35
h U June 1979 Thermoelectric Ocean Thermal Energy Conversion T. S. Jayadev D. K. Benson M. S. Bohn Solar Energy Rasearch Institute A Division of Midwest Research Institute 1536 Cole Boulevard Golden, Colorado 80401 Operated for the U.S. Department of Enmrgy under Contract No. EG-77-C-01-4042

Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

h U

June 1979

Thermoelectric Ocean Thermal Energy Conversion

T. S. Jayadev D. K. Benson M. S. Bohn

Solar Energy Rasearch Institute A Division of Midwest Research Institute

1536 Cole Boulevard Golden, Colorado 80401

Operated for the U.S. Department of Enmrgy under Contract No. EG-77-C-01-4042

Page 2: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

NOTICE

. . Thb report was pmyttped as an aeoourit af work sponssFed by an agiencry of the United Slates Government. Neither the United States nor any agehey thereof, nor any of their employees, makes a n ~ r warranty, expresed or implied, or assumes any legd liabiIity or ,responsibility for any th-lrd wtyts me or the results gf sveh use of any infarmatian, ;a@paratus, peuckt, or proms dLcIoaed in this repdrt, or represents that its use by.suoh third w t v wnld not f nfrhge privately own&\ rights,

Page 5: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

T . S. JAYADEV D . K . ' BENSON. M. S . BOHN

Solar Energy Research Institute ' . . 1536 Cole Boulevard

Golden, Colorado 80401

A Dlvis~on of Midwest Research lnstltute

Prepared for the US Department of Energy ' Contract No. EG 77 C 01 4042

Page 6: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. .

FOREWORD . . .

This r e p o r t i s a n e l a b o r a t i o n on a p r e s e n t a t i o n made a t t h e S i x t h I n t e r n a - t i o n a l Ocean Thermal Energy Conference, Washington, D .C . , June 19-22, 1379. T t documents work done by t h e SERI M a t e r i a l s , Systems A n a l y s i s , and S o l a r Thermal Conversion branches on Task 3127. The a u t h o r s would l i k e t o thank D r . Paul Rappaport f o r h i s encouragement d u r i n g t h e i n i t i a l s t a g e s of t h i s work. T1ii.s work has been suppor ted by t h e D i v i s i o n of Advanced Energy P r o j e c t s o f t h e O f f i c e of Energy Research, U.S. Department of Energy.

-'A/ T.S. S y a d e v

( . . . Task L e a d e r . ' . . .

, . ' . .

. .

. . , .

. ; . .. . . . . . . . . .

, . . . . . -

4 , . . . .

. , , , . . . . ' , . <:. . . .. '

. . . . . roved f o r : .,

. . . . . . . . . . . .

. , . :SOLAR ENERGY 'RESE.AI~CH ' INSTITUTE. '. , . . . . .

' ; . . . . . . . . . . . . . . . , . . , . . . . . . . . . . . . . . ,.<--.- -77- . . ? . . . . . ~. ,. . . . . . . > . . . . .

. . . . . . . . . . . . . . .6//~/77 . . . . . . . .

. . J . C . GrosTkre,d'tz- . . ' ' , . . . . . . .

D i r e c t o r for/I 'echnology Development . . . .

Page 7: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. . . . . . . ' . . _ . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . * . . . . . . . o=* . S=~~II@)II ' , . , : , ' . , . > . _, . . . . : . . , TP-254. . -

. . . . - *z+,, . . I I . . . . . . , . . . . , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . , , . . . . . . I . . . . . . . 9 ,, . .

. . . . . ,. .. 1 , ,., . . . . . . . . . . . , TABLE . . OF C,O?Tl'ENTS, , . % . . . . . . . , . . . . . .

. . . . . . . . .. ; . . . : . . . . . .

. . . . . . . . . . . . . . . . . . . a . , . - . . . . , . . . . . . ,. . .. :. ,

,. . . . . . .

. , , . . . Page . . . . . . . . , . .

. I . ' . .

. . . . . . . . . .

' Fo'reword. .................... .'. ................................................. i i . . . . . , . . . .

. . . ......... .......... .......... .......................... . . . . Nomenclature.. i .'.;. .:. v. . . .

i.

1- . . . A b s t r a c t . . ................................................................... . . . 1 . .

' 3 . :. 1 . 0 I n t r o d u c t i o n . ........................................................... - . .

. 2.0 Discuss ion . . ..........................:.................................... 5 . . .

. . . . .2..1 Bas ic P r i n c i p l e s . ................................................. 5

... .............. . 2 . 2 . Heat ~ x c h a r & e r and T h e r m o e 1 e c t r . i ~ Genera to r . ;:.. .8 10 ' . . % ..3 EnvironmenL: and S a f e t y . . .'. ' .. ...................... .....:........... . .

, . . . ....................... 2..4 i-Ieat.Exchanger Design ... r .:.:.......... ;. I? 2 . 5 ' Cost E s t i m t e s . . . . ' . . ........................................... 15 2 .h ~ ~ t e n t i a l ' ~ a r k e t P e n e t r a t i o n . . ................................... 17 '

. . . . . . . 3.0 Conc lus ions .......................................................... 21

4.0 Refe rences ............................................................ . . . .

2'3

Energy ........... A-1 . .

Page 8: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. , . . . , . . . . . . . . . . . . . '..I . . . . . . . . . . . . . . . , . ". . . . . . ., 3 . . . .'

. . . . . . . . . . . . '. ' . . ..*: . , , . . . . . . . . . Page

. . . . ' . : . .

2-1 domp=r ispnof system S c h e ' k t i c ~ e . s i ~ n s f b i ~1os.d C y c l e OTEC and '. . . Thermoelectr ic ,OTEC.................................................t. 6

. , . ' 2-2 Figure 'of Merit, of Therrdoelkctric ~ 1 1 0 ~ s . . ..:........ .-. ............. . ' . 7..

9 2 - Pre l iminary Power Module Design ...................................... ... 2-4 . ~etaf . , l . o f Heat ~ ~ c h a n g & r ~ T ~ & r m ~ e l e c t r i c Generato?! con! i gu&t ion . . , 11

. -

1-5. The Market p e n e t r a t i o n of Ocean ~ h e r m a 1 ' ~ l e c t r i c sterns Based on t h e Resu l t s of a s imu la t i on 'Model.. ................................

. , . . . 19

. . . . . .

' . . . . . , .

. . . . . . .

, . - . LIST 'OF TABLES

2-1 Summary of Power Module Ma te r i a l s Requirements and Costs f o r a 400 MWe (Net) Thermoelectr ic OTEC.................................. 17

. . .. ,

2-2 . , u l t i k t e . ~ a p i t a l . . . . Cost Es t imates f o r OTEC Systems .................... 18

Page 9: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

,. . A . cross -sec t io* l a r e & . of . ' thermoel6c t r ic m a t e r i a l - . " .:. .; ':. . . . . . , . t r . . . . .

. . . .

A ' . c ros s - sec t iona l a r e a ' of .h& t 'exchanger .I?assage.' = bW . . ..C , . . . . . . . 2 . . . A . . . cross -sec t f.b'na.l.:area ;o f ' cold water' p ipe ' = . Td 1 4 . . . . . . . . ' . . . :

. . . . . . P . . . . . . C - .

, b . , heigh;.. . . . . . of ',heat. :exchanger'] f low passage . . . . . . . . . . . . . . , . . , , ; . - . . . . . .~ . . . , . . . . . . . . . . . .

f l u i d , . (water) s p e c i f i c lieat ' ' , : , .: . . . . . . . . . . . . . . . . . . Cp . . - . .. ,

- d C . . . . diamete.r .of cold water p ipe :, ; . . . . . . . . . . . . . . . . . . . . . . . .

. : . . f r i c t i o n : f a c t d r . in ' cold water p ipe . . . . . . f p . . . . . . . . . . , , . . . . . : % . . . .

f h x . f r i c t i o n . . factor : . in: .heat gxchanger..flow,.pa~sage. . . . '. . . . . . . . , . .

G ma'ss .f low r a t e . i n . the hea t .'exchanger 'flow passage i bW ' . . . . . . .; . . . , I . .

, . , , e c , e , c c e l e r a t i o n o i , " . ,' ' , . . .

. . h . hea t t ra ' i is .~er coef f i c i e i i t a t f i u id lhea t . . eiChang6.G. . i t i t e r f ace . . .

I . electr ical .cur ren t i n : t he~mo 'e l ec t r i c deirice . . . ... . .

K ef f icieric?:. of - thermoelect'ric.:material. a s .fract-Lbri '.of : Ciirnot e f f i c i e n i y . . . . . , . . . .

. .

eherml : c~nduc t i v i t y o f thermoelec t+ ic : t i a t e r i a l . . . *,:;. .' ', '.. ,. ' . . . . . . . , . . , . . . . . . . , .. . .

iceff e f f e c t i v e thermal conduc t iv i t y of t he rmoe lec t r i c m a t e r i a l ( s ee Ap- , pendix)

. . . . . . . . . . . . . . . . k : thkr&l, cond&t fv i ty b f t h e hea t .exchanger p l a t e ' A t e r i a l . .P . . . . . . . . . . . I . . . . ._- , . . . . , , . ;: . ,. . . . . . . . . . . . i ' l eng th .of: t h i n i o e l e c t r i c .miterial in i n . elementary d e ~ : t , ~ t i

. . . . . . . . . . . L : l e n g t h . o f h e a t . e x c h a n g e r f l o w . . . . p&s.s&e i n f l o w ' , d i r e c t i & ' 1 ,

. . , . . . ~. l e ?g th .o f c o l d . water p ipe : :

", . . . . . . . . . . " ' ? . . &is flow .rate- i n , htiat &xchang&. flow . . . .

. . . , . . . . .

. .

;a t o t a l mass flow r a t e of cold water C

N ' '

t o t a l number o f ' f low p&sage& i n t h e ' hea t exchailgkr. .". . 4 * . . . ..,. . . .

, . . . . : . , .NGU . ' numb& of g e n e r a t i o n u n i t s . ' ,' . . . . .., . . . . . . . . . . . . .

~. . ,. . . . .

P" . - , ' l o c a l e l t i& t , r i ca& power g e n e r a t i o n per u n i t base, area. , of hea't ,e&&hanger . . . . : e . . . . . . . . . . . . . . . . . , .

. . . . . . . . . . . . . . . . . 2..,' ' ' ) . . . . . . . . . . . . ;~ ), ,:;:..%;.< +:f;;.', .:: . . . . . . . . . . . ~. , . . . . . . . . . . . . .

.......... '.'..' ' : . . : : . . . . . . a . . i

' : :... . . .. P-. . . . . . . ' . e i & c t l i c a l .power: generaked by a f l q w c h a n n e l ' . . . . . . . . : .' :. . . . . . . . . . . . . . . . . : C ' . : , . , . . . . . . . . . . . . . , . . . . . . . . . . , : P :.". p,ow&r' required: : fd ' p,bmp' f i u i d : through: i f l o w . passage .. . . h x , . . . . . . . . . . . <. . . . . . . . . . . . . . . .

. . . P ' : ; p O w & ~ . r e ~ u i r ~ $ : t o pu,i,p f l u i d th&uell ' tile e d l d w a t e r p i p , e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p . . ; . . , . . . : . . . . . . * .,; . . . . . . . . . . . . . , . . , ,.. ' I . . . . . . >. , . . , . . . . . .

. . . . . . . . . . . , . . . . . . . . . . . . . 'P. e , lGct r ica l ,[email protected]+bduc&d by,::the ' s y s & e m . . . . . . ' . . . . . . . . .. , . . . . . . . . . . . . . . .

. . 0 . . .,. . . . . . . . . . . . ' . . . . . . . . .

. . . . . . .

_ . . I . _ . . . , . ., . : . . , P " : "m&i'&~ni . . valUe ' o f P;, ( w r t 6) . . . p e r u n i t ' hea t exchanger . . . p l a , t e . . . a r e a ' , . . . . . . : , o . . . j : . . . . . . . . . 9 . . . . . . . .

' ) . . . . . . . . . . . . . . . . . . . . . . : , . . . . . . . . . , . . . . . .

. . . . . , . . . . ' -.er'-: ... :flufd ' ~ r + * d t l hl?hher . " -." . ' . . . . . . I : I, . . . . . . . . , . . . . . . . . . . . . . - . . . , . . . . . . . , : . . ,. . . . . . . . . .

. . . . . . . , . . . ' . . , . I . . .

. . . :' q - ' . h e a t . f l & . . . . :in th.e&o$lectric' dev i ce - . . . . . .

. . . . . . . . . . . . . ... . . . ! . . . . . . , : . , . . . .

. . . . . . . v :, . . . . . . . . . . . " . . . . . , . . .I.. . . . . . , .. F . '. . . . .:, . . , . . . . . . . , . . . . . 1 . ' .. . . , . . . . . , . . . . . - . . . . . . .

, . . . . . . . . % .

. . . . ' , , . . , . ; . '

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'i . . . . ,

. . , . . : . . . . . . , . , , . . . , . . . .

Page 10: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

heat t r a n s f e r r e d per u n i t a r e a from hot f l u i d t o cold f l u i d

e l e c t r i c a l r e s i s t a n c e of t he rmoe lec t r i c device I

thermal r e s i s t a n c e from the f l u i d t o t he t he rmoe lec t r i c m a t e r i a l ( in- c lud ing p l a t e r e s i s t a n c e and fou l ing )

thermal r e s i s t a n c e of t h e t he rmoe lec t r i c m a t e r i a l i nc lud ing P e l t i e r r e s i s t a n c e

Reynolds number i n heat exchanger flow passage

thickness ' of hea t exchanger , p l a t e . ., .

th ickness of t he rmoe lec t r i c m a t e r i a l

cold jur;ction temperature of t h e t h e r m o e l e c t r i c . .

hot junc t ion temperature of the t he rmoe lec t r i c

temperature of t he hot f l u i d

tempera ture 'o f t he cold f l u i d

t h e r m l conductance from the ho t f l u i d t o t he cold f l u i d

vo l tage generated by an elementary t he rmoe lec t r i c device

width of hea t exchanger flow passage

Seebeck c o e f f i c i e n t of t he rmoe lec t r i c m a t e r i a l

f r a c t i o n of a r e a covered by thermoelec t r ic m a t e r i a l

hea t excha'nger e f f e c t i v e n e s s parameter (Eq. 1 2 )

e l e c t r i c a l conduc t iv i t y of t he rmoe lec t r i c m a t e r i a l

Carnot e f f i c i e n c y

e f f i c i e n c y 'of water pumps

f l u i d v i s c o s i t y

f l u i d d e n s i t y

P(Tcold) ', 9(Thot)

Page 11: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

ABSTRACT

A novel t h e r ~ n o e l e c t r i c OTEC concept i s proposed and compared w i t h t h e ammonia c losed-cyc le d e s i g n s . The t h e r m o e l e c t r i c OTEC i s a much s i m p l e r sys tem which u s e s no working f l u i d and t h e r e f o r e r e q u i r e s no p r e s s u r e v e s s e l , working f l u i d pumps, o r t u r h o g e n e r a t o r . These components a r e rcpl-aced by ' power modules which a r e hea t . exchangers i n t e g r a t e d wi th t h e r m o e l e c t r - i c g e n e r a t o r s .

The t h e r m o e l e c t r i c OTEC o f f e r s s e v e r a l p o t e n t i a l advan tages i n c l u d i n g : s i m - p l e r and more e a s i l y mass-praduced components; h i g h e r r e l i a b i l i t y sys tem performance through t h e u s e of a h i g h l e v e l of redundancy and l o n g - l i v e d , s o l i d - s t a t e t h e r m o e l e c t r i c g e n e r a t o r s ; g r e a t e r s a f e t y f o r crew and e n v i r o n ~ n e n t by e l i m i n a t i o n of rlte p r e s s u r i z e d working f lu i c l ; and t h e p o s s i b i l i t y of lower sys tem c o s t s .

These comparisons a r e d i s c u s s e d and p l a n s f o r f u t u r e work a r e p r e s e n t e d i n t h e paper .

Page 12: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 13: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

INTRODUCTION . .

Over t h e p a s t few decades , t h e a r t and s c i e n c e of t h e r m o e l e c t r i c energy con- v e r s i o n has g r a d u a l l y evolved t o a h igh l e v e l of performance. T h e r m o e l e c t r i c g e n e r a t i o n has become t h e p r e f e r r e d method f o r producing e l e c t r i c power where r e l i a b i l i t y and maintenance-f ree o p e r a t i o n a r e e s s e n t i a l . Rad io i so tope-hea ted t h e r m o e l e c t r i c g e n e r a t o r s power o r b i t i n g s a t e l l i t e s , remote r a d i o t r a n s m i t - ters , space pr0hc.s ( P i o n e e r s 1 0 and 11 and Vik ing Mars L a n d e r s ) , deep s e a s o n a r sounding buoys, e t c . F o s s i l - f u e l e d t h e r m o e l e c t r i c g e n e r a t o r s p rov ide r e l i a b l e c a t h o d i c c o r r o s i o n p r o t e c t i o n f o r remote p i p e l i n e s , b r i d g e s , e t c . , and l a r g e - s c a l e i n d u s t r i a l t h e r m o e l e c t r i c c o o l i n g i s hecoming a commercial r e a l - i t y i.n France [ I ] .

The o b j e c t i v e of a n e x t e n s i v e t h e r m o e l e c t r i c s R&D program d u r i n g t h e 1960s was t o develop m a t e r i a l s and sys tems which were c o m p e t i t i v e wi th t h e s team turbo- g e n e r a t o r . Although rl\is g o a l was never met and t h e r m o e l e c t r i c r e s e a r c h s u f f e r e d a d e c l i n e , i t is impor tan t t o r e c o g n i z e th.+t t h e r m o e l e c t r i c s were judged by a comparison ullth steam t u r b i n e s i n t h e t empera tu re range where steam i s most e f f i c i e n t and economical . For much lower t e m p e r a t u r e h e a t s o u r c e s , s team tu rb i r l e s a r e much l e s s e f f i c i e n t and economira l , and mass- produced t h e r m o e l e c t r i c g e n e r a t o r s can compete ve ry f a v o r a b l y .

A major r e s e r v a t i o n abou t t h e r m o e l e c t r i c d e v i c e s d u r i n g t h e 1960s was degra- d a t i o n of the m a t e r i a l s and bonds under h i g h t empera tu re t h e r m a l c y c l i n g . T h i s problem does not e x i s t at- 7.ow t empera tu res such a s t h o s e encoun te red i n t h e t h e r m o e l e c t r i c OTEC. Low t e m p e r a t u r e t h e r m o e l e c t r i c d e v i c e s have e x h i b i t e d 35 y e a r mean t ime betwsen f a i l u r e s [ 2 ] .

New m a t e r i a l s now be ing developed by t h e t h e r m o e l e c t r i c s . indust ry , e x h i b i t energy , convers ion effir:i.enc.i.es f a r s u p e r i o r t o p r e s e n t l y a v a i l a b l e ther.moelec- t r i c m a t e r i a l s . These new m a t e r i a l s may , r e p r e s e i l t a ~ n a j o r improvement i n t h e r m o e l e c t r i c technology and may o f f e r p o s s i b i l i t i e s f o r numerous new a p p l i - c a t i o n s . The t h e r m o e l e c t r i c OTEC i s one s ~ . ~ c h new a p p l i c a , t i o n t h a t h a s been proposed by t h e a u t h o r s and is, now. undergoing p r e l i m i n a r y e v a l u a t i o n a t SERI..

Page 14: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 15: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

SECTION 2.0

DISCUSSION

2.1 BASIC PRINCIPLES

The t h e r m o e l e c t r i c OTEC i s a s imple sys tem t h a t u s e s a t h i n l a y e r s o l i d - s t a t e gent? r a t o r r a t h e r than a working f l u i d . Consequent ly , no e v a p o r a t o r , conden- s o r , working f l u i d pump, p r e s s u r e v e s s e l , o r t u r b o g e n e r a t o r is r e q u i r e d (F ig . 2-1). A compact h e a t exchanger i s used t o t rans ,mi t h e a t th rough t h e thermo- e l e c t r i c g e n e r a t o r .

T h e r m o e l e c t r i c g e n e r a t i o n w k e s u s e of a bulk phenomenon--the Seebeck e f f e c t ( t h e same phenomenon t h a t makes a t l~e rmocouple o p e r a t e ) . A t e m p e r a t u r e g r a d i - e n t a c r o s s any m a t e r i a l t e n d s t o d r i v e charge c a r r i e r s from t h e hot s i d e t o t h e co ld s i d e and produce a v o l t a g e , V , which i s p r o p o r t i o n a l t o t h e tempera- t u r e d i f f e r e n c e , AT. The p r o p o r t i o n a l i t y c o n s t a n t , t h e Seebeck c o e f f i c i e n t , is a c h a r a c t e r i s t i c of t h e m a t e r i a l :

For most me ta l s a i s q u i t e small, a few m i c r o v o l t s p e r d e g r e e , but s p e c l . s l l y des igned se~; i lconductor t h e r m o e l e c t r i c a l l o y s produce s e v e r a l hundred micro- v o l t s pe r degree Kelvin . Using such m a t e r i a l s , the rmal energy can be con- v e r t e d t o e l l ~ c r r I c a l energy a t abou t 20% of t h e maximum (Carno t ) t h e o r e t i c a l e f f i c i e n c y .

' E f f i c i e n t t h e r m o e l e c t r i c m a t e r i a l s e x h i b i t a hi..gh Seebeck c o e f f i c i e n t a, high e l e c t ' r i c a l c o n d u c t i v i t y 0, and ].ow the rmal c o n d u c t i v i t y k. A f i g u r e of m e r i t , .,

i s a good i n d i c a t o r of a the rmoe l . ec t r i c m a t e r i a l ' s performance. F i g . 2-2 shows how Z v a r i e s w i t h t e m p e r a t u r e f o r t h e most common commercial thermoe.lec- t r i c m a t e r i a l s [3] . Specia.1 a l l o y s of bismuth, antimony, t e l l u r i u m , and se len ium now used i n t h e t h e r m o e l e c t r i c c o o l i n g i r idus t ry have Z v a l u e s as h i g h a s 3.5 x a t room tempera tu re . N o t i c e t h a t t h e h i g h e s t f i g u r e s of m e r i t occur i n t h e t empera tu re range of i n t e r e s t f o r OTEC.

New a l l o y s of bismuth, antimony, and t e l l u r i u m , which a r e under developm n t y t h e i n d u s t r y , have r e c e n t l y e x l l l b i t e d r e p r o d u c i b l e v a l u e s of Z = 6 x 10 -4 ,-P. Such m a t e r i a l s cou ld p rov ide a conversi.or~ e f f i c i e n c y a s h i g h a s 30% of t h e Carnot l i m i t . I n q t h e r m o e l e c t r i c OTEC, t h e u s e of such a n advanced p t e r i a l cou ld produce a g r o s s convers ion e f f i c i e n c y of 2%--an e f f i c i e n c y comparable t o t h e c l o s e d c y c l e ammonia OTEC. Other new ~ n i ~ t e r i a l s such a s amorphous semicon- d u c t o r s and o r g a n i c semiconductors a l s o have promise f o r a c h i e v i n g h igh t h e r - m o e l e c t r € c energy c o n v e r s i o n e f f i c i e n c y i n t h e OTEC t e m p e r a t u r e range.

Page 16: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. . . . . . . . . , .

. . . . . . A . schematic Closed cycle OTEC..: : . :B.: :~~he.matic~.herm,oelectric OT€C : -- : . - . . . . ,:- :. , . . . : . . . . . . . . .

. . . . . . . . . .

- .

Figure 2-1 ' i ~ o m ~ a r i s o n of System ~ c h e m ~ t i c : ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ for:c,losed';: :.:, .:.+..' ,

. .. Cycle OTEC and Thermoelectric-QTEC: .:; . . ' l ; , .... . , . . . . ., .. / - . . . . . .. . . . . .. . ' . .

Page 17: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 18: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

2 .2 HEAT EXCHANGEK AND THERMOELECTRIC GENERATOR

The t h e r m o e l e c t r i c OTEC concep t p e r m i t s t h e use of a p a r t i c u l a r l y s i m p l e d e s i g n f o r t h e power module which s e r v e s a s both h e a t exchanger and e l e c t r i c power g e n e r a t o r .

F i g u r e 2-3 shows a p r e l i m i n a r y d e s i g n concept f o r such a module which would produce a b o u t 30 kWe ( n e t ) i n a n OTEC w i t h AT = 20 K [ 4 ] . I f advanced thermo- e l e c t r i c m a t e r i a l s were used, t h e n e t ol.ttptlt from t h e module could be in - c r e a s e d by abou t 50%. A 400 MW, ( n e t ) p l a n t would u s e abou t 20,000 such modules.

The power module. i s b a s i c a l l y 'a h e a t exchilrlger of p a r a l l e l p l a t e d e s i g n w i t h t h e t h e r m o e l e c t r i c g e n e r a t o r s sandwiched between t h e f low channe l s as shown. The m a t e r i a l , OF c h o i c e i n t h e h e a t exc:liaager i s a copper -n icke l a l l o y which can p rov ide . s e v e r a l advan tages :

, e x c e l l e n t r e s i ' s . t a n c e t o b i o f o u l i n g ,

low c o r r o s i o n rate ( l e s s t h a n 2.5 x m/yr o r 1 MPY [ 5 ] ),

h i g h the rmal c o n d u c t i v i t y ,

h i g h e l . ~ c t r i c a l c o n d u c t i v i t y , a n d

e a s y f a b r i c a t i o n .

'IJnlike t h e c losed-cyc le OTEC d e s i g n s , t h e t h e r l n o e l e c t r i c OTEC is f o r g i v i n g . For example, a c o r r o s i o n p i t which would s h u t down a n ammonia 9TEC module ( b e c a u s e of concern f o r a c c e l e r a t e d corros i .on dnd /o r s c a l i n g ) would damage o n l y a s m a l l number of t h e r t n o e l e c t r i c e l ements ; i t would not d i m i n i s h t h e power o u t p u t from the a f f e c t e d power module p e r c e p t i b l y and would not r e q u i r e r e p a i r . One of t h e consequences O F L ~ L S f o r g i v i n g d e s i g n i s t h a t o n l y minimal c o r r o s i o n t o l e r a n c e s need be used i n t h e heilt exchanger .

,The thermoc?l.ectr ic g e n e r a t o r d e v i c e i s a .novel d e s i g n which makes u s e o f t h i c k - f i l m techno logy a l r e a d y w e l l developed i n the e l e c t r t > r ~ ~ l . c s i n d u s t r y . The t h e r m o e l e c t r i c . : w t e r i a l cou ld be d e p o s i t e d on t h e copper base a s a p a s t e by l i t h o g r a p h i c t e c h n i q u e s and f i r e d i n p l a c e t o form a d u r a h l e c o a t i n g ; a s u i t - a b l e p o t t a n t couL.1 be added t o . f i l l t h e i n t e r s t i c e s , and f i n a l l y t h e cover p l a t e could be s o l d e r e d i n . p l a c e . - A l l of t h e s e s t e p s a r e a1:lelmble to . au toma- t i o n .

t he, t h e m o e l e c t r i c g e n e r a t o r d e s i g n is p a r t i c u l a r l - y s i m p l e because o n l y a s i n g l e - type ( t h a t ' is e i t h e r n-type o r p-type) semiconductor need be used .

' . ~ a c h t h e m o e l e c t r i c . g e n e r a t o r d e v i c e w i l l t hen c o n s t s t of many i d e n t i c a l t h e r - ' , , moe1,ect r ic e l ements connec ted i n p a r a l l e l , and . t h e s e d e v i c e s i n t u r n w i l l be .

i n t e r c o n n e c t e d i n series t o . p r o v i d e a high c u r r e n t , low v o l t a g e power mod- e . , Modules can , be s ~ t t t a b l y insul 'a ted from each o t h e r and connected i n

. s e r i e s - p a r a l l e l a r r a y s a s needed t o produce. t h e des i . red system c u r r e n t and v o l t a g e o 'u tput [ 4 ] .

, The p a r t i c u l a r l y s i m p l e d e s i g n of t h e . t h e r m o e l e c t r i c power modules s u g g e s t s t h a t they m y be'. s u i t a b l e f o r l a r g e - s c a l e , au'toma ted mass p r o d u c t i o n . T h i s .

' . I ? o ~ s i b i l i < y is i n c o n t r a s t i:o t h e p r e s e n t tube-in-shel .1 h e a t exchanger d e s i g n s f o r c l o s e d c y c l e OTEC; which r e q u i r e expens ive , l a b o r i n t e n s i v e assembly.

Page 19: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

Pigure2-3. Preliminmry Power Moduk Design

(This early design u t i l i z e s a cross-flow, plate and f i n heat exchanger. Later analyses showed that paral le l plate heat exchanger performance was comparable. )

Page 20: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

2.3 ENVIRONMENT AND SAFETY

The ammonia closed-cycle OTEC poses severa l sa fe ty ant1 environmental r i s k s t h a t would not be present with a thermoelectr ic OTEC. Small, chronic leaks of ammonia may pose a hea l th hazard t o the opera t ing crew and cause acce le ra ted corros ion and s c a l i ~ z g of the heat exchangers. Larger leaks , which would r e l e a s e Large q u a n t i t i e s of ammonia before they could he repaired, would be a se r ious heal th hazard, a potenti-a1 f i r e and explosion hazard, and have se r ious impacts on marine l i f e ( p a r t i c u l a r l y i n combination with hypochlori te used t o c o n t r o l biofouling).

The thermoelectr ic OmC would have none of the hazards of ammonia, but its use of copper a l l o y heat exchangers would s i g n i f i c a n t l y r a i s e the copper and n icke l ion concentrat ions near the OTEC plant . These ions a r e harmful t o c e r t a i n mollusks. However, a study of the problem has shown t h a t the copper and n icke l ion concentra t ions probably would not exceed' the EPA standards f o r muarir~e water q u a l i t y [ 6 ] .

0;. , , - ' i - f . ,?, , I 4 . ' . - r . 2 , ,. >

. -- -- .. 8 . - . . L

TP-254 . I k I,. 'Y "

7 v 2 ' W ,ST- yr7w -

8 , -

2.4 HEAT EXCHANGER DESIGN

To determine the performance which could lw expected from a thermoelectr ic OTEC system, a prel iminary pe r fo rma~~ce a n a l y s i s was made of a s impl i f i ed design. Included i n the a n a l y s i s was dc.-velopment of an expression f o r elec- t r i c a l power output per u n i t base a r w oF the heat exchanger, s e l e c t i o n of t h e

. c o r r e c t thickness of thermoe1ectrf.c ina t e r i a l , ca lcu la t ion of p a r a s i t i c losses , and minimization of c o s t s f o r a given p lant output power.

The heat: exchanger considered has p a r a l l e l €].ow channels of rectangular cross s e c t i o n (Figs. 2-3 and 2-4) . Cold water and hot water a r e pumped through a l t e r n a t e flow channels with thermoelectr ic Inaterial sandwiched between the channels.

The . power . output of the thermoe1ect:rtc module per u n i t a rea m y be wri t ten*

T f i - . P" e = Kqh(l - -1 (3 )

Th The heat t r ans fe r red from the hot f l u i d t o the cold f l u i d i s

- 5 .

= That Tcold Th - T~ . 'h R t e + 2 R f R t e ( 4

The power output may be expressed i n terms of the various thermal r e s i s t a n c e s [Eq. 31 by replac ing Tg and Th i n Eq. 4 and rewri t ing i t as :

. ' *Nomenclature is defined i n the Nomenclature sec t ion of t h i s repor t , preceding the Abstract .

Page 21: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. . . . . . .

~hermoelectric . .

. a . . . . . . . .

. .

. . . .

.. '. . . . .

Insulation . , . . .

. . . . . . . . . . . . '1 cold . . . .

. . ,. . . . . . . . . . . . .

. . . . . .

, ~ i ~ u ~ e ' 2 - 4 . Detail of Heat ~xchan~er / '. . . . . . . . . . . . . . . . . . . . . . Thermoelectric Generator ; . , . . , . . . . . . . .

. . ( . . . . .Configuration, . . -. . . . . . . . . .

Page 22: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

K R t e -

p w . = ,--- That Tco ld e ( 2R + Rte ( 5 ) - f

That S i n c e t h e t e m p e r a t u r e d i f f e r e n c e s a r e small,

T c o l d € = 1 - - << 1

*I ( 6 ) . That Kquat ion 5 can be l i n e a r i z e d t o g i v e

The loc:ll e l e c t r i c power g e n e r a t i o n P" may be maximized by a d j u s t i n g t h e e t h e r m a l r e s i s t a n c e of t h e t h e r m o e l e c t r i c t o Xte = 2RF, g i v i n g

The power d e n s i t y P" i s a f u n c t i o n of d i s t a n c e a l o n g t h e f low d i r e c t i o n w i t h i n e t h e passage (Th and Tcold v a r y i n t h e f low d i r e c t i o n ) and must be i n t e g r a t e d a l o n g . t h e f low f e n g t h t o deter in ine power o u t p u t p e r f low channe l . T h i s c a l c u - l a t i o n is s i m i l a r t o d e t e r m i n i n g h e a t exchanger e f f e c t i v e n e s s as a f u n c t i o n of NTU (number of t r a n s f e r u n i t s ) f o r a g i v e n f low c o n f i g u r a t i o n [ 7 ] . However, s i n c e P" is p r o p o r t i o n a l t o t h e s q u a r e of t h e t e m p e r a t u r e d i f f e r e n c e , t h e c a l c u l a f i o r l of p o r e r g e n e r a t i o n pe r f low passage must be c a r r i e d o u t f o r each f l o w c o n f i g u r a t i o n ; and t h e r e s u l t s of h e a t exchanger e f f e c t l v e n e s s c a l c u l a - t i o n s are not u s e f u l . T h i s power g e n e r a t i o n c a l c u l a t i o n w a s done f o r a p a r a l - l e l f low and a c o u n t e r f low a r rangement , and t h e r e s u l t s show t h a t NTU f o r power g e n e r a t i o n is f o u r t imes t h a t f o r h e a t t r a n s f e r . T h e r e f o r e t h e number of g e n e r a t i o n u n i t s NGU can be d e f i n e d a s

. . . . . ' . 4ULW L

. . NGU = - = G C R b . . , ' , . .

. ' . ,(9) ' '

. . . . . c ]!,,

P f . . P. . . . . . .

. . I n add i . t i . on , . f o r : sell . v a l u e s :of NGU (-1.) t h e f low c o n f i g q r a t i o n is n o t ' C:np,or- .. . ' . , ' tani; ' 1-11 d&te rmin ine ' t h e ' power g e n e r a t i o n p e r : . f l o w c h a n n e l . and . t h e . change i n

' f l u i d t+ipS+atuies. i s Gil. ., : ... . . . . . . . . , . , . . . . . . , . . . . , .

. . : ' . , . . - . . . . . . . . . , . . , . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

' . . ~ b r NGTJ < C 1 t h e power: g i n e r d t i d n i f a f low channe l , . . i s :' . ', ... . ., . . . . . . . . . . . . . . . . . . . . . . . I ' . . . . . . . . . . . . . . . . . . . . , . . . < . . . . . . . .

. . , . . : . . . . . . . . . . - . . . . . . , ,

. .

. . . ' p = ' p " " . , . . . . . . . . . . . .:. (1o.j . . , . . . . . .

.'. ' . . C ' . e. . : . : ' . : . . . . . . . . . . . . . . . . . . . . . . .

. . . . . ' .but a s NGU.' i n c k e a s e s .: ' t h e power. genefa t .ion .qf tlla ' citnnnel u n i t channe l . . ' i e n g t h ' decreases ' ' a s ' [1-exp(-2NGU)l /2NGIJ. I n g e n e r a l . we found t h a t f o r ' 'NGU < .

, ' 0.7 : t h i s e x p r e s s i o n was v a l i d f o r ' p i r i l l e l f low o r c o u i t e r f l d w ' h ' e q t e i cha ig - . . . . .

. . . . . .

. e y s , and we: expec t ' it will' Also be ' . :vali& f o r most oth'er: f low a r r a n g e m e n t s , .: . . . . . . . . j j . . . .

. . . . .

, . ' . . . . , .:. . .' . . .

, . . . . . . . .

. . . . . ., " i 2 . . . . . .

. . . . . . . . . . . . . . ... . . . . . . . . . I . . ' . . . . - .

. . . . . . .

' . . . . '. . . . . . . . . , . . . , ~ . .

. . ,, . . .

Page 23: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

The power generated by the channel i s given by n

1-exp(-2NGU) where r = 2NGU

The f a c t o r 0.95 accounts f o r an expected 5% l o s s due t o e l e c t r i c a l con tac t r e s i s t a n c e a t t h e hea t exchanger/thermoelectric junct ion.

Pumping the f l u i d through the flow channel r equ i r e s pumping power [8]:

' 3 - ' bW + minor l o s s e s ' 'hx - fhx 2

P gc

I f . t h e cold water pipe feeds ~ / i .hea t exchanger channels , a pumping power P w i l l be requi red :

P

'c (GbW?V/2) 3

P = f - GbWN + minor l o s s e s + L c p - dc 2 & A 2 4

c P . The first term i n Eq. 14 is the f r i c t i o n a l loss; while t he second term is the

work requi red t o pump the cold water up a g a i n s t t he dens i ty g r a d i e n t .

8 The ' col-d water pipe Reynolds numbers , a r e on , t h e order of 10 , and we m y , assume i u l l y t u rbu len t flow.- Assuming- a dimensionless roughness f o r a co ld water p ipe of 0.0003 g ives f = 0.015. The dens i ty g rad i en t term was der ived

P by ' n e g l e c t i n g compres s ib i l i t y and s a l i n i t y e f f e c t s and by asstuning a l i n e a r dens i ty p r o f i l e with depth. Min0.r l o s s e s r e f e r t o l o s s e s i n channel i n l e t s o r

. . o r ~ t l e t s .

Assuming the pumping power can be suppl ied wi th e f f t c i e n c y rl t he ne t power output of a p lan t c o n s i s t i n g of N channels I s

P'

We have neglec ted power requi red t o pump the warm water t o t he hea t exchanger i n l e t .

Dividing Eq. 15 by 2NWL, we f ind the net ou tput power per u n i t hea t excluanger p l a t e a r e a :

Page 24: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. . ~.

P r o p e r h e a t exchanger d e s i g n w i l l minimize t h e pumping. and . m a t e r i a 1 requ i re - . meries.. The . p ; ~ r a i e t e r i ' . w h i c h , we hay vary ; most . : e a s i l y a r e t h e f . 1 0 ~ . . r i t e G and , ,. .

t h e h e a t ' exchanger f l o i l e n g t h . L ( o r NGU) . The h e a t .exchanger iieynoldS .number ha.?'. a ' weak . . , in , f i~ . t t?n&~ ..on t h e 'des ign .except. ' f o r d e t e r m i n i n g . , t h & . p l a t e . spic ' ing b,,' which is c o n s t r d i n k d !by c l e a n i n g , r equ i rements . . The . l e n g t h . o f ' . t h e ' co ld wa te r p i p e ' i s determined by i h e d e p t h ' r e q u i r e d t o r e i c h ' . , t h e d e s i r e d c o l d water t e m p e r a t u r e , . . , a n d . . the. d i a m e t e r of "the co.ld w a t e r p i p e i s p.roba?!ly l i m i t e d t o a ..

ymxirn&n _ q f <!out . . 40 m becabSe of . . f a b r i c a t i o n , a n d deployme,x?t , d i f i i & u l t i k ? : . . . . . . . . .

~ h e ' h e n t . : : & x ~ h a n g ~ f , i s des igned b y varying G and NGU wi th a a e y n o l d s &nber ' .

whi:ch' g i v e s i' r & h S o n a b ~ & b u n t i l minimum . m a t e r i a l and pump c o s t s ' r e s u l t . . The ' .

the rmal r e i i k ' t a n c e . ' R f is g i v e n from r e f e r e n c e 8. . . . . . . ., . . . .:. . . . . . . . . . , , . ' . . ., . : . . . . . . . . . . . :: , . .

h = 0.023 R e -'I5 GC ~r -2 13

P (18)

4

The power d e n s i t y P6 may t h e n be c a l c u l a t e d and t h e r e q u i r e d a r e a 2NWL can be found , g i v e n t h e . r e q u i r e d p l a n t o u t p u t power. The mass flow of (ho t p l u s c o l d ) w a t e r i s (Gb12L) (Po/P") and t h e r e q u i r e d t h i c k n e s s of t h e r m o e l e c t r i c m a t e r i a l can be found from R t e = 2Rf ( s e e Appendix).

The power modules w i l l r e q u i r e a n a r e a of 2NWL of h e a t exchanger p l a t e s and t h e r m o e l e c t r i c d e v i c e pl-ates; and a n a r e a o f ' NWL of thermoe1ectri .c m a t e r i a l -

We assumed t h e f o l l o w i n g v a l u e s :

. . . . . . P r o p e r t i e s of f r e s h ' w a t e r a t 20°C . .: . .

. . . . . . LC , = . 9.14 m . ...

. . . . . . . . . . . . . . .

K. = 0.2 . . . , . . .. I . . . . . .

. . . .

. . . . , - . . . . . . Minor 1os.s;es: :, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. % : - , :Col.dwat.er + l e t ' . . . ' . . '= 0.04.' ( d y ~ m i . c : h e a d : . . l o s s ) ' . ' . . . . . . . . . . . . . . . . . . . . .'.. , c o i d . ' & t & p i p e .mal?if o l d i n g = 0..04:. . " . . . . . . . . . . . . . . . . ,

. . . , . . . . .: .Pump . d u c t i n g t o heat e x c ~ a n g e i s := 0..11) ': , . ' . . '.

. . . , . . . . . . . . . . . . . . . . Heat 'exchanger . i n l e t , ' .. '=- ..O .38 . . . . . , . . . . . . . . . . . , . .

. . . * . - = 0 . 5 . 6 : . . : ' , . . . . . . ~ . e a . t &xchhhgi?f o u t l . e t . : . . . . . . . . . , . . . . .

. . . ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,, . . . . . . . . .

. . . . . . .

. . . . , . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . , . . . . . . - . : . .B =. '0 .3 . > . . . . . . - . .

. . . . . . . . . .

. . . . . . . . . . . , . . , . . . . . .

. . . . ,

. . . . . .

. .

. . . . - . . . . , R f o ~ l ~ o . ) 5 : ~ 0 ~ - C ~ 2 / ~ w ~ , ' ': . , . , : . . . . . .

.: . . . . . . . . . . . . . . . . . . .

. ' . ,

. . . . . . . . .

. . . . . . . . .

. . . . . . . . , .

. . . . . " t ='0'.5:1 ,~$n .I:..

. . . . . . .

. . . .

. . . , . .. , i . , . . . . . .

. . . . . . . . . . . .

. . . . . . . .

. . . . . . . " . :

. . . . . . . . . . , ,,. .

. . . . . . . . . . .

. . . .

. .

. . . . . . . I

. . . . . . . . , , . . .

...

. . . . . . . ' ) . . , . . . 3 4 , . .

. . . ' . . . . . . . . . .

. . . . . .I ' . t , . '

. . . , , . . . , . . . . . $ , ' '.. *.

. . ' . . . . . .

Page 25: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

The o p t i m i z a t i o n p rocedure f o r a n e t 400 MWe y i e l d s :

L = 10.32 m (NGU = 0 .6 ) . .

6 2 'Required a r e a of h e a t exchanger p l a t e = 26.38 x 10 m

6 Required f low r a t e (ho t p l u s c o l d ) = 13.28 x 1 0 kg/s

2.5 COST ESTIMATES

The ecorlomics of t h e t h e r m o e l e c t r i c m a t e r i a l s p r e s e n t l y c o n s i d e r e d f o r OTEC b e n e f i t from two f a c t o r s . The e lements invo lved (mainly bismuth and t e l l u - r j ~ i m ) a r e byproducts oE l e a d , g o l d , and copper p r o c e s s i n g , and they a r e a v a i l - a b l e i n abundance [ 4 ] .

S i n c e t h e mining c o s t s and most of t h e p r o c e s s i n g c o s t s a r e borne by t h e pr imary p r o d u c t s , t h e byproduct c o s t s a r e determined by t h e c o s t s of c a p i t a l equipment, opera t i o n , and maintenance of t h e byproduct s e p a r a t i o n and p u r i f i- c a t i o n p r o c e s s . A t p r e s e n t , t h e s e c o s t s must be recovered w i t h t h e sale of a r e l a t i v e l y small volume of byproduct . A s l a r g e r q u a n t i t i e s a r e demanded, p r o d u c t i o n equipment can he s c a l e d up, i t s e f f i c i e n c y improved, and i t s c o s t s sp read over a l a r g e r volume of byproduct . The r e s u l t of t h i s s i t u a t i o n i s an i n v e r t e d supply-demand curve . The g r e a t e r t h e demand, t h e lower t h e u n i t c o s t s . . '

I n f o r m a t i o n o b t a i n e d from a major p roducer of bismuth and t e l l u r i u m i n d i c a t e s very s u b s t a n t i a l r e d u c t i o n i n m a t e r i a l c o s t s a s t h e demand i n c r e a s e s [ 3 ] . The f o l l o w i n g t r e n d is p r e d i c t e d f o r the p r i c e of Bi2Te3:

Uni t Cost Demand (1979 $ / l b )

lo3 2.96 lo4 2.37 l o5 1.78 1 o6 1.19

The c o n c e p t u a l d e s i g n f o r a t h e r m o e l e c t r i c OTEC is no t y e t w e l l enough devel- oped t o j u s t i f y any a t t e m p t a t making d e t a i l e d c o s t e s t i m a t e s . However, i t i s p o s s i b l e t o make a n o r d e r of magnitude e s t i m a t e of t h e sys tem c o s t s f o r com- p a r i s o n w i t h c l o s e d c y c l e system e s t i m a t e s .

Two major subsystems p robab ly accoun t f o r most of t h e t h e r m o e l e c t r i c OTEC cgst - - the power modules ( h e a t exchanger - the rmoe lec t r i c g e n e r a t o r combina t ion) and t h e ' seawate r pumps. With automated ~ w s s p r o d u c t i o n , t h e power modules

Page 26: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

should approach about 1.35 t imes t h e c o s t nf the m a t e r i a l s requi red . Seawater pumps f o r OTEC have been surveyed and an a lgor i thm developed r e l a t i n g cosr ro pumping capac i ty [9 ,10] :

Cost per u n i t c a p a c i t y = 313 q-0.616 (19)

3 where Q i s m /s of seawater and c o s t s ;are given i n thousands of 1979 d o l l a r s 3 pe r m /s capac i ty .* U t i l i z i n g these s t ~ n p l i f y i n g assumptions, the approximate

c o s t s a r e es t imated a s fo l lows .

m. Ine t he rmoe lec t r i c gene ra to r f o r t he 400 MWe ( n e t ) p l a n t d i s c u s s e d i n tile 2 preceding s e c t i o n produces yboyt 30 W/m ne t power. The power module s u r f a c e

a r e a requi red is 1.3 x 10 m . The masses of the requi red m a t e r i a l s a r e es t imated a s t he p'roduct of t h e i r dens i ty and th i cknes s t imes . t he to ta l . h e a t exb11;i nger a,rea [4 ] :

f l o channel p l a t e s of 90 copper - 10 n i c e l a l l o y w i t th ickness 0.508 x -5 lo-' m (0.02 i n . ) and f e n s i t y 8909 kg-m (8.9 g-cm-g): mass = 8900 x 0.508 x 1 0 - ~ x 1 . 3 x 1 0 = 5 . 9 x 1 0 kg (267 x 1 0 6 l b ) .

t he rmoe lec t r i c device p l a t e of copper w i t t!~lclcness 0.13 x m (0.005 -9 i n . ) and dens i ty 8900 kg - m d ( 8 . 9 g - cm ): mass = 8900 x 0.13 x x 1.3 x lo7 = 15 x lo6 kg (33 x l o6 l b ) .

tker inoe lec t r i m a t e r i a l cover ing 0.30 o t he s u r f a e a r ea and a t h i cknes - f -5 of 0.59 x l d r n and den i t y 7700 kg-7 (7.7 g-cm ): mass = 0.51 n 10- 3 x 7 7 0 0 x 0.30 x 1 .3 x 10' = 1.77 x 10 kg (39 x l b ) .

Two flow channel p l a t e s and two t h e r ~ n o e l e c t r i c device p l a t e s a r e requi red f o r each u n i t of power module a r e a . Mater-Lals requirements and c o s t a r e summar- ized i n Table 2-1.

4 3 The pumping capac l ty f o r a 400 We the rmoe lec t r i c OTEC is 1.33 x 10 m /s. I n t h e i n t e r e s t of i nc reased r e l i a b i l i t y through a high l e v e l of redundancy, i t

3 may be d e s i r a b l e t o use 66 l a r g e pumps of 200 m 1s capac i ty each. The algo- 6 rithm ( E q d 19) y i e l d s a c o s t of $2.4 x 10 per pump or a t o t a l pump cos t of

$158 x 10 o r $395/kWe n e t e l e c t r i c power.

It i s important [:o no te t h e s e n s i t i v i t y of t h e t he rmoe lec t r i c OTEC c o s t s t o t he rmoe lec t r i c conversion e f f i c i e n c y . The power dens i ty ach ievable is propor- t i o n a l t o t he 312 power of t he conversion e f f i c i e n c y , s o t h a t i f t h e advanced m t e r i a l s now under development were used i n t he se e s t ima te s i n s t e a d of cur- r e n t , commercial thermoel-ect r i c m a t e r i a l s , a l l of t he co would be mult i - p l i e d by a f a c t o r ( ~ f f i c i ency o l d l e f f i c i ency n e w 5 which equa ls (0.2 Carpot/0.3 sot)^/ = 0.54. Thus, t h e succes s fu l development of t h e new, more e f f i c i e n t t he rmoe lec t r i c ma te r i a l s w i l l have a s t rong e f f e c t on t h e economics of t h i s concept . S imi l a r ly , t h e development of a more co r ros ion r e s i s t a n t copper a l l o y f o r t h e hea t exchanger could reduce m a t e r i a l s requi re - ments and c o s t s d r ama t i ca l l y . The c a p i t a l cos t estl-mates a r e l i s t e d i n Table 2-2. The g r e a t e r s i m p l i c i t y and r e l i a b i l i t y of the t he rmoe lec t r i c OTEC should

*I977 d o l l a r s were i n f l a t e d t o 1979 d o l l a r s by using the Chemical Enginee'ring P l a n t Cost Index [ I l l .

Page 27: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

have a f avo rab l e i n f luence on the l i f e cyc l e c o s t s : fewer replacements o r major r e p a i r s of r o t a t i n g machinery, fewer c o s t l y b io fou l ing c o n t r o l measures, l a r g e r a v a i l a b i l i t y f a c t o r , e t c . These improvements m y o f f s e t any i n i t i a l c a p i t a l cos t disadvantages.

Table 2-1. S-Y OF PO= MODULE MATERIALS REQUIREMENTS AND COSTS FOR A 400 MWe (NET) THERMOELECTRIC OTEC

Component

Ma te r i a l Required Unit Cost T o t a l Cost

(lo6 kg) (1061b) ($/kg) ( l o6 $1

Heat exchanger channel p l a t e s 11 8 2 60 2.2 260 (30 copper - 10 n i c k e l a l l o y ) '

Thermoelec t r ic device 3 0 66 1 . 8 54 (copper p l a t e s )

Thermoelectr ic m a t e r i a l 18 4 0 2.6 - 4 7 (a l loyed Bi2Te3)

T o t a l n ra te r ia l s cos t = 361

T o t a l mater i.;ils. cos t x 1.35 = f a b r i c a t e d power module' c o s t s = 487 -- Cost per kWe ne t power = $1218

a ~ o s t s es t imated from c u r r e n t (1979) commodity p r i c e s f o r e l q c t r o i y t i c , copper ($0.75/ lh) and n i c k e l ($2.20/ lb) wi th 1.10 m u l t i p l i e r t o cover a l i o y processing [12].

2.6 POTENTIAL MARKET PENETRATION

The pre l iminary na ture of t he c o s t e s t i m a t e s f o r t he rmoe lec t r i c OTEC do not warrant a d e t a i l e d market p e n e t r a t i o n s tudy a t p r e sen t . However, i t i s possi- b l e t o e s t lma te t he r e l a t i v e impact of reduced OTEC c a p i t a l c o s t s ' on i t s probab.le market pene t r a t i on .

The MITRE system f o r P r o j e c t i n g the U t i l i z a t i o n of Renewable Resources (SPURR Model) [13] was used t o compare OTEC base load power systems wi th va r ious c a p i t a l c o s t s a g a i n s t convent ional power sources and o t h e r s o l a r op t ions . The market was l i m i t e d t o t h e southern United S t a t e s ; OTEC sites were l i m i t e d t o t h e Gulf of Mexico. F igure 2-5 shows t h e r e s u l t i n g p r o j e c t i o n s through t h e year 2000. Notice t h a t even a small decrease i n OTEC c a p i t a l c o s t s below t h e base case cos t range ($1371-$2020/kwe, 1979 d o l l a r s ) can d rama t i ca l l y improve the market p e n e t r a t i o n . Such p r o j e c t i o n s o f f e r encouragement t o our e f f o r t s t o des ign a lower c o s t t he rmoe lec t r i c OTEC.

Page 28: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

. . . . . . . . . .; . . . . , .\ . . . . . : >. . ..(

. . , , ? .

. & b l e 2-2 ..:; ULTIMK~"~' . . CAPITL. COST ESTIMATES F O R OTEC sY&&FfS ( 4 0 0 6 P-), .

c , , . . . ,. / . . ,

Ammonia Closed cyclea Thermoelectr ic OTEC '

Commercial Advanced Aluminum HX Titanium HX Ttlermoelectrics Thermoelec t r ics

Module (1979 $/kW) (1979 $/kW) (1979 $/kw) (1979 $/kW)

Hea t exchangers (and t h e r m o e l e c t r i c s ) 482-844 : 567-989 1 2 i 8 658

. . . . ,. . : ' . NA .,. ' . :NA a , . . . . . '8-4.8-, . " 8-48 . ' ' " . ' Deniisters . , . ' . . c .

. . . . _ . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . , . ' .. . - . . . . . . . . . . . . . . , ~ . . . .

,. '8&-li5: , .

NA . . : . , ' 84-,1.35. .. . . . . . . . . .NA. " . . . . . . . . . . . . . . Turbogenerators . . .: & . . . . . , . .

Seawater pumps' ' 103-241 115-241 395 213

Other power systems 139-235 130-235 130-235 130-235

Cold wa te r . pipe . , , 86-96 ' ' ' 86-96 , . . 86-96 ' . . . 86-96. . . .

. . . . . . ' E l e c t r i c , a b l e ' # ' , . 121-543. 121-543 121-543 . ' .121-543' .

. : . i.143-'27.43 1'232-2887 2070-2722 '. 1326-2343 T o t a l . . . . . .

. . . . . . . , . , . , . . . . . . . . . . . . . . . :

Average 1943 2064 2396 1835

aOn a module b a s i s , t he se r ep re sen t t he h ighes t and lowest e s t ima te s by f o u r DOE c o n t r a c t o r s and DOE personnel a s repor ted during February 1978. The con- t r a c t o r s ' names corresponding t o t h e e s t ima te s made a r e p r i o r i t y in format ion and a r e not p resen ted fo r t h a t reason. These e s t ima te s a r e f o r s i t e s 3 miles t o 200 miles from shore [13] . Costs have been i n f l a t e d t o 1979 d o l l a r s u s ing t h e Chemical Engineer ing P l a n t Cost Index and r e f . [ l l ] .

Page 29: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 30: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 31: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

SECTION 3.0

CONCLUSIONS

The concept of a t he rmoe lec t r i c OTEC o f f e r s many advantages i n s i m p l i c i t y , r e l i a b i l i t y , and s a f e t y . Its economic competi t iveness appears t o depend on succes s fu l development of new the rmoe lec t r i c m t e r i a l s and power module de- s igns . The p o t e n t i a l f o r decreased OTEC c o s t s and increased market penetra- t i o n a r e promising.

. . . .

Ongoing ' SERI r e s e a r c h . , w i l l . inc lude 'continued eva lua t ion of newly deve'l'oped the rmoe lec t r i c m a t e r i a l s and r e sea rch t o d i scover a d d . f . t i o ~ i t he rmoe lec t r i c s . among new . c l a s s e s o.E' mate r i a l s s u c h as amorphous' and.. o rganic semiconductors.

. ~ h e r r n o e l e c t r i c ' d,evi,ce des ign and .fa 'bric.ation R&D and new systems concepts f o r i n t e g r a t .l.ng . t he hea t exchangers.' a n d . thermoele'ctric 's a r e ' a l s o . being .pursued. Fur ther a n a l y s i s of t h e t he rmoe lec t r i c OTEC and . o the r . ' s o l a r app l i ca -

. . . . . . . . t i o n s aye ' i n progress .

. . . . . . . . . . . . .

. . . . . . ,

. .

Page 32: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new
Page 33: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

SECTION 4.0 .- . .

REFERENCES -

1. Stockholm, 'J. G. et al. (Air Research I n d u s t r i e s , P a r i s , France) . "Large Sca le Thermoelectr ic Cooling." Proceedings of t h e Second I n t e r n a t i o n a l

b Conference on Thermoelectr ic Energy Conversion, Da l l a s , TX, March.1978.

2. Goff, J. F. (Naval Sur face Weapons Laboratory). Thermoelectr ic Ma te r i a l s . f o r Energy Conversion Devices. Naval Ordinance Laboratory Technica l Report 74-166, June 1974.

3. N e i l l , J. M.; E l sne r , N. B.; and Sonn, D. L. Thermoelec t r ic Appl ica t ions t o So la r Energy. General Atomic Corp. Report C15168, November 1978.

. 4.Jayadev, T. S. . e t a l . . Conversion System Overview Assessment, P a r t I. S o l a r Thermoelectr ics . So l a r Energy Research I n s t i t u t e Report TR-35-078

. ( i n p repa ra t i on ) . :

5. Czikk, A. M. e t a l . Ocean Thermal Power P l a n t Heat Exchangers. Linde Div is ion , Union Carbide Corp. ERDA/NSF Report 43441-76/2, May 1976.

6 . Ocean Thermal Energy Conversion - Environmerltal Development P l an , U.S. Dept. of Energy, DOE/EDP-0006, .pp. .11-13, March 1978.

7 , Kays, W. and London, A. L. ' Compact Heat Exchangers. McGraw H i l l , Inc . , New York, 1964.

8 . Solano, J. G. ; Mack, W. M. ; and Rohsenhow, W. M. "Performance Ranking of Plate-Pin Heat ,%xchanger ' sur faces . " Transac t ions of t h e ASME, Vo.1. ' loo,, A U ~ I . I S ~ 1978, pp.. 5i4-519.

9. L i t t l e , T. E. e t a l . 'Deep Water Pipe, Pump, and Mooring Study, Ocean Thermal Energy Conversion Program F i n a l Report , Westinghouse E l e c t r i c Corp., Oceanic Div is ion , June 1976.

10. Bartone, L. M., Jr. (~i lber t /Commonweal th , Energy Research D i v i s i o n ) , "A l t e rna t ive Power Systems f o r Ex t r ac t i ng Energy from t h e Ocean: A Comparison of Three Concepts," Proceedings of t h e F i f t h Ocean Thermal Energy Conversion Conference, Vol. V I I , A. Lavi , e d . , . February 20-22, 1978, Miami Beach, FT., September 1978, pp. 68-108.

11. Mascio, N. E. "Pred ic t Costs Re l i ab ly v ia Regression Analysis ." Chemical Engineer ing, February 12, 1979, pp. 115-121.

12. Chemical Marketing Repor te r , A p r i l 23, 1979.

13.s Curto, P. A. (Metrek Div is ion of Mitre Corp.), "An Update of OTEC Base l ine

Page 34: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

14. Rebibo, K. et al. "A Systeru For projecting the Utilization of Renewable Resources, SPURR Methodology, " Met rek Division, Mitre Corp. , ERDA Report ERHQ/2322-77/4, September 1977.

Page 35: Thermoelectric Ocean Thermal Energy Conversion · thermoelectric technology and may offer possibilities for numerous new appli- cations. The thermoelectric OTEC is one s~.~ch new

APPENDIX

The e f f e c t i v e , thermal c o n d ~ l c t i v i t y i n a t he rmoe lec t r i c genera t o r can be ex- pressed simply a s a combination of - c o n d u c t i v i t y p l u s t h e P e l t i e r and J o u l e hea t ing e f f e c t s . ,The heat. f l u x involved i n t h e ope ra t i on of t h e thermoelec- t r i c dev ice c o n s i s t s of two p a r t s : t he convent ional lieat f l u x produced by t h e

L thermal g rad i en t and c o n t r o l l e d by the thermal conduc t iv i t y of t he thermoelec-

t r i c m a t e r i a l and t h e hea t l i b e r a t e d by the e l e c t r i c a l cu r r en t i n t h e device. The e l e c t r i c a l cu r r en t produces two hea t ing e f f e c t s , P e l t i e r hea t ing and' Jou l e

u hea t ing . The t o t a l hea t f l u x i s .

Under normal ope ra t i ng cond i t i ons , wi th the i n t e r n a l r e s i s t a n c e of t h e device matched t o t he e x t e r n a l load r e s i s t a n c e f o r maximum power ou tput :

I = V/2R and V = a& (2 ) s o t h a t ar 1 = -

2R

Equation 1 may be r e w r i t t e n a s

R o r , s i n c e R = -

UA'

d2u . .

and a2u AAT A AT

Q = [kt, + ( 1 T - T = keffT.

Thus, t he thermal processes in the t he rmoe lec t r i c device can be represen ted by the temperature-dependent e f f e c t i v e thermal conduc t iv i t y , kef f .