Click here to load reader
View
1
Download
0
Embed Size (px)
1
1
Chapter 2. Thermophysical Properties of Polymers
Thermophysical properties include:
1. Volumetric properties 2. Calorimetric properties 3. Transition temperatures 4. Cohesive properties and solubility 5. Interfacial energy properties 6. Transport properties (diffusion et al.)
2
2
3
4
3
5
6
• Physical aging of glassing polymers
4
7
I. Volumetric properties
1. Specific volume (=volume per unit weight) 2. Molar volume
8
5
9
10
• Enthalpy relaxation
6
11
)/()( ∞∞ −−= υυυυδ iLet
τδδ // −=dtd So, [ ]τδ /)(exp itt −−=
12
7
13
PT ⎟ ⎠ ⎞
⎜ ⎝ ⎛ ∂ ∂
= υ
υ α 1
14
8
15
16
II. Calorimetric properties
1. Heat capacity
9
17
18
10
19
20
11
21
22
m
m m T
HS ∆=∆ , ∑ ∆=∆ iim snS
12
23
24
13
25
26
III. Transition Temperature
14
27
28
15
29
M
IYY
M Y
T i xiggi
g g
∑ + ==
)(
where Ix is
5.0 22
2 =
+ =I
30
16
31
32
M
ODDYIYY
M YT i
mxmmi m
m
∑ ∑ ∑++ ==
)()(
17
33
34
18
35
IV. Cohesive properties and solubility
36
Cohesive energy density of polymers can be determined by swelling or dissociation experiments.
19
37
38
20
39
• The solubility parameter
40
21
41
42
V. Interfacial energy properties
22
43
44
where κ is the compressibility
1.
2.
23
45
46
• Interfacial tension between a solid and a liquid
Young’s equation svsllv γγθγ =+cos
24
47
48
• How to estimate the surface tension of solid polymers
1. Measure the contact angle with the liquid with known surface tension.
2. , where γ expressed in mJ/m2 and ecoh in mJ/m3.
3. Using group contribution to Parachor for estimation
3/275.0 cohe≈γ
25
49
50
26
51
52
27
53
54
28
55
56
29
57
VI. Transport properties (Diffusion)
58
J
J+ㅿJΔx
the flux x cDJ ∂ ∂
−=
t c
x JJJ
x ∂ ∂
= ∆
∆−− →∆ 0
lim
So, x cD
xt c
∂ ∂
∂ ∂
= ∂ ∂
If D is independent of c and x, 2 2
x cD
t c
∂ ∂
= ∂ ∂
R=nl 6
2 2 nlS =
lu oφ=If , 6 2lD oφ= where Φo is the jump
frequency
From the Fick’s first law
(Fick’s second law)
30
59
B.C. C=Ci for 0
31
61
• For the specimens with an infinitive thickness
2
2
x cD
t c
∂ ∂
= ∂ ∂ B. C. C=Ci for 0
32
63
DT
DLFor the unidirectional composites,
ffmfL DVDVD +−= )1( 0
( ) ( ) ⎥ ⎥
⎦
⎤
⎢ ⎢
⎣
⎡
+
−
− −+−= −
π
π
π ππ
/1
)/(1 tan
/1
4/21 2
1
2 fD
fD
fDD
m mfT VB
VB
VBB DDVD
where ⎟⎟ ⎠
⎞ ⎜ ⎜ ⎝
⎛ −= 12
f
m D D
DB . When Df 0, ( ) mfT DVD π/21−≅ Since yxT DDD == , zL DD =
2
/21 1
1 ⎟ ⎟
⎠
⎞
⎜ ⎜
⎝
⎛
−
− ++=
πf f
T V V
n h
l hDD
From the slope of experimental data, we can obtain D, DT,, Dm.and DL.