquid and Gaseous States

K. Thurnay

-------------~-, ,.

1

Kernforschungszentrum Karisruhe GmbH, Karlsruhe

Page 4: Thermophysical Properties 01 Sodium in the Liquid and

Als Manuskript vervielfältigtFür diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

Page 5: Thermophysical Properties 01 Sodium in the Liquid and

Abstract

A system of temperature and density dependent thermal-property-functionshas been developed and checked for the sodiumt using all of the accessibleexperimental data and the mutual relationships of the properties. Inextending these properties beyond the range of the measurements substanceindependent physical relations have been used.

The property-descriptions are valid for all temperatures above the meltingpoint of the sodium and for all densities below the melting density of theliquid.

The system consists of the following thermal properties: pressure t heatcapacity at constant volumet thermal conductivity.

Die thermophysikalischen Eigenschaften des flüssigen und gasförmigenNatriums

Zusammenfassung

Die thermophysikalischen Eigenschaften des Natriums werden mit Hilfe einestemperatur- und dichteabhängigen Funktionssystems beschrieben. DiesesFunktionssystem wurde aus den zur Verfügung stehenden Natriumdatenentwickelt durch Extrapolation der Eigenschaften mit stoffunabhängigenthermischen Relationen.

Die Zustandsdarstellungen sind gültig für alle Temperaturen oberhalb desSchmelzpunktes und für alle Dichtewerte unterhalb der Flüssigkeitsdichte amSchmelzpunkt.

Die dargestellten Eigenschaften sind der Druckt die spezifische Wärme beikonstantem Volumen und die Wärmeleitfähigkeit.

Page 6: Thermophysical Properties 01 Sodium in the Liquid and

Contents

page

List of Figures

Glossary

1

3

1. Introduction 5

2. The Vapor Pressure of the Saturated Sodium 7

3. The Saturation Line and the Critical Point of the Sodium 9

4. Heat Capacities of the Sodium in the Saturated Area.

Enthalpy, Internal Energy, Entropy 12

5. The Pressure Derivatives of the Sodium on the Saturation Line 18

6. The Thermal Conductivity of the Sodium on the Saturation Line 22

7. The Static Thermal Conductivity in the Two Phase Region 25

8. The Thermal Properties of the Sodium as a Compressed Liquid 29

9. The Thermal Properties of the Sodium as an Overheated Vapor 31

10. The Thermal Properties of the Gaseous (Supercritical) Sodium 37

11. Conclusions 42

References

Appendix G. Fitting the gas equation at the critical point

Appendix I. The integral ~I(w,y)

Figures

Appendix P. The sodium property subroutines KANAST and KANAPT

44

47

50

53

94

Page 7: Thermophysical Properties 01 Sodium in the Liquid and

- 1 -

List of Figures

Thermal Conductivity of the Sodium Vapor

The Conductivities at Low Pressures

Deviations of the Conductivity-Data from the Reduced Description

Thermal Conductivity of the Saturated Sodium Vapor

Thermal Conductivity on the Saturation Line

Conductivity versus Enthalpy Differences

Static Thermal Conductivity in the Two-Phase Area

Range of Validity of the Thermal Properties

Deviations from the Vapor Pressure Equation

P V T - Properties of the Sodium Vapor

Reduced P V T - Properties

Factor of Reality

The Saturation Line of the Sodium

The Derivatives of the Density on the Saturation Line

Marginal Heat Capacities in the Two-Phase Area

Cv on the Saturation Line

Cp/Cv on the Saturation Line

The Enthalpy on the Saturation Line

Density-Derivatives of the Pressure (Saturated Liquid)

Temperature-Derivatives of the Pressure (Vapor)

P(T*) on the Vapor Side of the Critical Isotherm

Temperature-Derivative of the Pressure (Liquid)

Density-Derivatives of the Pressure (Saturated Vapor)

The Reduced Density-Derivatives

P and ap/aT on the Critical Isotherm

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

The Correcting Factor in the Rarified Vapor

Page 8: Thermophysical Properties 01 Sodium in the Liquid and

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34

Hg. 35

Fig. 36

Fig. 37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

- 2 -

The Pressure-Volume-Temperature Surface

The Near-Critical Part of the P(V,T)

The Z(V,T)-Surface

The Cv(V,T)-Surface (Liquid Side)

The Vapor Side of the Cv-Surface

The Gas Side of the Gy-Surface

The Near-Critical Part of the Cv-Surface

The Vapor Side of the Near-Critical Cv-Surface

The V-T-Surface of the Internal Energy

The V-T-Surface of the Entropy

The V-T-Surface of the Thermal Conductivity

The Pressure-Volume Chart

The Pressure-1/T Chart

The Gy -Volume Chart

The Gy-Temperature Chart

Side

Page 9: Thermophysical Properties 01 Sodium in the Liquid and

Glossary

T

P

v = I/p

s

u

H

P Px,

PT 3P/3T

P 3P /3pP

Ps = 3P/3p!S

- 3 -

temperature

density

specific volume

entropy

internal energy

enthalpy

pressure, vapor pressure

temperature - resp. density

derivatives of the pressure

heat capacities at const. volume,

resp. pressure

Tr = - •

P~IClT P

P/RopoT

thermal conductivity

factor of reality

PT = Pr!Rep

PP/RoTp p

Ps PS/RoT

PL (T), Pv (T)

F(L,T) = F(PL[T],T)

T dP Lr = - 0

L PL

dT

CV(V,T) = CV(PV+o,T)

x x x xT = TL(P), T = TV(p)

pressure derivatives

in reduced form

densities of the saturation line

property in the state of the saturated liquid

sonlc velocity in the liquid

marginal heat capacities

of the two-phase area

the inverted saturation line

Page 10: Thermophysical Properties 01 Sodium in the Liquid and

T 2508 Kc

0,23 g/cm3Pc =

P = 256,46 barc

a, ß, y

x = - T/Tc

w p/p c

y = T /Tc

R

- 4 -

the critical temperature

the critical density

the critical pressure

the critical exponents

distance to the critical temperature

reduced density

reduced temperature

the gas law constant

Page 11: Thermophysical Properties 01 Sodium in the Liquid and

- 5 -

1. Introduetion

The development of the sodium-eooled fast breeder reaetors inereased

naturally the interest for the thermophysical properties of this metal. It

is espeeially the safety analysis of the breeders, whieh requires asolid

knowledge of a variety of the thermal properties of the sodium in a broad

range of temperatures and densities - mainly for modelling the Fuel-Coolant­

Interaetion (FCI).

This phenomenon is a proeess of violent to explosive vaporisation,

resulting from inadvertent mixing of hot, molten fuel into the liquid

sodium. To describe the behaviour of this exotie mixture the pressure, the

heat capaeity and the thermal conduetivity must be available at tempera­

tures as high as 3100 K and at densities near to the melting density of the

sodium.

Moreover, the spaee-dependent hydrodynamieal FCI-eodes'- reeently in use in

the safety analysis - assume these properties to be a thermodynamieally

consistent set of smooth funetions of both variables temperature and

density.

None of the thermal properties of the sodium had been measured at sueh high

temperatures so far, most of the experiments reaehed only just ~he vicinity

of 1650 K, so the construetion of the required Sodium-Thermal-Property­

System (STPS) means a eonsiderable extension of the measured data known at

present.

Many attempts have been made in the past to obtain a eomplete deseription

for the thermal properties of sodium. Stone et ale at the NRL developed a

STPS for the region T < 1650 K, whieh also ineludes a pressure-deseription

for the overheated vapor /8, 24/. Miller et ale /25/ estimated the eritieal

properties of the sodium and extrapolated the saturation line and some

other properties of the saturated liquid. A. Padilla developed a STPS for

the suberitieal states using the Rowlinson-Approximation (eq. (72)) beyond

the two-phase region. In the earlier version /26/ of his STPS he used the

eritieal data of D. Miller, later on /27/ he ineorporated the data of Bhise

and Bonilla /4/.

Page 12: Thermophysical Properties 01 Sodium in the Liquid and

- 6 -

All these STPS bear common insufficiencies in calculating the FeI: the

thermal properties given do not include the conductivity, a description of

the heat capacity in the two-phase area is also lacking and none of these

STPS cover either the supercritical or the high-temperature overheated

vapor area.

The following pages describe the STPS developed and in use in Karlsruhe.

The thermal properties included here are

the pressure P with both its derivatives PT and P~

the heat capacity at constant volume Cv and

the thermal conductivity Qr•.

The STPS (Karlsruhe) describe these properties for all temperatures, ex­

ceeding the melting point of the sodium (TM = 371 K) and for all densities,

remaining below the density of the molten sodium at TM (see Fig. 1).

The presented STPS is actually the second edition of the original one from

1975. It differs from its predecessor mainly by taking into account the

vapor pressure measurements of Bhise and Bonilla /4/ and by using more

recent thermal conductivity dates for the sodium vapor /13/.

Page 13: Thermophysical Properties 01 Sodium in the Liquid and

- 7 -

2. The Vapor Pressure of the Saturated Sodium

The saturation vapor pressure pX(T) is something like the backbone for the

whole STPS. On the saturation line (SL) and in the two-phase area It 18 the

sodium pressure

T Tc

for

(1)

In addition it allows to extend the heat capacity Cv along an isotherm in

the two-phase region via the equation (see e.g. /20/):

=T

-? (2)

It can be also used to substitute the saturated vapor density qv(T) with

the numerically more convenient "factor of reality"

(3)

It i5 also needed to calculate one of the pressure derivatives PT or P, on

the saturation line using the mathematical relation

dT::: +

d ~K

dTK L , V . (4)

Finally. the shape of the pressure-surface P(q,T) beyond the saturated area

depends directly on the values of P snd PT on the SL.

The vapor pressure description of the STPS (Karlsruhe) 15 based on the

Page 14: Thermophysical Properties 01 Sodium in the Liquid and

2

of sI.

of Bhise and

@ 1255 - 2500 K@ From the

these data a

K

12153,:;: 11919-

To 1 5·ln

P in bars» r in K.

the deviations of the measured pressures from this

eq.

In a second

the

ion I 1s for

TB :: 1154 K

two pX-equations would mean either to use more formulas'

than eq. (5) (adding a rn-term to eq. (5), for in

and in) too at the (see eq.

». To avoid both of these alternatives and since the deviations are

- the maximal of eq. (5) fram the Makanski-

1s 2.75 i. - the vapor pressure i5 described

the whale range fram the to the critical with

eq. ).

Page 15: Thermophysical Properties 01 Sodium in the Liquid and

- 9 -

3. The Saturation Line and the Critical Point of the Sodium

The shape of the saturation line in the "cold"-region

T < 11 0 0 K

of the STPS (Karlsruhe) is also based on the measurements of the NRL-Group

already quoted /5,6/.

The density of the saturated liquid qL(T) is described with the formula

given in /5/.

The density of the saturated vapor ~v(T) has been calculated via Zv(T) (eq.

(3». To do this the derivative of Z was set to

1

Zv

dZ V

dT=

3Cn= 0

nan . T (6 )

with Zv ( 334, 5 K ) = 1

Fig. 5 shows the shape of this derivative ( --- line) and the corresponding

Zv-function (_._._). The polynomial in the eq. (6) was determined by

fitting Zv to the corresponding values, developed from the NRL-measurements

(6-signs in Fig. 5). The pressures, measured by this group for various

isochores in the overheated vapor displays Fig. 3 (signs 0 - Z). The dashed

curve represents the pX(T)-equation (5). The remaining dashed lines are

linear approximations for the pressure

P(T) = +x X

(T - T )·PT(T ) (7)

using best fit PT-values for each isochor (as the reduced pressure­

presentation - Fig. 4 - shows this equation is in fact not a good

approximation in this area, PT is in reality decreasing for increasing

Page 16: Thermophysical Properties 01 Sodium in the Liquid and

- 10 -

pressures). From the eq. (7) and (5) the saturation of the

isochor, TX ean be caleulated. The saturation volume of the isochor

was eorrected to T • TX by assuming that the measured volumina in eaeh

experiment inerease slightly but llnearly with T. From pX, and V(TX) eq.

(3) gives Zv(TX). The eorrespondenee between these "measured" Zv""'Values and

the ealeulation via eq. (6) is better than 0.2 %.

N.B. Caleulating Zv from the virial-equation given in /8/ results in a non­

monotonous dZv/dT with a loeal minimum at ~ 1000 K, leadlng to a Cv(V)­

maximum of wS R at this point.

The high temperature part of the SL was eonstructed using the Hypothesis of

the Universality of the Critieal Exponents (HUCE). This theory states (see

e.g. /15/), that the behaviour of a material with phase-transition 1s - in

the vieinity of the corresponding eritieal point - determined by a set of

universal numbers, the eritieal exponents. The values of these exponents

are

cx = 0,11 ß = 0,325 1 = 1,24. (8)

aeeording to ealeulations using the 3D-Ising-model /16/ or to reeent

measurements /15/. For the near-eritical (T ~ Te) saturation line of the

liquids HUCE gives the following shape:

~ L ( T ) = ~ C . ( 1 "I- b· xß

b·x ß(9)

~v ( T ) = <Sc • { 1

with x = 1 - T I Tc (10)

A eomparison of the near-eritieal densities of the saturated cesium /7/

with these equations gives b • 2. Taking this b-value for the sodium too

results in the following high temperature SL:

Page 17: Thermophysical Properties 01 Sodium in the Liquid and

- 11 -

(11)

~v (T) = ~ c . [ 1 - 2· xß + x· (o.V + x· gv + x 3 .hV) ]

for T 170 0 K

The x-polynomlals, added in this equation serve for a smooth connection

with smooth first T-derivatives at the sWitching point.

As a sodium critical temperature

Tc = 2508 K (12)

is used. This value corresponds via eq. (5) to the critical pressure,

measured in /4/:

Pe = 256 , 46 bar (13)

To achieve a smooth and monotonous dens1ty-connect1on at 1700 K a critical

density value of

~c =

was needed in the eq. (11).

0,23 g/cm 3 (14)

The complete saturation line 1s presented in Fig. 6.

Page 18: Thermophysical Properties 01 Sodium in the Liquid and

- 12 -

4. Reat Capacities of the Sodium in the Saturated Area.

Enthalpy, Internal Energy, Entropy

The caloric properties of the STPS (Karlsruhe) are based - in the sub­

critical region - on the heat capacity of the liquid with vanishing vapor

content:

-Cy(L,T) = CV{~L-o,T}

~L - 0 = ~L - E,E - 0

For other densities the Cv-s can be calculated either with eq. (2) or with

=T--.~2

(2A)

or, at the crossing of the saturation line, from the Cy-jump at this place.

The fact, that Cy jumps crossing the SL (see Figs. 30, 31, 33, 34) 1s not

broadly c1rculated in the thermal physics. The authors in 119/ - the single

quotation I found - declare the eq. (19) to be lIa well-known relation ll

without giving any further references.

The or1gin of this jump lies in the jump of the pressure derivative at this

same place:

dT

In the immediate neighborhood of 9L it is

dSCy = T· - =

dT

dST'­

dTT'

dS d ~l

dT(5)

Page 19: Thermophysical Properties 01 Sodium in the Liquid and

Setting

- J3 -

dS((LIT) = T'-(~L(T),T)

dT(16)

and using the thermastatic relation

s ~ = - PT I ~ 2

(see e.g. /20/) ane has

resp.

T d"L dpX

+ --'--~L2 d T d T

T dqL-. . PT ( S l )~L2 dT

(17)

(18)

These equations give a Cv-rise of

eV(Ll - [V(L)T d"L

= - -.[~L2' dT dT

] (19)

at the crassing fram the liquid into the saturated area.

Using the eq. (4) and wtth the reduced derivative

T d~Lrl = (20)

~L dT

eq. (19) can be transformed ta

...(V ( L ) r L

2 . P~( L) I T[V{L) - = (21)

Page 20: Thermophysical Properties 01 Sodium in the Liquid and

- 14 -

The constant pressure head capacity Cp. can be expressed in a similar way

/20/:

(p(L) - (y{Ll = (22)

with (23)

From the eq. (21) and (22) one has

( p ( L) = Ey ( L) + (r 2 - r L2 ). p ~ ( L ) I T (24)

Since for the "cold" liquid the SL is practically "vertica1", i.e.

d~L O~L:::

dT oT

(see Fig. 7), so it 1s

-(v( L,T ::: (p( L,T ) for T « Tc (25)

On the other hand at near-critica1 temperatures the HUCE describes Cv as

-C(= C{O)·\X! for x « 1 (26)

The Cv(L,T)-shape, adopted in Karlsruhe (Fig. 8) was suggested by these two

equations as follows:

....(y{L,T) = (p{L,T) + c(-}·[ X-CA - &(T) ] (27)

For Cp(L) the formu1a of Ginnings et a1. /11/ was taken (t1-signs in Fig.

8). ~(T) is a polynomial subtracted in eq. (27) to equalize the term x-~at

low temperatures:

for T < 1100 K

Page 21: Thermophysical Properties 01 Sodium in the Liquid and

The factor

- 15 -

c{-) = 5,S3·R

was chosen to achieve a smooth and monotonous Cv(L)-shape at near-critical

temperatures.

On the other side of the two-phase area the heat capacity of the vapor with

vanishlng humidlty

f. y (V I T) = CV( ~V + 0 I T )

(--- line in Fig. 8) can be calculated from Cv(L) with the eq. (2) to

Rere 1s

...Cy(V) =

...CV( L ) + ~ V· T . (28)

fjV = (29)

the volume-difference of the saturated states.

Actually» according to the eq. (2), for any volume

v = 1 I ~

inside the two-phase region the heat capac.ity is

[V(~,T ) = -[V(L,T) +1 1

~L

) . T . (30)

~V < <

The heat capacity of the saturated vapor CV(V) is calculated from the CV­

step at this place:

Page 22: Thermophysical Properties 01 Sodium in the Liquid and

- 16 -

(y(y) - (v(y) =

=T d~V. -.[

Q, y Z d T dT] (19A)

Cp(V) can be determined as on the liquid side. Fig. 9 displays the

saturated heat capacities Cv(L) and Cv(V), Fig. 10 gives the Cp/Cv­

relations.

The enthalpy of the saturated liquid can be integrated using the SL­

derivative

:: T· - + _. - ::dH( L )

dT

::

dS

dT

1

,..(V{L) +

dP

dT

(31 )

(see /20/ and eq. (16), (17». For the internal energy, U, one has a

corresponding derivative

d U( L )

dT::

,..

(V( L )Px

rL+ _.(

<SL T dT(32)

For the derivative of the entropy S a slightly transformed eq. (31) can

serve. At low temperatures (T < 1600 K) as H(L,T) and S(L,T) the respective

functions of the NRL-Group - cited in /12/ - can be used.

The properties H, U, and S in the saturated vapor are easier to determine

from the liquid properties than by using the derivatives. The equation of

Clausius-Clapeyron gives here

!1S = S(V) - S(L) :: !1V·--dT

:: !1 HIT (33)

Page 23: Thermophysical Properties 01 Sodium in the Liquid and

resp.

- 17 -

LlU = T-LlV,(dT

(34)

Fig. 11 shows the enthalpy of the saturated liquid and vapor.

Page 24: Thermophysical Properties 01 Sodium in the Liquid and

- 18 -

5. The Pressure Derivatives of the Sodium on the Saturation Line

In the following for the pressure derivatives reduced forms will be used:

,..

Pr :: Pr IR· ~

d p X

t :: I R·qdT

-P~ :: P~ J R· T

,.. oPPs :: -I I R·T

o~ S

(35)

(36)

(37)

(38)

These are more convenient in having no dimensions t giving a simpler form to

the physical relations and varying in a more restricted version - mostly

near to the unity - as the not reduced properties (compare the Figs. 12 and

16 with Fig. 17). Moreover, by using the properties (34) - (37) all the

heat capacities are given in R-units.

In the STPS (Karlsruhe) the pressure derivatives of the saturated liquid

are calculated - at low temperatures

T < 11 0 0 K

- from the measured values of the velocity of sound, Cs /9 t 10/. This can

be done by using the relations /20/

oP

Is2

:: (S (39)

O~

and

- (p -Ps = _.P~

(40)

(V

Page 25: Thermophysical Properties 01 Sodium in the Liquid and

- 19 -

Wlth the equatlons (21)

(v = - 2 -(V - rL . p~ (21A)

and (24) (p = - 2 2-(V + (r - rL ). P~ (24A)

One can ellmlnate Cp and Cv from the eq. (40):

With the relation /20/

Cp - Cv

Cv=

2 ­r . p~

... 2 -Cv -rL .p~

(41)

PT I P~ = - r

and with the reduced form of the eq. (4)

­...t .:: PT ... r L . P~

eq. (41) can be transformed to

(42)

(4A)

Cp - Cv

Cy:: (43)

!his equation and eq. (40) gives

...Ps :: -

p~ ... (44)

The inverted form of this relation

...P~ ::

...Ps -

) 2

-Cy - 2· t . r L +

(45)

Page 26: Thermophysical Properties 01 Sodium in the Liquid and

- 20 -

together with the eq. (39). (4A) and (ZlA) allows to calculate the thermal

properties P~. Pr. ev. ep of the liquid from the sonie velocity. Cv(L), qL

and pX(r).

In the "eold"-statre of the saturated vapor

T 2320 K

-the basic property is Pr; Pq and Cv are determined by the eq. (4A) resp.

(21A).

-Pr in this region is deseribed with r-polynomials (--- line in Fig. 13)

fitted to satisfy the following conditions:

-1. for low temperatures Pr must eonverge to the ideal gas value

-PT ( V , T ) -_......=- 1 for T

2. Pr must suffice the values gained from the PVT-measurements /6/ (~-signs

in Fig. 13),

3. both PT and the ev(V) calcualted from it (0-0 line in Fig. 9) must have

the simplest possible form compatible with 1. and 2.

In the fitting of the polynomials to the PT-values only the first 8

best-fit PT(TX)-values (eq. (7» were used. The latest one, corresponding

to the exp. 7 (Z-signs in Figs. 3 and 4) has been omitted for having a

value much too high:

PT ( Tx = 16 14 K) =

At near-critical temperatures, i.e. at

1 ,86

T 1 '1 0 0 K

Page 27: Thermophysical Properties 01 Sodium in the Liquid and

- 21 -

for the liquid end at

T 2320 K

for the vapor P~ was chosen as basic property. since the HUCE prescribes

for this function a shape:

for

P~(K,T) =

x - 0

K = L,V(46)

To have smooth connections with the respective low-temperature Pq-s form­

polynomials ~(K.x) had to be included in the eq. (46). So the high­

temperature functions are:

P~( L , T )

and

= (47)

with

(48 )

t.p(K,x 1 =4

1 + L: fn{Kl·x nn=1

K = L, V . (49)

As Po the fitting at the switching points gave

Po = 1150,89 j/g

Page 28: Thermophysical Properties 01 Sodium in the Liquid and

- 22 -

6. The Thermal Conductivity of the Sodium on ehe Saturation Line

Thermal conductivity measurements of the sodium are scarce and the

temperature range of the data is very limited. T • 1100 K being the higheat

temperature aa weIl for the liquid as for the vapor. Correspondingly the

switching point between measured QT-functions and extrapolated ones lies

also low at

T = 1280 K

for both saturated states.

For the thermal conductivity of the cold liquid the T-polynomial ­

recommended by Golden and Tokar /12/ - is used in Karlsruhe.

The most recent data concerning the sodium vapor thermal conductivity has

been published by Timrot et al. /13/. This group measured the QT of the

sodium in the overheated vapor along five different isotherms as functions

of the pressure (see ~ - x signs on the Figs. 20 and 21). They calculated

the thermal conductivity for the saturated vapor. Qf(V.T) (--- line on Fig.

23) by extending the isothermal data up to the saturation points ( ! -linesI

on the Figs. 20. 21) via the equation

(SO)

...QT is here the conductivity of the monatomic vapor. The factors b and e bad

been determined for each isotherm individually.

Since Qf(V.T) has a vanishing derivative at T = 1200 K. it is not practical

to use it as saturated conductivity. giving no help in the QT-extrapolation

to higher temperatures. To avoid this hindrance. a temperature-independent

description was developed. instead of the eq. (SO) for the thermal

conductivity (- lines on Figs. 20. 21):

...= 0T ( T ) . [ 1 + b· TI + (51)

Page 29: Thermophysical Properties 01 Sodium in the Liquid and

- 23 -

the reduced pressures

)

and the factors

e ::: -0,3353 (53)

pressure • Since Timrot et ale estimate theiras a

the

of the

the measurements from the eq. (51)

maximum error as about 5 % , the T-independent (50) is weIl

within the

(51) - (53)

of the

has the

uncertainties. From the equations

on(see

'"T(V T) ::: o.r(T)-1,5604

) .

)

There

thermal

a lack of ideas about the

the obvious notion

of the near-critical

T( C ) "'""=3 T(V ,T )

T ----e- TC

the near-critical conductivities

7/. He that for many substances

the and vapor conductivities vanishes as the

has been

the

for

. ~H if o < x )

for

0.05 for substances N and 0 but 0.14

for the near-critical thermal

Page 30: Thermophysical Properties 01 Sodium in the Liquid and

(see eq. (33».

LlH =

- 24 -

F . ( ~ L ~v )

Hence the extrapolated thermal conductivities were

C1. T(L,T) -

= o.T ( c ) . [ 1 + 2· X ß + x· ( aL + x· 9 L + X 3. L)

resp.

=

C1. T(V,T) =

0. T( C ) . [ 1 - 2· Xß + x· (aV + X,9V + X 3. V) J .)

The conditions

1. the linearity-limit, XG had to be as large as possible (see

2. the connections at 1280 K had to be smooth and monotonous

• 25) and

determined the parameters ä L, "ä"t •••critical conductivity:

as weIl as the

o.T (c) = 0 , 05 WI cm I K )

Fig. 24 shows the reduced conductivities QT(T)/Qr( in the I/T·ede,pend4~nc:e

The dashed lines 1nd1cate the extrapolated properties. The vapor

function, given in /12/ resp. 114/ and used in the first version of the

STPS in Karlsruhe 1s also indicated here (x-signs).

Page 31: Thermophysical Properties 01 Sodium in the Liquid and

- 25 -

7. The Statie Thermal Conduetivity in the Two-Phase Region

In the two-phase ares the substanee eonsists of a mass of saturated liquid

(ML ) dispersed in a mass of saturated vapor (Mv)' both having beside the

common temperature, T, a common pressure, pX(T). The quality of this

mixture depends at a given T on the mass relation of the vapor:

(59 )

Since the specific volume of the mixture is

(60)

with (61)

the mixture quality can be calculated directly from the densities:

= )

The transfer of heat can proceed in this mixture in four different ways

beside the radiation, convection and conduction heat can be also moved here

in latent form, i.e. by transporting and subsequently condensating

saturated vapor. AB the statie thermal conduetivity only the conductive

heat transfer 1s considered.

For the calculation of the eonduetivity in the

following, very simple liquid-vapor-mixture concept

sketch):

the

was devised (see

Page 32: Thermophysical Properties 01 Sodium in the Liquid and

- 26 -

-' ",," / "" /./ /".I' "" ,,"

J

+

A- + +A'- , /'''

/" / '/ /

B'- // ,,/,-B- + +

"..,

" "" /

,," //

"

v"/

/ "/

1/ /.. "/

+ + + + +"""'"-,,"',-/-/'"' ,..1/-"..../-/""'''/-/"''1 D//

" v/ "" /' / /', "".I' .. /"" "" /'

+ +

'"/ ""/ //' /'

"" "...

The liquid is uniformly distributed in the vapor, as a number of little

cubes, each mixture volume 0 3 contain1ng a liquid volume d3 • In a 03-volume

there 1s ~ two-phase substance and qv' (l - 11,3) saturated vapor, i'\ being

rt = d I 0

the length-rat10 of the liquid. The mixture-quality is therefore

(63)

s =3

~V·(1-rt )/~

giv1ng with eq. (62) the follow1ng relation between length ratio and

mixture density:

ll.(<S,T) =3

(64 )

To facil1tate the calculation of QT(q) it 1s assumed, that the heat current

J crosses perpendicularly one O-layer of the mixture-lattice, on a surface

F. D is supposedly small enough to render QT(L) and QT(V) space-independent

inside of this layer. Further, since evaporation and condensation had been

excluded, the heat currents in all three sub-layers must be the same and

equal to J:

Page 33: Thermophysical Properties 01 Sodium in the Liquid and

- 27 -

Denoting the temperatures on the surfaces A. A' •••• aB TA. TA' •••• the

currents in the first and in the third layer are:

2·TA - TA'

JA'A = ·F·o.T(V}D·(1-rt}

J S'B 2·TB - TB'

resp. = . ·F·o.T(V)D·(1-rt}

In the second layer there are two different heat currents, one in the

liquid part of the layer

(65)

(66 )

(67)

and one in the vapor part:

J V =

rendering the total layer-current to

J B'A' = J L + J V =

TA' - TB"·F·(Q.r(V) ll. 2 . 11 o.r ) (68)= +

D·rt

Here 19 (69 )

Page 34: Thermophysical Properties 01 Sodium in the Liquid and

- 28 -

The equivalent heat current for the total layer AB i8

J = (70)

The identi ty

TA - T B = TA - TA' + TA' - TB' + TB' - TB

and the equation (65) in connection with the eq. (66) - (68) and (70) gives

or

= (71)

Mixture conductivities, calculated with this equation for various isotherms

are displayed on Fig. 26 (--- lines).

Page 35: Thermophysical Properties 01 Sodium in the Liquid and

- 29 -

8. The Thermal Properties of the Sodium as a Compressed Liquid

In the state of the compressed liquid

T 0( Tc >

the sodium pressure is derived using a PT-approximation recommended by

Rowlinson /18/. It i8 assumed that in the compressed sodium - as in many

other compressed liquids - PT depends practically only on the density:

:: (72)

IX 18 here a "density-temperature", the inverted form of the saturated

liquid density, i.e.

::: resp. (73)

Wlth thie assumption the pressure of the liquid is

::

+

Tf dt·PT(q,t} ::

TX

x x+ (T - T ). Pr (L I T ) (74)

Ag a density derivative eq. (14) gives:

dp X

( T x )x

P~(~,T } :: [ Pr ( L I T ) +dT

( T - TX ) .

dP T (L,Tx

) ]1d qL

Tx ) .(15)

+ {dT dT

Since, due to the assumption (12) the second thermal derivative of P

vanlshes in thie state, the Cy-derlvative (eq. (2A» vanishes too and the

heat capaclty remains Cv(L,I) on the whole isotherm I in the compressed

Page 36: Thermophysical Properties 01 Sodium in the Liquid and

- 30 -

In describing the thermal conductivity in this state - for the sake of

simplicity - also a temperature-independence-assumption was used:

-- = (76)

Page 37: Thermophysical Properties 01 Sodium in the Liquid and

- 31 -

9. The Thermal Properties of the Sodlum as an Overheated Vapor

It is natural to try in this state

T < Tc < ~v ( T )

too a pressure-description with T-independent PT:

with

PT(~,T) ;:

X::: TV(q) resp.

:::

X::: <Sv (T )

(77)

(78)

The assumption (77) would give here - as in the compressed liquid -

P('3,T) ::: pX{T x ) + (T _ TX) . PT ( V I T x ) (79 )

dpx

( T X )x

with PQ, ( ~. / T ) ::: [ PT{V I T ;-

dT

( T - T x ) .dPT

(V/TX

) ] !d qv

Tx );- ( (80)dT dT

and CV(q,T ) ::: CV{V, T ) (8I)

The approximation (77) is unfortunately not fully adequate 1n the whole

vapor area; at low densities (rarified sub-region on Fig. 1)

the equations (77), (79) calculate too high values for PT and P. At

densities as low as

( to TX .... 1050 K) the sodium could be expected to behave aB an

ideal gas, especially far from the saturation line, on the critical

isotherm. So

Z(~,T) ;: 1 :: 1

Page 38: Thermophysical Properties 01 Sodium in the Liquid and

- 32 -

were reasonable values here. As the Figs. 13 and 14 prove, the respective

calculated properties (---- line on Fig. 13, line on Fig. 14) are too

high for these low density states.

There is also an experimental evidence for the insufficiency of the eq.

(77) as PT-description in this sub-range. As the reduced representation of

the PVT-data of the NRL /6/ indicates, PT on an isochor is not constant but

decreases markedly with increasing T from a maximum at T • TX (Fig. 4).

To achieve a better pressure-description in the rarified region, a ('\,T)-

dependent correction-term was added here to the PT-equation:

,... ,... xPT ( ~ ,T ) = PT (V ,T ) + G(s)·H(u) (82 )

The T-dependence 1s included in the variable

u(~,T) = 0 , 2 . (83 )

S i8 only a function of the density:

s(~) = ln~c/ln~

(s(,\) has a similar shape to TX(~), but it 18 easier to calculate).

The selection of the functions

jJ(u) = U / ( e U - 1 )

and

H(U) = j.J (U ). [U + jJ ( lJ) ]

(84)

(85 )

(86 )

was dicta ted by the fact, that the necessary PT- and P-corrections on the

critical isotherm are of the same size, i.e.

xllPT(T ,Tc) -- x x

llP(T ,Tc)/(Tc-T ) (87)

Page 39: Thermophysical Properties 01 Sodium in the Liquid and

- 33 -

A polynomial term for the correction:

=

would give

LlP= f . ---------

1 + m

Using here a smaII m-value (m< 1) tosuffice to the equation (87) would

render

o llPT / 0 T =x m-1

f·m·(T-T)

infinite at TX = T, giving an unphysical jump in the heat capacity (eq.

(2A» at this point, instead of a ev-shape, gradually decreasing with TX~O.

Integrating eq. (82) - the necessary derivatives are

and

dU

oT

djJ

d u=

=U

}J_.( 1 - U - jJ )

U

(88 )

(89)

the term G·H gives the following additional pressure:

TII P (~ I T ) = Jdt· R . q. G(s ). H (U) =

TX

x= R. ~. ( T - T ). G(s ) . jJ ( U ) ( 90 )

Page 40: Thermophysical Properties 01 Sodium in the Liquid and

- 34 -

A comparison of H(u) with ~(u) for T • Tc results in a (87)-relation:

1 "" 0.9.

The pressure correction (90) gives, using

=u

---.( 1T _ TX

0,2--

u(91)

the following P~ -correction:

o~p _ TX dG= R· [ (T ) . ( G + ~'-)'jJ +

a~ d<3

TXH - jJ

. ( H - 0, 2 . ) . G ] (92)x

rV(T ) u

To the heat capacity the PT-correction supplies (eq. (2A»:

~(V(~/T ) = (V(~/T ) - (V(V, T ) =

~ G(s ) oH= - R· T· J d~· .- (93 )

~V~ oT

dH HWith

du= ---[2'(jJ-1) + U]

u

this can be converted to ~(V{~/T) =

=dt

t

T--·G·H·[2·(jJ-1) + U ]·rv(t) .T - t

(94)

Page 41: Thermophysical Properties 01 Sodium in the Liquid and

- 35 -

The heat eapaeity, ealeulated by this equation for extremely low densities,

Cv(ü,T) is shown on Fig. 9 as a dashed line.

The boundary of the rarified sub-region of the overheated vapor in the STPS

(Karlsruhe) lies at

= 0,0 1 9 Icm3 (95)

(see -line on Fig. 18). This value eorresponds to a density-temperature

of

(on Figs. 13 and 14) or to

=

:::

1850 K

0,32

In the dense-area (~> ~G) P and Cv are deseribed with the equations (77),

(79 ), ( 80) and ( 81) •

For the density-fitting of the eorreetion-term in the rarified vapor a

(96)

form was used. The funetion ~(s) in this equation was shaped to give the

"right" P and PT-funetions on the eritieal isotherm and physieally meaning­

ful Cv-values in the "vaeuum". Ag a requirement for eorreeting P(~,Te) and

PT(~,Te) a smooth erossing of the eritieal isotherm on the pressure-surfaee

is demanded:

PT ( ~ , Tc - 0 )

P{~ ,Tc o} = P(~ ,Tc + 0 }

I

(97)

(98)

for

(for the supereritieal funetions see the following ehapter).

Page 42: Thermophysical Properties 01 Sodium in the Liquid and

- 36 -

As for the Cv(O,T) one expects this properey not to descend below the

Cv-value for the monatomic vapor, and yet to lie - at low temperatures ­

not much higher than this value, i.e.

CV(O,T)

Cv(O, T }

3 I 2 . R

3 I 2 . R

f. T ---ee=_ 0 (99 )

Fig. 19 shows the compromise-'1(s) chosen for the rarified vapor (- Une).

The dashed lines on this Fig. correspond to ~-s demanded by the eq. (97)

and (98). The maximal deviations in these equations - resulting from the

use of the actual ~(s) instead of the needed functions - are 0.65 % for the

pressure and 3.5 % for PT' Thell-departure from the connnon prescribed shape

for low s-values (s < 0.12) is due to the heat capacity values in the

vacuum. Without this departure Cv(O, T) would be less than 3/2 R at T" 900 K

(see Fig. 9) and even higher atT < 600 K than with the corrected ~.

Actually, it is not Cv(O,T), which 1s to~ large at low temperatures, but

Cv(V,T) - since the density of the saturated state at low temperatures is

very low - aud therefore

CVIO,T) -- CVIV,T} at T 400 K

is not unreasonable. This overestimated Cv(V,T) results probably from the

incorrect description of the vapor pressure with the eq. (5) in the low

temperature area (see eq. (28) and (l9A)). The dent in Cv(O,T) at T::1750 K

(Fig. 9) has no physical foundations and could have been eliminated with a

more complicated description of PT(V,T).

The corrected functions P(~,Tc) and PT(~,Tc) are shown on the Figs. 13 and

14 as solid lines.

The thermal conductivity of the overheated vapor has been set - as those of

the compressed liquid - temperature-independent:

(100)

Page 43: Thermophysical Properties 01 Sodium in the Liquid and

- 37 -

10. The Thermal Properties of the Gaseous (Supercritical) Sodium

In the supercritieal or gaseous area

T Tc

of a non-ideal substance the easiest way to describe the pressure 1s to use

the equation of van der Waals /20/:

(P ... q I V 2 ). ( V - Vo ) = R· T (l0I)

q and Vo are the van der Waals constants representing the attraetive forees

between the gas-partieles resp. the self-volume of these. Unfortunately the

sodium is in the high-density eritieal states

T = Tc >

mueh softer than the "van der Waals"-gas. At the erit1eal point, for

example the sodium has a rea1ity of

0, 1 2 3

whereas the equation (101) gives here

3 I 8J

i.e. at the same pressure the sodium requires on1y a third of the volume of

the van-der-Waals substanee.

To derlve from the eq. (101) a more eompresslble P(V)-relation the self­

volume had been rendered density-dependent:

Val (1 + ",2· B )

with w = ~ I ~C (102)

As a dens1ty-exponent in the denominator the smallest possible value, 2 was

Page 44: Thermophysical Properties 01 Sodium in the Liquid and

- 38 -

chosen, which is able to give a monotonous P(~,Tc)-function in the whole

range of the liquid densities

<

A further requirement for the pressure-shape in the gas state is, to become

with increasing temperature aud with decreasing density more and more

ideal, i.e.

Here 1s

z (W ,y ) ---- 1

y =

f.

Tel T

w·y ---c:e:-_ 0 (103)

(104)

A

~ c 1

To comply with this behaviour the self-volume acquired a T-dependence:

Y-- . ------:~-+ W2. 8

(105 )

As for the coefficient of internal attraction, this property turned also

(q,T)-dependent, to allow a smooth crossing of the eritical isotherm on the

P-surface in the region of moderate to high densities. The following form

was seleeted:

with

and

q ---Ibt:- q(W,Y) = Q.(W,y )·R·T c I ~C

5Q(w , y) = L W n-1 . Fn ( y )

n=1

(106)

(107)

(l08)

These modifications of the self-volume and of the internal attractions

transforms eq. (101) into

Z lw,y) = 1 + W.y·[ AI S(w,y J - Q.(w,y) ] , (l 09)

Page 45: Thermophysical Properties 01 Sodium in the Liquid and

with S(W,y) ::

- 39 -

1 - w·y·A + IN '2. B (110)

The respeetive pressure derivatives are here

-P~ :: Z + W·ZW

and

-PT = Z - Y. Z Y

with

Oll )

(112)

and

::

= w·y·A·( 11- w 2 ·B 1 J S2 +

5- y L w n . ( Fn + y.H n

n =1

(113)

(114)

As a base-line for the Cv-caleulation in the gas-area the eritieal isochor

was chosen

(see eq. (26». The eonstant C(+) was gained from Cv(L.T):

(115)

lim xcx.CV(L,T)x-=-+ 0

016 )

..Using here Cv(L.T) would result in much too large supercritical Cv-values

(see Figs. 30 or 32).

The density-derivative in this region 15 (see eq. (2A»:

Page 46: Thermophysical Properties 01 Sodium in the Liquid and

- 40 -

oCv R 2 02

Z= -'y =

0') ~ dy2

R 2 (w·A)2.1 + w2. B 5

L: wn. H ] (117)= -2·_·y·[S 3 n=1

nq

Hence the heat capacity beyond the critical isochor can be given as

with

CV(~,T) = (118)

ßCV(q,Tl ::

')

f dCV ::Cl, C

=2 5

R·y .[ 2·r::n =1

----·H nn

(119)

The integral

ßI(w,y) ::

w

2.J1

dw·w-~.{ 1

S2

w+ A·y·­

S(120)

is evaluated in the Appendix I.

The coeff1cients of the gas-equation (109) A, B, G1" •• ' HS had been

determined by adjust1ng the pressure to· the subcrit1cal values (see Fig.

18) and by demanding a "correct" pressure-shape at the crltlcal point:

Page 47: Thermophysical Properties 01 Sodium in the Liquid and

- 41 -

02 P 0 3 PP = Pe P~ = 0 = 0 > 0 (121),

Oq 2 d~ 3

These four equations determine A, B, GI and G2. The rest of the set G3 - HS

were calculated to fulfill the requirements (97) resp. (98) in the domain

0,85 "<3c < < 1,1"~c

The remaining parts of the critical isotherm had been cut in four liquid

and four dense-vapor areas, and in each area the Gi-s and Hi-s had been

calculated (eq. (97), (98» separately. The maximal deviations in P, and PT

in these dense parts (q> 0.01) have the magnitude 0.1 %.

For the description of the thermal conductivity of the gas the same

approximations were set as in the compressed liquid resp. in the overheated

vapor:

f.

f. <

(122)

(123)

Page 48: Thermophysical Properties 01 Sodium in the Liquid and

- 42 -

11. Conc1usions

The shape of the thermal and ea10rie properties of the sodium - eva1uated

in the foregoing ehapters - are shown in the Figs. 27 - 41. The Figs. 27 ­

37 are property-surfaees. giving a eomp1ete aceount of the temperature­

specifie volume dependenee. On the Figs. 38 - 41 one of the re1ationships

is given on1y in a parametrie way.

The pressure surfaee of the STPS (Kar1sruhe) is disp1ayed on the Figs. 27.

28. 29. 38 and 39. Fig. 27 shows the pressure for temperatures above the

boi1ing point in 10garithmie seale. Fig. 28 is a sma11. near-eritiea1 part

of the P-surfaee in linear sea1e. Fig. 29 presents the pressure in redueed

form. i.e. the faetor of reality. Z. Fig. 39 is. for the benefit of a

eustomary PX(T)-pieture. in the log P(l/T)-dependenee.

From all the sodium-properties given in this STPS it is the pressure. one

can most safely depend upon. Not on1y 1s PX(T) based in the who1e range on

measurements. but so are also - in a smal1er T-domain - the P-derivatives

on the two-phase-border. Moreover the surfaee shows the eorreet. idea1-gas­

behaviour for V·T -> oo(see Fig. 29). Unappropriate P-va1ues are expeeted

only in two areas:

- in the eompressed. near1y-eritieal liquid far from the saturated state.and

- in the state of very hot gas.

The ealorie equation of state is presented on the Figs. 30 - 36. 40 and 41.

The Figs. 30 - 32 show three different views of the Cv-surfaee from the

liquid. vapor and from the gas side in 10garithmie sea1e. Figs. 40 and 41

are the eorresponding (V.Cv)- resp. (T.Cv)-projeetions. Figs. 33 and 34

show a b10wn-up part of this surfaee near to the eritieal point in linear

seale (the vertiea1 walls on the Figs. 31 - 34 should indieate the

infiniteness of the Cv on the eritieal isotherm). The interna1 energy and

the entropy - eorresponding to this Cv (eq. (22). (30» are presented on

the Figs. 35 and 36.

The Cv-surfaee of this STPS is seeured by on1y one direet1y-measured data-

Page 49: Thermophysical Properties 01 Sodium in the Liquid and

- 43 -

set /11/. It depends also heavl1y on the exaet deserlptlon of d2pX/dT2,

espeelally at low temperatures. So this surface is eorreet probably only in

a qualitative way. In any ease the eurrently available measured Cy-surfaces

(/21/ deseribes the Cy of the C02 in the twe-phase and in the gaseous area,

/22/ glves the two-phase Cy-surface ef the n-Heptane) shows great

similarities with the Figs. 30 - 34 (ehe Cy-ridge of the supereritieal C02

lies mueh nearer to the eritical isochore as it i8 on the Fig. 32).

As for the surface of the thermal conductivity (Fig. 37, for the (V,QT)­

projection see Fig. 26), the greatest part of it 18 conjectural. Not only

the measured data are scarce for thisproperty but also there are not any

cross-relations available with other thermal properties to check the

calculated values. Still, the electrical conductivity measurements of the

cesium /23/ disclose, that this property 1s also practieally temperature­

independent at densities in the liquid range.

So an assumption cf a proportionality between the two conduetivities at

high temperatures too would give some support for the temperature­

independent description of the QT at high densities.

Page 50: Thermophysical Properties 01 Sodium in the Liquid and

- 44 -

References

11/ R. W. Ditchburn and J. C. Gilmour,

The Vapor Pressures of Monatomie Vapors, &eva. Mod. Phys. 11, 310

(1941).

/2/ M. M. Makansi, C. H. Muendel, and W. A. Selke.

Determination of the Vapor Pressure of Sodium. J. Phys. Chem. ~, 40

(1955).

/3/ J. P. Stone. C. T. Ewing. J. R. Spann. E. ,Wo Steinkuller, D. D. Williams,

R. R. Miller,

High-Temperature Vapor Pressures of Sodium, Potassium, ar,d Cesium.

J. Chem. and Eng. Data, 1l, 315 (1966).

/4/ V. S. Bhise and C. F. Bonilla.

The Experimental Vapor Pressure and Critieal Point of Sodium,

Proc. lot. Conf. on Liquid Metal Technology in Energy Production,

CONF-760S03-P2 Champion, PA, May 1976.

/5/ J. P. Stone et al.,

High Temperature Specific Volumes of Liquid Sodium, Potassium. and

Cesium, J. Chem. and Eng. Data, ll, 321 (1966).

/6/ J. P. Stone et al.,

High Temperature PVT Properties of Sodium. Potassium. and Cesium,

lbid •• p. 309.

/7/ C. T. Ewing. J. P. Stoue. J. R. Spann. R. R. Miller.

High-Temperature Properties of Cesium, J. Chem. and Eng. Data, ll, 474

(1966).

/8/ C. T. Ewing et al.,

High-Temperature Properties of Sodium, Ibid., p. 468.

/9/ L. Leibowitz. M. G. Chasanov. R. B1ornquist.

Speed of Sound in Liquid Sodium to 10aO·C. J. of Appl. Phys. 42,

p. 2135 (1971).

Page 51: Thermophysical Properties 01 Sodium in the Liquid and

- 45 -

/10/ M. G. Chasanov, L. Leibowitz, D. F. Fischer, R. Bl~mquist,

Speed of Sound in Liquid Sodium from 1000 to 1 J. of Appl.

Phys. ~, p. 748 (1 ).

/111 D. C. Ginnings, T. B. Douglas, A. F. Ball,

J. Res. Natl. Bur. Stds., ~, 23 (1950).

112/ G. H. Golden, J. V. Tokar,

Thermophysical Properties of Sodium, ANL-7323, Argonne (1967).

/13/ D. L. Timrot, V. V. Makhrov, V. I. Sviridenko.

Method of the Heated Filament for Use in Corrosive Media ••••

Temperature. li. 58 (1976).

/1 B. I. Stefanov, D. L. Timrot, E. E. Totskii. and Chu Wen-hao,

Viseosity and Thermal Conductivity of the of Sodium and

Potassium, High Temperature 4, 131 (1966).

A. L. Sengers, R. Hocken, J. V. Sengers,

Critical-Point Universality and Fluids, Physlcs Today, Deeember 1977,

p. 42.

/16/ Yu. E. Sheludryak, V. A. Rabinovich.

On the Values of the Critiea! Indices of the Three-Dimensional Ising

Model, High Temperature, ll. 40 (1979).

/1 P. E. Liley,

Correlations for the Thermal Conductivity and Latent Heat of

Saturated Fluids near the Critieal Point, Proc. Flfth • on Therm.

Prop., Boston, 1970.

8/ J. S. Rowlinson.

Liquids and

1969.

Mixtures, 2nd Edition Plenum Press, New York.

Page 52: Thermophysical Properties 01 Sodium in the Liquid and

- 46 -

/19/ Kh. I. Amirkhanov, B. G. Alibekov, B. A. Mursalov, G. V. Stepanov,

Caleulation of the Derivatives of Thermal and Calorie Quantities on a

Saturation Line, High Temperature, 10, 415 (1972).

/20/ o. A. Hougen, K. M. Watson and R. A. Ragatz,

Chemieal Proeess Prineiples - Vol. 11, Thermodynamies, 2nd Ed.,

John Wiley (1959).

/21/ Kh. I. Amirkhanov, N. G. Polikhronidi, B. G. Alibekov, R. G. Batyrova,

Isoehorie Specifie ~eat-Capaeity of Carbon Dioxide, Thermal

Engineering, ~, 87 (1971).

/22/ Kh. I. Amirkhanov, B. G. Alibekov, D. I. Vikhrov, V. A. Mirskaya,

L. N. Levina, V. A. Antonov,

Investigation of the Heat Capacity ev of n-Heptane in the Two-Phase

Region••• High-Temperature, ll, 59 (1973).

/23/ H. Renkert, F. Hensel, E. U. Franck,

Elektrische Leitfähigkeit flüssigen und gasförmigen Cäsiums bis

2000·C und 1000 bar, Ber. Bunsenges. physik. ehem. 12, 507 (1971).

/24/ J. P. Stone et al.,

High-Temperature Properties of Sodium, NRL-6241, Naval Research

Laboratory (1965).

/25/ D. Miller, A. B. Cohen, C. E. Dickerman,

Estimation of Vapor and Liquid Density and Heat of Vaporisation of

the Alkali Metals to the Critieal Point, Proc. Int. Conf. on the

Safety of Fast Breeder Reactors, Aix-en-Provence (1967).

/26/ A. Padilla Jr.,

High-Temperature Thermodynamic Properties of Sodium, ANL-8095 (1974).

/27/ A. Padilla Jr.,

Extrapolation of Thermodynamic Properties of Sodium to the Critieal

Point, Proe. 7th Symp. on Thermophysical Properties, Gaithersburg

(1977).

Page 53: Thermophysical Properties 01 Sodium in the Liquid and

- 47 -

Appendix G

Fitting the gas-equation at the eritieal point.

For the redueed pressure the deseription of the eritieal point (eq. (121»

takes the following shape:

dZ 02Z 03 ZZ :::; Zc = - Zc :::; 2'Zc :::; 6 . ( A - Zc )

ÖW ow2 dW3

Zc3

03

P<icwith A =

.__ .

6 Pe o~ 3

Z and az/ow are defined with the eq. (109) and (113), the two other

derivatives are

and

2·y·A 2-_.[ y'A - w·B·(3-w 'B}] +

53

5y.L., n·(n-1 )·F .w n- 2

n =1 n

=6·y·A-_.[ (y·A - 2·w·B)2

S4+

5y.L., n·{n-1) ·(n - 2 )·F '\oIn-3

n =1 n

To simplify the eritieal-description new variables are introdueed for A. B,

GI and G2:

Page 54: Thermophysical Properties 01 Sodium in the Liquid and

- 48 -

0' = 1 - B

:x::: 1 +B-A

+ Zc - 1\

5- t·u :: C (n-1 )'G n - 2'Z c + 1

n::2

along wtth the abbreviatlons

and

95 n - 2

= L (n-1 )· __ ·G nn =3 2

;- 3 'Ze - 1

5 n - 2h = L. (n-1)'--

n=4 2

n-3--'G n - 4·Z c ;- 1 + i\

3

These equations turn the eritieal point descrlption into the following

form:

A :: X· t

'J

=

= :x:·(1-u

x. 2 .{gJ t - u)

3CI - 2-0'-x + ::

Page 55: Thermophysical Properties 01 Sodium in the Liquid and

- 49 -

The first two of these equations give

:x: = 2/N with N = 2 + t-u

so A and B can be caleulated from t and u:

A = 2·t I N

B = (t+ u)/N

The second two equations - from which t and u ean be ealculated - transform

by elimina ting l. and (J' to

t 2 - t·u·(2·u -1) + 2·g = 0 resp.

t 2 .( 2·u -1 ) - t·u·( 2·u 2 - 4·u + 1 ) - 2·( g + h) = 0

or in a simplified form

t 2 u 2·g - 4·( g' u + h )+ t . + = 0

1 + 2·u 1 + 2·u

and

U 2 + u·( t - 2·g I t ) - 2· h / t = 0

To fit the gas equation at the eritieal point this system of coupled

quadratie equations was solved (by iterations) using the best fit

coeffieients G3 - GS in g and h. As A 0.0001 was used.

The solutions t and u give then beside A and B the eoefficients GZ and GI

via the equation for-t·u resp. for t.

Page 56: Thermophysical Properties 01 Sodium in the Liquid and

Appendix I

- 50 -

The Integral ß I =

'vi

2 ·f1

dw·w--.( 1

52

'vi+ a·-

S

The abbreviations sand aare here

s = 1 - a'w . + B·w 2

resp. a = y'A

To evaluate Öl the following primitive functions are needed:

J 1 (w ) =W dw

J-S

=2

--'areIrr

so'tg (­

Irr

1 so'_. ( +

CI S

W dw 1 S'J 3 (w) = JS3 = - .( + 3'8 0 J 2 )

2· s 2rr

with S' = 2· B·w - a

and

Page 57: Thermophysical Properties 01 Sodium in the Liquid and

- 51 -

With these functions the first term in ~I turns to

Jw dw·w

52::

1 Q'W - 2_.(

a S

and for the second one get

w dw-w'2

J S 3=

2'0 - Q2 )·w + 2·Q

S 2) +

1 S" - w·a+ J 3 ] = -_. ( f·J 2 +

2-B a-S 2 =

1 S" - w· a-_.( f·S" + ) ]

2·B·S S

with

so the <"vWjJ"''''

f ::: + 2 B ) I 0

to 1::.1 i5

I ( w) :: 2-W dw.w--.( 1

S2

w+ Q'-

S= + tp(w) ]

with ~ = 6·Q·ß I {a

Page 58: Thermophysical Properties 01 Sodium in the Liquid and

- 52 -

1 S'" - a-wand I.P ( w) = _. ( ~. S'" - er + a - ----

8'S S

The difference corresponding to a w-difference

I1w = W - 1

1s in the first function

11 are tg (S' I Irr) = ar e tg (~w·/rJ I u )

Here is

u(w) = 2-x + (2-8 - a)'ßw

with

x = 1 +8-a

The corresponding ~-d1fference 1s

/).wßlP = _.[g

S·x

with

+ 2·(a+rJ)-~·u

a+ _. ( rJ'W - U ) ]

S

g(w) = [a·a + B·( 4 - 2-a + a}'~w] I:x:

so the integral ~I turns out to be

fiI1 4·~ ~w·la

= _.{ -_. are tg (cr la u

+

Page 59: Thermophysical Properties 01 Sodium in the Liquid and

t~

::EI-

CCJMPRESSEDLIQUID

GAS

TVCJ PHASE REGICJN

OENSE RAR I F I E 0

CJVERHEATED VAPOR

VV(T)

v ::: I/RH

LnLV

========================================================================================~*============================

FIG. 1 SCJDIUM • RANGE CJF VALIDITY CJF THE THERMAL PRCJPERTIES

Page 60: Thermophysical Properties 01 Sodium in the Liquid and

3.00E-02I

2.00E-02 + I;'>o..Ju..u......0

1.00E-02

LNC P/BAR ) = 11.919

- 12153./T - 0.195-LNC T )

(!)

V1-!O-

2600.

(!) (!) (!)

(!)

(!)

O. 2@0.~(!) (!) (!)

e>

(!) (!) (!) (!) (!)(J~ i>(!) (!)

(!)

(!)(!)

~ ~OO. (!) (!)2(!) ~ (!)

(!) (!)

(!)

(!)

d600. (!) 1~OO .(!)(!)

e>(!) (!)

(!)

(!)(!)

(!)+

(!)

1000.80v.0.0

-2.00E-02

-1.00E-02

-3.00E-02

-4.00E-02

+ + EVING,STONE ET AL.

e> (!) BHISE AND BONILLA~__~ MAKANSKI ET AL.

-5.00E-02(!) (!)

==================================================================================:*===========================

fIG. 2 SCDIUM. DEVIATIONS fROM THE VAPCR PRESSURE EQUATlCN

Page 61: Thermophysical Properties 01 Sodium in the Liquid and

LnLn

TS==SAT. TEMP.

PS =P SRT.( T)

______ P == PS+( T-TS)wOP/OT

[!J [!J EXP. 4

C) C) EXP. 19

li li EXP. 18

+ + EXP. 3X X EXP. 20~ ~ EXP. 23

+ + EXP. 25~ ~ EXP. 17

Z z EXP. 7

0..

[,~.

,'....~,I,,,,,,,

" fI1!I',p""'--- ..., ~...-,~~',,,,," ",.. ... --

,,' -+++, .......'--'-,~- ......+,,,,,,,,,

" .---,., ~ ~_-~<r---

,,' ~,-~-~~--' -'

.. , ..,,,"!~ --

""..," _v---*--x-------, V. _-.4- --* - '", X v __-~- ~

..'v. ~---- ---,..... _,..:;--7"1;

",","" A-----------..' -L ..1-_-+-----+---'.... +-----~---r-----"

.......:-t+H-+- - - - - -+-.. '.... ~ _-L--------_...... ~ -6------------~---------~-- ~~:----A-------------~----------

,"....~- ..-e-..- .. e ~ Jb AL 6L----~-----Jb------JD----er----~----e--------·... _ _ ~-----~---~ er ~ ~ ~

p"-----",_,---~~~~i9------i9-------~-----er---~----er---i9----------4!r------4!r-----i9----f;---------f;-------

T ( K )

.

2.

4.

8.

6.

14.

12.

10.

16.

18.

26.

22.

20.

O.1200. 1250. 1300. 1350. 1400. 1450. 1500. 1550. 1600. 1650. 1700.

======================================================================================*=========================

FIG. 3 P V T -PROPERTIES OF THE SOOIUM VAPOR ( STONE ~ AL )

Page 62: Thermophysical Properties 01 Sodium in the Liquid and
Page 63: Thermophysical Properties 01 Sodium in the Liquid and

1.0I

0.9 +LI

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

lJ1-....J

2600.800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400.600.

~---~ SAT.lIQUIO_____ SAT. VAP~R

~ ~ AFTER ST~NE ET Al.

-.001-0Z,V/CZ,V-OTJ

-----------.------~~-""-'" -

~~

"',"-.'",-

-"-",

-""--"'-

-"'-'\,

\,

\\\

\jJ

J-'(eK~~i---~ ;)100

E!J-------~-­--------.,,---_ ... --400.200.

0.0

================================================================*=========================

FIG. 5 FACT~R ~F REAlITY ( Z=P/CRGAS-RH-TJ ) ~F THE S~DIUM

Page 64: Thermophysical Properties 01 Sodium in the Liquid and

1.0I

0.9 + li"-t!)

0.8 1\-J

::ca::

0.7

0.6

0.5

[9 eJ SRT. LIQUID(9 E!) SRT. VRPelR______ (RH, L + RH, V )/ 2

0.4

0.3

0.2

------------------------------------------------------------"------------------------------------V100

0.1

0.0200. 400. 600. 800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

======================================================================================:;*============================

FIG. 6 THE SRTURRTIelN LINE elF THE SelDIUM

Page 65: Thermophysical Properties 01 Sodium in the Liquid and

=================-==============================================================~*=========================

FIG. 7 S~OIUM . T-OCRHJ!CRH-OTJ ~N THE SAT.LINE

Page 66: Thermophysical Properties 01 Sodium in the Liquid and

40.

35.

30.

25.

20.

15.

10.

5.

t~a:.....>u

VAP~RISING LIQUID______ C~NDENSATING VAP~R

A A CP AFTER GINNINGS &AL.

\\ ..

\ ..\,

\

\\\\\\\

\\

\\ ,

\

\ ,\ ..\ ..........

"...... ...... ..'\, ..,

""

" ...' ... ... ... ......

............._-,

T C K )

0\oI

o.200. 400. 600. 800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

=======================================================================================*==========================

FIG. 8 CVCRH,LCTJ-O,TJ & CVeRH,VCTJ+O,TJ ~F THE S~DIUM

Page 67: Thermophysical Properties 01 Sodium in the Liquid and

800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

[!J I!l SAT. LIQUI0G 0 SAT.VAP~R

______ VACUUM

0\

T ( I< )

-------_ ...-

600.

-,"', "' ........ , ...... -------- ---'. _// --', ~/....... ..-,... '.....,... ,./'"

........ - ..._---_.......... """'......,.,.#'

400.

6.0I

5.5 +t~5.0 r '-'

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0200.

=====================================================================================*=========================

FIG. 9 S~OIUM • HEAT CAPACI C~NST. V~LUME

Page 68: Thermophysical Properties 01 Sodium in the Liquid and

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

t~a..u

~ ~ SRT.LIQUIDC9 E!) SRT. VRPClR

(J'\

N

0.0200. 400. 600.

T ( K )

800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

=================================================================================*============================

FIG. 10 S~DIUM • CP/CV ~N THE SATURATIClN LINE

Page 69: Thermophysical Properties 01 Sodium in the Liquid and

11- 63 -

·0

,.e--s..,

I "-/ '\,

~l:' \/ \

/ ' '0

, \ NN

.I \/ ' ·0r ~

0 I.I.J0 ZN ........ \ -1

I ' .· I-. \ 0 CI:

I \0 Cf)co..... I.I.J. :c::

I,

\ I-

· z

\0 0

\ 0c.o >-, , ..... CL

\ \ -1CI::c::

\ · I-

\ 0 z0 I.I.J'<t'".

\ ..... w

\ :c::• I-

~ \ ·00 EN ::>

\ ..... .......0.0I

\\Cf)·0

\ 0

\0 0....... a::: .....::> 0 •CI CL \\ ....... CI: .....-1 > .....• ·• . .

\0

\I- I- 0CI: CI: coCf) Cf)

\.. t!)

\ ~ EP .......,IJ...• \ ·•

~0

\I

Eh 0,c.o. \\ ,

• \ ·~

02J 0

'<t'"

( JH-<

·00N

0 Ln 0 Ln 0 Ln 0 Ln 0 Ln 0 Ln 0. . . . . . . . . . . .c.o Ln Ln '<t'" '<t'" n n N N ..... ..... 0 0

Page 70: Thermophysical Properties 01 Sodium in the Liquid and

0\.j::--

T (

800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

DP/DRH______ DP/DRHJS

A A FR~M THE VEL~CITY ~F S~UND

600.400.

1:I: A..........A.0:: ......Q ...~ ..." ......a..~ ~ ...!! --~-,--~co ' __ <co ~,co __,... '-

...~ ..... ,

...~ ......"''A......

......A........

...~......

....~......

......ä........ ......

"''-" ,

........."',

"""...... ..,

'\., .." .. ..

" ..,...)",

--_::)0." .........

200.

1.0

1.5

5.5

4.5

5.0

6.5

4.0

2.5

2.0

6.0

3.5

0.5

3.0

0.0

=====================================================================================*=======================

FIG. 12 DP/DRH ~ DP/ORHJS IN THE SATURATED LIQUID S~DIUM

Page 71: Thermophysical Properties 01 Sodium in the Liquid and

~­~~-

~~~~~---~--~-~~

______ PT == PT( T.) (SAT. VAPOR)

(!) (!) AFTER STONE ET AL.PT == PT(T.) +PT.CORR.(T.,TC)

SOOIUM

(j\

V1

400. 600.

TII ( K )

800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

==========================================================================~*======:======:======:====

FI 13 PTCT.,TJ ON THE VAPOR SI THE ITICAL ISOTHERM

Page 72: Thermophysical Properties 01 Sodium in the Liquid and

0\0\

T. ( K )

I t---~ I2000. 2200. . 2600.

I I+-:1800.liDO. 1600.

T = TC

1200.1000.

P = PlIC TlI)P =PlICTlI) + (T-TlI)lIPTCTlI)

VITH PT.CORR.CTlI,T)

800.600.

---------------------- ~~~- ------ '.,

~---~--- "--- .,--- . '",------ ''\-.................. :

........ ,: '\~ '\:,. "

"" \\" \,

',\,'~,~\\

\400.

1.10I

t~1.00 + :!ceII(f)(.!)

0.90 + ce\J........C-

I0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.0200.

W==============================================================================================:, /1n.:==.=========================

FIG. li SODIUM .PCT-) ON THE VRPOR SIDE GF THE CRITICAL ISOTHERM

Page 73: Thermophysical Properties 01 Sodium in the Liquid and

4.0I

3.5 + I~......Cl"-Cl..Cl

3.0

2.5

2.0

1.5

1.0

0.5

T ( K )

0\-...J

0.0200. 400. 600. 800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

==========================================================~*========================::

FIG. 15 DP/CRGAS-RH-DTJ IN THE SATURATED LIQUID S~DIUM

Page 74: Thermophysical Properties 01 Sodium in the Liquid and
Page 75: Thermophysical Properties 01 Sodium in the Liquid and

o 4

0.3

[!] !!l

(!) (!)

lIQUIDlIIO.

SAT. VAPClR

0\\.D

0.2

0.1

0.0200. 400. 600. 800. 1000. 1200. 1400. 1600. 1800. 2000. 2200. 2400. 2600.

=================================================================================*==========================

FIG. 17 OP/CRGASlIITlIIORHJ ClF SRTURRTED SClOIUM

Page 76: Thermophysical Properties 01 Sodium in the Liquid and

.(!)....

....I-....

Cl.Cl

,,II,II

Q.N

LO.N

Q.M

N,....,I-,...., a

I- IIIIII :I::I: a::a:: III• (J1(J1 Cl:Cl: t!)t!) a::a:: '-''-' "-"- Cl..Cl.. a

....

LO.M

·031:1 ld "3 d-<

,", ..., ... ...,

'" ...

"" ,'"" ,,

... ,," ,,,,,,..,............,,

'\,

.-rCl

Page 77: Thermophysical Properties 01 Sodium in the Liquid and

5.0

-...J-

lNC VC J/LNC V)

--_ ..... --

ETA USED IN PT. (T-,T)NEEDEO F~R P-C~RRECTI

",,,,oOC"d"'TItJ,----

5

5

4.5 + I4 0

1.5

1.0

0.00.0 0.020.040.060.080.100.120.140.160.180.200.220.24 0.26 0.28 0.30

======================================================================================*============================

FI 19 S~DIUM VRP~R . C~RRECTING FRCT~R ETA

Page 78: Thermophysical Properties 01 Sodium in the Liquid and

5.20E-04I

5.00E-04+ 1~ , I

II

II

~I

, I

4.80E-04 + ..... II

.... II

0 ~I

IIII

4.60E-04 + I ~ / • / ~

I. IIIII

4.40E-04 + /!I

/ I / X vYI

II II I

II

4.20E-04 + / : / /f /I

:_/ II

, III

4.00E-04 + I I. / :/ v?Y" !QTeX) = QTEeT).el+X.B+X.X~)

IIIIII

3.80E-04 + I / : / ,.! / .. • , T 900 KI

I [!] I!J = II I '-J

I N

+11 t/;/'/ i(!) (!) 950 K

3.60E-04 I ;I I 1000 K/). /).

3.40E-04 +_ff~: I + + 1050 KI

X x 1100 K

3.20E-04 ~ I X =P/PSeT)

3.00E-04 4f QT-VAlUES FR~M TIMR~T ET Al PC BAR)

~......

2.80E-04 I I I I I I I I I I I

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

===================================================================================~*==========================

FIG. 20 THERMAL C~NDUCTIVITY ~F THE S~DIUM VAP~R

Page 79: Thermophysical Properties 01 Sodium in the Liquid and

-...IW

3.83.4

LOGC P ) + 4

3.02.62.21.81.41.0

QTeX) :: QTECTJ-Cl+X-S+X-X-C)

~

QT-VALUES FR~M TIMR~T ET AL

l!l l!l T == 900 K

(!) (!) 950 K

~ ~ 1000 K

+ + 1050 K

x: x: 1100 K

X :: P/PSeT)

20E-04I

5.00E-04 +r4.80E-04 r4.60E-04

4.40E-04

4.20E-04

4.00E-04

3.80E-04

60E-04

3.40E-04

3.20E-04

3.00E-04

2.80E-040.2 0.6

========================================================================================::;*========================

FIG. 21 THERMAL CONDUCTIVITY OF THE SODIUM VAPOR

Page 80: Thermophysical Properties 01 Sodium in the Liquid and

3.50E-02

3.00E-02

2.50E-02

2.00E-02

I!'-'I.L.I.L.-Cl

x

(!)

C!J

"'-J.l:'-

0.60

X

X

0.55

P/PSCT)::-- X

(!)

(!)(!]

X (!) X6- (!)

(!) 6- X(!)

+ X6>5<

+++ X

6 X

I I

0.15 X O.~• '1" . "-

~.25 0.30 0.35 0.40 0.45 +0.50X

X(!)

(!)i- C!J

X

+

XX XX

+

+

(!]

(!] 6 6-

X(!]

:t:

X '*X

+" XC!J 0.05 X 0.10., +

6 6X

66

X

1.00E-02

0.0

5.00E-03

1.50E-02

-1. 50E-02

-1.00E-02

-5.00E-03

-2.00E-02 XX X

-2.50E-02

======================================================================================~*==========================

fIG. 22 DEVIATI~NS ~f THE DATA fR~M THE REDUCED DESCRIPTI~N

Page 81: Thermophysical Properties 01 Sodium in the Liquid and

"Ln

1100.

TC K )

1080.1060.1040.

x = P/PSCT)

TIMR~T,MAKHR~V ~ SVIRIDENK~

~ ~ QTCX) =QTECTJuCl+XuS+XuXuC)

1020.1000.9S0.960.940.

5.05E-04I

5. +r4. 95E-04

ri.90E-04

4.S5E-04

4.S0E-04

4. 75E-04

4.70E-Oi

4. 65E-04

4.60E-04

4. 55E-04

4.50E-04

i.i5E-Oi900. 920.

=================================================================================~*======================

FIG. 23 THERMAL C~NDUCTIVITY ~F THE SATURATED S~DIUM VAP~R

Page 82: Thermophysical Properties 01 Sodium in the Liquid and

-1. 2 -0.8 -9A""--~ o 0 '---tJ:-+-_ 0.8 1.2 1.6 2.0". -....". ........

'" ........ .,..'" ........

/1.2

........ -LClGCQT/QTCJ/ ........

/I ........

/........ ...

I ...I ...............

I 1.4I ....I

E!l SAT. LIQUID ....",I [9I "I (9 E!) SAT. VAPClR "I "/ 1.6 "X STEFANClV f.. AL. "I X \

I \I \

I \

1.8 \

X

2.0 '-lC1'

2.2

2.4

2.6

t~

CT IN IJ/CM/K X

X

X

====================================================================================rvJfurz~ --

FIG. 24 SCiDIUM • CT ClN THE SATURATICIN LINE CREDUCED PRClPERTIESJ

Page 83: Thermophysical Properties 01 Sodium in the Liquid and

-..J-..J

2.01.8

H,V-H,L>"

1.6

QT IN V/CM/K

H IN KJCJULE/G

T/TC = .99, .98, - - - .90

1.4

+

1.2

+

1.00.8

)

0.6

____ L

O.i0.2

O.

1

0.0

o.

========================================================================================:::*======================

G. SCJOIUM • AS A LINEAR fUNCTICJN fCJR T-- TC

Page 84: Thermophysical Properties 01 Sodium in the Liquid and

......(Xl

4.54.0

LeJGC V )

3.5

QT IN IJ/CM/KV IN CM--3/G

3.02.52.01.5

SAT. lINECRIT.Pl'INT

T = 1000 K

T = 1800 K

T = 2200 K~--~

A

+---+~---+<

1.00.5

II

\\

\\\\\\

\,,~ '~

" ------"" --------------------------~------1;

-0.2

-0."1

-0.6

-0.8

-1.0

-1.2

-1."1

-1.6

-1.8

-2.0

-2.2

-2."1

-2.6

-2.8

-3.0

-3.2

-3."1

rvA1vz========================================================================================:, .<'1 n,;::=,=======================

FIG. 26 STATIC THERMAL Cl'NOUCTIVITY l'F THE TIJl'-PHASE Sl'OIUM

Page 85: Thermophysical Properties 01 Sodium in the Liquid and

- 79 -

P (Ba r )

LOOOO

T ( K )

4. 0 0 0

1.

1000

3000ITc

20001 1541 0 0 0

1 0 0

v( m3 I g )

FIG. - V~LUME - TEMPERATURE SURFAC~

v , T )

Page 86: Thermophysical Properties 01 Sodium in the Liquid and

51 0

- 80 -

24 00

P (Bar)

2500

T ( K.)

400

3 0 0

200-2600

==========================================================*==================

FIG. 28 S~DIUM . THE NEAR-CRITICAL PART ~F THE PRESSURE - SURFRCE

PC v , T )

Page 87: Thermophysical Properties 01 Sodium in the Liquid and

- 81 -

Z:: P·V/(Rgas·T)

1 000T(

1 1 5 4

I . v - T - I

v , T )

Page 88: Thermophysical Properties 01 Sodium in the Liquid and

- 82 -

( V (R gas )

100

~ 5 0

..- 1\

f\1\~

t\ 20- 1\

1\1\

- 10

5_

Vc10100

1000

V

l cm 3 I g )

1154 2000

Tc

3000

T ( K )

============================================================*==================

FIG. 31 S~OIUM . THE CV - v - T - SURFACE , VAP~R SIOE

Page 89: Thermophysical Properties 01 Sodium in the Liquid and

- 83 -

(v ( Rgas )

100--50

10-5-----

1,5-40 001

T (J< }v (

c m3 I 9

------

--

FIG. 30S~OIUM . THE CV - V - T - SURFACE , LIQUID SIOE

Page 90: Thermophysical Properties 01 Sodium in the Liquid and

- 84 -

(v { R ga s }

10

\ Vc

10\\100 0 100

V t cm 3 1 9 )

\

1" t K )

\ \

1154 1c \'LO OO

3000

4000

=:===============================================================$===============::::::::::::=

FIG. 32S~OIUM . THE CV - V - T - SURFACE , SUPERCRITICAL SIOE

Page 91: Thermophysical Properties 01 Sodium in the Liquid and

- 85 -

-(v (Rgas r

15-..;;;;.

10

5-2

I jTc I I 12,5I Vc7,5 102 5 00

5)K )

24 00 5 m3 I 92,T (

V { c

-

FI 33S~OIUM • THE NEAR-CRITICAL PART ~F THE CV - SURfACE

LIQUID SIDE

Page 92: Thermophysical Properties 01 Sodium in the Liquid and

- 86 -

(v (Rgas)

20

1~

10

5

2500 \ Tc

2,5 \Vc

1,5 I12,5 2400

T ( K )

==============================================================*================

FIG. 34 S~DIUM • THE NERR-CRITICRL PART ~F THE CV - SURFRCE

VRP~R SIDE

Page 93: Thermophysical Properties 01 Sodium in the Liquid and

U ( kJ Ig )

- 87 -

4 Vc 1 0001 00T )

1 0

11 5 4 V ( c m3 I 9 )

*FIG. SCjOIUM • THE V - T - SURfACE (jf THE INTERNAL ENERGY

U( V , T )

4-

2---

Page 94: Thermophysical Properties 01 Sodium in the Liquid and

- 88 -

S ( J/g/K )

4000 Tc

T l K )

1 1 54

Vc1 0

V l

1 0 0

cm3 I 9

1 000

==================================================$==================

FIG. 36 SOOIUM • THE V - T - SURFACE OF THE ENTROPY v, )

Page 95: Thermophysical Properties 01 Sodium in the Liquid and

- 89 -

0,5

0,0 5

Ur (W/crn/K)

0,0 0 5

Vc 4000

1 0 3 0 0 01 0 0 2000

1 00 0 1 1 54

V r K )3 I 9 )

(ern

==============================================================~=================

FIG. 37 SODIUM . THE V - T - SURFACE OF THE THERMAL CONDUCTOVITY

eH v , T )

Page 96: Thermophysical Properties 01 Sodium in the Liquid and

P IN PASCALS

6 6 T = 1000 K

I I T = 1500 K

x >< T = 2000 K

~ ~ T = 2508 K

1- 1- T = 3000 K

~ ~ T = 3500 K

z Z T = 4000 K

LOG V

\0o

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

==============================================================================================:*===========================

FIG. 38 SODIUM. THE PRESSURE - VOLUME CHART

Page 97: Thermophysical Properties 01 Sodium in the Liquid and

10.

1.4

4. I

I.D

1.

2.

o.

3.

5.

7.

8.

9.

6.

0.4

T = TC

P IN PASCALS

0.60.81.01.2

[9 E!l RH = •88C9 E!) = 1. E-7

6. ö. = .81

I I = 6.E-5

)( >( = .61

~ ~ = .05

t t = .23 G/CM--3

1000/T

2.0

~=======================================================================================:, /1n~ ~l======================

FIG. 39 S~DIUM. THE PRESSURE - TEMPERATURE CHART

Page 98: Thermophysical Properties 01 Sodium in the Liquid and

2.2I

+ i~[!] E!J T = 1000 K

2.0 (9 E!) T = 1250 K

6, 6 T = 1500 Ku'-I T = 1750 K1.8 + (,.!) I I0..J T =2000 K)( )(

1.6 t ~ T =2250 K

• .- T =2500 K

1.4 + ~ ~ T = 2505 K

1.2

1 ~ #/1/ / / I

\0

1.0 N

0.8

0.6

0.4I

V IN CM1IUlI3/GI

0.20.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

========================================================================================*============================-.

FIG. 40 SOOIUM. THE SPECIFIC HERT - VOLUME CHRRT

Page 99: Thermophysical Properties 01 Sodium in the Liquid and

1.0VJ

I!I E!J RH :::: •88(9 E!):::: 1. E-7

A A::::. 81I I:::: 6.E-5

X >( = .61

~ ~ = .05t t = .23 G/CM--3

2.6r

2.4 +112.2 + u

......c.o0...J

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2O. 500. 1000. 1500. 2000. 2500. 3000.

T ( K )

3500. 4000.

==============================================================================~*==============================

FIG. 41 S~DIUM. THE SPECIFIC HEAT - TEMPERATURE CHART

Page 100: Thermophysical Properties 01 Sodium in the Liquid and

- 94 -

Appendix P

The sodium property subroutines KANAST and KANAPT.

For the benefit of potential users of the STPS-Karlsruhe the following

property-codes have been developed and tested:

KANAST calculates for given T and ~ the properties p. p~. PT' Cv '

and So •

KANAPT calculates for given T and P the properties ~. Pq • PT' Cp • QT'

px. ~L' ~v.

To accelerate the calculations KANAST uses not all the descriptions given

in Appendix C directlYj the saturated properties Cv ' PT' Qr and the

saturated densities are stored in the code point for point. corresponding

to the temperatures 370 - 402 - 434 - ••• - 2386 - 2418 K. For a tempera­

ture between these values the properties are calculated by cubic interpola­

tion. The use of the time consuming high-temperature property-formulas 15

restricted to the remaining part of the 8L.

Also for the reason of time-saving the integral ~Cv (eq. (94)) - needed for

the heat capacity in the overheated vapor - is pre-calculated and stored in

the code as a function of both variables T and TX!T (a typical running time

for this code 1s a half msec on the IBM 3033).

KANAPT calculates the sodium properties by iteration: the first dens1ty.

corresponding to a given T and P is estimated, then KANAPT calls KANAST to

check this value. If the corresponding KANA8T-pressure does not agree with

P, the dens1ty 1s eorrected using ~p and P~. On average one KANAPT run

gives rise to three KANAST ealls.

All the property-surfaces and charts of the Figs. 26 - 41 have been

calculated with KANA8T.