58
Reference Number: 318465 Revision: 001 Intel ® 3210 and 3200 Chipset Thermal/Mechanical Design Guide November 2007

Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

  • Upload
    buikien

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Reference Number: 318465 Revision: 001

Intel® 3210 and 3200 ChipsetThermal/Mechanical Design Guide

November 2007

Page 2: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

2 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel 3210 and 3200 Chipset, Dual Core Intel Xeon processor 3000 Sequence, and Intel Xeon processor 3200 Sequence may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting http://www.intel.com

Intel, Xeon, Intel I/O Controller, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Copyright © 2007, Intel Corporation. All rights reserved.

* Other brands and names may be claimed as the property of others.

Page 3: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 3

Contents

1 Introduction ..............................................................................................................71.1 Design Flow........................................................................................................81.2 Definition of Terms ..............................................................................................81.3 Reference Documents ..........................................................................................9

2 Packaging Technology ............................................................................................. 112.1 Non-Critical to Function Solder Joints ................................................................... 132.2 Package Mechanical Requirements....................................................................... 13

3 Thermal Specifications ............................................................................................ 153.1 Thermal Design Power (TDP) .............................................................................. 153.2 Thermal Specification......................................................................................... 15

4 Thermal Simulation ................................................................................................. 17

5 Thermal Metrology .................................................................................................. 195.1 MCH Case Measurement..................................................................................... 19

5.1.1 Supporting Test Equipment...................................................................... 195.1.2 Thermal Calibration and Controls.............................................................. 205.1.3 IHS Groove ........................................................................................... 205.1.4 Thermocouple Attach Procedure ............................................................... 22

6 Reference Thermal Solution..................................................................................... 356.1 Operating Environment ...................................................................................... 356.2 Heatsink Performance ........................................................................................ 356.3 Mechanical Design Envelope ............................................................................... 366.4 Thermal Solution Assembly................................................................................. 36

6.4.1 Extruded Heatsink Profiles ....................................................................... 376.4.2 Retention Mechanism Responding in Shock and Vibration............................. 386.4.3 Thermal Interface Material....................................................................... 386.4.4 Reference Thermal Solution Assembly Process............................................ 39

6.5 Reliability Guidelines.......................................................................................... 40

A Thermal Solution Component Suppliers ................................................................... 43A.1 Heatsink Thermal Solution.................................................................................. 43

B Mechanical Drawings ............................................................................................... 45

Figures1-1 Thermal Design Process .......................................................................................82-1 MCH Package Dimensions (Top View)................................................................... 112-2 MCH Package Height.......................................................................................... 112-3 MCH Package Dimensions (Bottom View).............................................................. 122-4 Non-Critical to Function Solder Joints ................................................................... 132-5 Package Height ................................................................................................. 145-1 Omega Thermocouple ........................................................................................ 205-2 FCBGA7 Chipset Package Reference Groove Drawing.............................................. 215-3 IHS Groove on the FCBGA7 Chipset Package on the Live Board................................ 215-4 The Live Board on the Fixture Plate...................................................................... 225-5 Inspection of Insulation on Thermocouple............................................................. 235-6 Bending the Tip of the Thermocouple ................................................................... 235-7 Extending Slightly the Exposed Wire over the End of Groove ................................... 245-8 Securing Thermocouple Wire with Kapton* Tape Prior to Attach............................... 24

Page 4: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

4 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

5-9 Detailed Thermocouple Bead Placement................................................................255-10 Tapes Installation ..............................................................................................255-11 Placing Thermocouple Bead into the Bottom of the Groove ......................................265-12 Second Tape Installation.....................................................................................265-13 Measuring Resistance between Thermocouple and IHS............................................275-14 Adding a Small Amount of Past Flux to the Bead for Soldering .................................275-15 Cutting Solder ...................................................................................................285-16 Positioning Solder on IHS....................................................................................285-17 Solder Block Setup.............................................................................................295-18 Observing the Solder Melting...............................................................................305-19 Pushing Solder Back into the End of Groove ..........................................................305-20 Remove Excess Solder........................................................................................315-21 Thermocouple Placed into Groove ........................................................................325-22 Remove Excess Solder........................................................................................325-23 Fill Groove with Adhesive ....................................................................................335-24 Finished Thermocouple Installation.......................................................................346-1 Reference Heatsink Measured Thermal Performance vs. Approach Velocity ................366-2 Design Concept for Reference Thermal Solution .....................................................376-3 Heatsink Extrusion Profiles..................................................................................376-4 Reference Thermal Solution Assembly Process - Heatsink Sub-Assembly (Step 1).......396-5 Reference Thermal Solution Assembly Process - Heatsink Assembly (Step 2) .............40B-1 Intel® 3210 and 3200 Chipset Package Drawing....................................................46B-2 Intel® 3210 and 3200 Chipset Motherboard Component

Top-Side Keep-Out Restrictions ...........................................................................47B-3 Intel® 3210 and 3200 Chipset Motherboard Component

Back-Side Keep-Out Restrictions..........................................................................48B-4 Intel® 3210 and 3200 Chipset Reference Thermal Solution Assembly .......................49B-5 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Heatsink Drawing..........50B-6 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Spring Preload Clip........51B-7 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Fastener Nut ................52B-8 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (1 of 2) ............53B-9 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (2 of 2) ............54B-10 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate Assembly ......55B-11 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate.....................56B-12 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Insulator......................57B-13 Intel® 3210 and 3200 Chipset Reference Thermal Solution - Flush Mount Stud..........58

Tables3-1 Intel® 3210 Chipset Thermal Specifications ..........................................................153-2 Intel® 3200 Chipset Thermal Specifications ..........................................................155-1 Thermocouple Attach Support Equipment..............................................................196-1 Honeywell PCM45F* TIM Performance as a Function of Attach Pressure.....................386-2 Reference Thermal Solution Environmental Reliability Guidelines ..............................41

Page 5: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 5

Revision History

§

Document Number

RevisionNumber Description Date

318465 001 • Initial release of the document. November 2007

Page 6: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

6 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 7: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 7

Introduction

1 Introduction

As the complexity of computer systems increases, so do the power dissipation requirements. Care must be taken to ensure that the additional power is properly dissipated. Typical methods to improve heat dissipation include selective use of ducting, and/or passive heatsinks.

The goals of this document are to:

• Outline the thermal and mechanical operating limits and specifications for Intel® 3210 and 3200 Chipsets.

• Describe a reference thermal solution that meets the specification of Intel® 3210 and 3200 Chipsets.

Properly designed thermal solutions provide adequate cooling to maintain Intel® 3210 and 3200 Chipsets die temperatures at or below thermal specifications. This is accomplished by providing a low local-ambient temperature, ensuring adequate local airflow, and minimizing the die to local-ambient thermal resistance. By maintaining Intel® 3210 and 3200 Chipsets die temperature at or below the specified limits, a system designer can ensure the proper functionality, performance, and reliability of the chipset. Operation outside the functional limits can degrade system performance and may cause permanent changes in the operating characteristics of the component.

The simplest and most cost-effective method to improve the inherent system cooling characteristics is through careful chassis design and placement of fans, vents, and ducts. When additional cooling is required, component thermal solutions may be implemented in conjunction with system thermal solutions. The size of the fan or heatsink can be varied to balance size and space constraints with acoustic noise.

This document addresses thermal design and specifications for Intel® 3210 and 3200 Chipsets components only. For thermal design information on other chipset components, refer to the respective component datasheet. For the Intel® ICH9, refer to the Intel® I/O Controller Hub9 (ICH9) Thermal Design Guidelines.

Note: Unless otherwise specified, the term “MCH” refers to the Intel® 3210 and 3200 Chipsets.

Page 8: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Introduction

8 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

1.1 Design Flow

1.2 Definition of TermsFC-BGA Flip Chip Ball Grid Array. A package type defined by a plastic

substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip Connection) attach style. The primary electrical interface is an array of solder balls attached to the substrate opposite the die. Note that the device arrives at the customer with solder balls attached.

BLT Bond line thickness. Final settled thickness of the thermal interface material after installation of heatsink.

MCH Memory controller hub. The chipset component contains the processor interface, the memory interface, the PCI Express* interface and the DMI interface.

ICH I/O controller hub. The chipset component contains the MCH interface, the SATA interface, the USB interface, the IDE interface, the LPC interface, and so forth.

IHS Integrated Heat Spreader. A thermally conductive lid integrated into the package to improve heat transfer to a thermal solution through heat spreading.

Tcase_max Maximum die or IHS temperature allowed. This temperature is measured at the geometric center of the top of the package die or IHS.

Tcase_min Minimum die or IHS temperature allowed. This temperature is measured at the geometric center of the top of the package die or IHS.

TDP Thermal design power. Thermal solutions should be designed to dissipate this target power level. TDP is not the maximum power that the chipset can dissipate.

TIM Thermal Interface Material. Thermally conductive material installed between two surfaces to improve heat transfer and reduce interface contact resistance.

TLA The local ambient air temperature at the component of interest. The local ambient temperature should be measured just

Figure 1-1. Thermal Design Process

T he rm a l M od e l

T he rm a l M od e l U s e r's G u ide

S te p 1 : T he rm a lS im u la tion

T he rm a l R e fe re nce

M ec ha n ic a l R e fe ren ce

S tep 2 : H ea ts in k S e lec tio n

T h e rm a l T e s ting S o ftw a re

S o ftw a re U s e r's G u ide

S tep 3 : T he rm a l V a lida tion

0 0 12 39

Page 9: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 9

Introduction

upstream of airflow for a passive heatsink or at the fan inlet for an active heatsink.

ΨCA Case-to-ambient thermal solution characterization parameter (Psi). A measure of thermal solution performance using total package power. Defined as (TC - TLA)/Total Package Power. Heat source size should always be specified for Ψ measurements.

1.3 Reference DocumentsThe reader of this specification should also be familiar with material and concepts presented in the following documents:

Note: Contact your Intel field sales representative for the latest revision and order number of this document.

§

Document Title Document Number / Location

Intel® I/O Controller Hub9 (ICH9) Thermal Design Guidelines Contact your Intel Field Sales Representative

Intel® 3210 and 3200 Chipset Datasheet www.developer.intel.com

Intel® 3210 and 3200 Chipset Specification Update www.developer.intel.com

Dual-Core Intel® Xeon® Processor 3000 Series Datasheet www.developer.intel.com

Quad-Core Intel® Xeon® Processor 3200 Series Datasheet www.developer.intel.com

BGA/OLGA Assembly Development Guide Contact your Intel Field Sales Representative

Various system thermal design suggestions http://www.formfactors.org

Page 10: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Introduction

10 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 11: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 11

Packaging Technology

2 Packaging Technology

The Intel® 3210 and 3200 Chipset consists of two individual components: the Memory Controller Hub (MCH) and the Intel® I/O Controller (Intel® ICH9). The Intel® 3210 and 3200 Chipset MCH component uses a 40 mm [1.57 in] x 40 mm [1.57 in] Flip Chip Ball Grid Array (FC-BGA) package with an integrated heat spreader (IHS) and 1300 solder balls. A mechanical drawing of the package is shown in Figure 2-1. For information on the Intel® ICH9 package, refer to the Intel® I/O Controller Hub9 (ICH9) Thermal Design Guidelines.

Figure 2-1. MCH Package Dimensions (Top View)

Figure 2-2. MCH Package Height

Page 12: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Packaging Technology

12 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Notes:1. All dimensions are in millimeters. 2. All dimensions and tolerances conform to ANSI Y14.5 - 1994.

Figure 2-3. MCH Package Dimensions (Bottom View)

Page 13: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 13

Packaging Technology

2.1 Non-Critical to Function Solder Joints

Intel has defined selected solder joints of the MCH as non-critical to function (NCTF) when evaluating package solder joints post environmental testing. The MCH signals at NCTF locations are typically redundant ground or no-critical reserved, so the loss of the solder joint continuity at end of life conditions will not affect the overall product functionality. Figure 2-4 identifies the NCTF solder joints of the MCH package.

2.2 Package Mechanical RequirementsThe Intel® 3210 and 3200 Chipset package has an Integrated Heat Spreader (IHS) which is capable of sustaining a maximum static normal load of 15-lbf. This mechanical maximum load limit should not be exceeded during heatsink assembly, shipping conditions, or standard use conditions. Also, any mechanical system or component testing should not exceed the maximum limit. The package substrate should not be used as a mechanical reference or load-bearing surface for the thermal and mechanical solution.

Notes:

1. These specifications apply to uniform compressive loading in a direction normal to the package.

Figure 2-4. Non-Critical to Function Solder Joints

Page 14: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Packaging Technology

14 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

2. This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum specified load of 7.6 lbf on the package to ensure TIM performance assuming even distribution of the load.

3. These specifications are based on limited testing for design characterization. Loading limits are for the package only.

To ensure that the package static load limit is not exceeded, the designer should understand the post reflow package height shown in Figure 2-5. The following figure shows the nominal post-reflow package height assumed for calculation of a heatsink clip preload of the reference design. Please refer to the package drawing in Figure 2-1 to perform a detailed analysis.

§

Figure 2-5. Package Height

Page 15: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 15

Thermal Specifications

3 Thermal Specifications

3.1 Thermal Design Power (TDP)Analysis indicates that real applications are unlikely to cause the MCH component to consume maximum power dissipation for sustained time periods. Therefore, in order to arrive at a more realistic power level for thermal design purposes, Intel characterizes power consumption based on known platform benchmark applications. The resulting power consumption is referred to as the Thermal Design Power (TDP). TDP is the target power level that the thermal solutions should be designed to. TDP is not the maximum power that the chipset can dissipate.

For TDP specifications, see Table 3-1 for Intel® 3210 Chipset and Table 3-2 for Intel® 3200. FC-BGA packages have poor heat transfer capability into the board and have minimal thermal capability without a thermal solution. Intel recommends that system designers plan for a heatsink when using the Intel® 3210 and 3200 Chipset.

3.2 Thermal SpecificationTo ensure proper operation and reliability of the Intel® 3210 and 3200 Chipset, the case temperatures must be at or between the maximum/minimum operating temperature ranges as specified in Table 3-1 and Table 3-2. System and/or component level thermal solutions are required to maintain these temperature specifications. Refer to Chapter 5 for guidelines on accurately measuring package die temperatures.

Notes:1. The above specifications are based on post-si analysis. 2. The maximum idle power is the worst-case idle power with L1 ASPM state.

Notes:1. The above specifications are based on post-silicon analysis. 2. The maximum idle power is the worst case idle power with L1 ASPM state.

§

Table 3-1. Intel® 3210 Chipset Thermal Specifications

Parameter Value Notes

Tcase_max 96 °C

Tcase_min 5 °C

TDPdual channel 20.2 W DDR2-667

TDPdual channel 21.3 W DDR2-800

PIdle_max 11.3 W

Table 3-2. Intel® 3200 Chipset Thermal Specifications

Parameter Value Notes

Tcase_max 97 °C

Tcase_min 5 °C

TDPdual channel 18.9 W DDR2-667

TDPdual channel 20.0 W DDR2-800

PIdle_max 11.3 W

Page 16: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Specifications

16 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 17: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 17

Thermal Simulation

4 Thermal Simulation

Intel provides thermal simulation models of the Intel® 3210 and 3200 Chipset and associated user's guides to aid system designers in simulating, analyzing, and optimizing their thermal solutions in an integrated, system-level environment. The models are for use with the commercially available Computational Fluid Dynamics (CFD)-based thermal analysis tool FLOTHERM* (version 5.1 or higher) by Flomerics, Inc. Contact your Intel field sales representative for the information of the thermal models and user's guides.

§

Page 18: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Simulation

18 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 19: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 19

Thermal Metrology

5 Thermal Metrology

The system designer must make temperature measurements to accurately determine the thermal performance of the system. Intel has established guidelines for proper techniques to measure the MCH IHS temperatures. Section 5.1 provides guidelines on how to accurately measure the MCH case temperature.

5.1 MCH Case MeasurementIntel® 3210 and 3200 Chipset cooling performance is determined by measuring the case temperature using a thermocouple. For case temperature measurements, the attached method outlined in this section is recommended for mounting a thermocouple.

Special case is required when measuring case temperature (Tc) to ensure an accurate temperature measurement. Thermocouples are often used to measure Tc. When measuring the temperature of a surface that is at a different temperature from the surrounding local ambient air, errors may be introduced in the measurements. The measurement errors can be caused by poor thermal contact between the thermocouple junction and the surface of the integrated heat spreader, heat loss by radiation, convection, by conduction through thermocouple leads, or by contact between the thermocouple cement and the heatsink base. To minimize these measurement errors, the approach outlined in the next section is recommended.

5.1.1 Supporting Test Equipment

To apply the reference thermocouple attach procedure, it is recommended that you use the equipment (or equivalent) given in Table 5-1.

Table 5-1. Thermocouple Attach Support Equipment (Sheet 1 of 2)

Item Description Part Number

Measurement and Output

Microscope Olympus* Light microscope or equivalent SZ-40

DMM Digital Multi Meter for resistance measurement

Fluke 79 Series

Thermal Meter Hand held thermocouple meter Multiple Vendors

Test Fixtures (see notes for ordering information)

Special Modified Tip Solder Block Fixture

40 W 120 V~60 Hz modified soldering iron

Weller SP40L solder tool

Miscellaneous Hardware (see notes for ordering information)

Solder Indium Corp. of AmericaAlloy 57BI/42SN/1AG 0.010 Diameter

52124

Flux Indium Corp. of America 5RMA

Loctite* 498 Adhesive Super glue w/ thermal characteristics 49850

Adhesive Accelerator Loctite 7452 for fast glue curing 18490

Kapton* Tape for holding thermocouple in place

Thermocouple Omega*, 36 gauge, T type(see note 2 for ordering information)

OSK2K1280/5SR TC-TT-T-36-72

Page 20: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

20 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Notes:1. The Special Modified Tip Solder Block Fixture is available from Test Equipment Depot 800-517-8431. 2. The Alloy 57BI/42SN/1AG 0.010 Diameter solder and the solder flux are available from Indium Corp. of

America 315-853-4900. 3. The Loctite* 498 Adhesive and Adhesive Accelerator are available from R.S. Hughes 916-737-7484. 4. This part number is a custom part with the specified insulation trimming and packaging requirements

necessary for quality thermocouple attachment, See Figure 16. Order from Omega Eng +1-800-826-6342.

5.1.2 Thermal Calibration and Controls

It is recommended that full and routine calibration of temperature measurement equipment be performed before attempting to perform case temperature measurements. Intel recommends checking the meter probe set against know standard. This should be done at 0 °C (using ice bath or other stable temperature source) and at an elevated temperature, around 80 °C (using an appropriate temperature source).

Wire gauge and length should also be considered, as some less expensive measurement systems are heavily impacted by impedance. There are numerous resources available throughout the industry to assist with implementation of proper controls for thermal measurements.

Note: 1. It is recommended to follow company-standard procedures and wear safety items like glasses for cutting the IHS and gloves for chemical handling.

2. Please ask your Intel field sales representative if you need assistance to groove and/or install a thermocouple according to the reference process.

5.1.3 IHS Groove

Cut a groove in the package IHS according to the drawing given in Figure 5-2.

Calibration and Control

Ice Point Cell Omega, stable 0°C temperature source for calibration and offset

TRCIII

Hot Point Celll Omega, temperature source to control and understand meter slope gain

CL950-A-110

Table 5-1. Thermocouple Attach Support Equipment (Sheet 2 of 2)

Item Description Part Number

Figure 5-1. Omega Thermocouple

Page 21: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 21

Thermal Metrology

The orientation of the groove relative to the package pin 1 indicator (gold triangle in one corner of the package) is shown in Figure 5-3 for the FCBGA7 chipset package IHS.

Figure 5-2. FCBGA7 Chipset Package Reference Groove Drawing

Figure 5-3. IHS Groove on the FCBGA7 Chipset Package on the Live Board

Page 22: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

22 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Select a machine shop that is capable of holding drawing-specified tolerances. IHS groove geometry is critical for repeatable placement of the thermocouple bead, ensuring precise thermal measurements. A fixture plate should be used to machine the IHS groove on the FCBGA7 Chipset Package on the Live Board. Refer to Figure 5-4.

5.1.4 Thermocouple Attach Procedure

In order to accomplish the thermocouple attach procedure, the following steps are required:

1. Thermocouple conditioning and preparation

2. Thermocouple attach to the IHS

3. Soldering process

4. Cleaning and completion of the thermocouple installation

5.1.4.1 Thermocouple Conditioning and Preparation

1. Use a calibrated thermocouple, as specified in Section 5.1.3.

2. Under a microscope verify the thermocouple insulation meets the quality requirements. The insulation should be about 1/16 inch (0.062 ± 0.030) from the end of the bead. Refer to Figure 5-5.

Figure 5-4. The Live Board on the Fixture Plate

Page 23: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 23

Thermal Metrology

3. Measure the thermocouple resistance by holding both contacts on the connector on one probe and the tip of thermocouple to the other probe of the DMM (measurement should be about ~3.0 ohms for 36-gauge type T thermocouple).

4. Straighten the wire for about 38 mm [1.5 inch] from the bead.

5. Using the microscope and tweezers, bend the tip of the thermocouple at approximately 10 degree angle by about 0.8 mm [.030 inch] from the tip. Refer to Figure 5-6.

5.1.4.2 Thermocouple attach to the IHS

6. Clean groove and IHS with Isopropyl Alcohol (IPA) and a lint free cloth removing all residues prior to thermocouple attachment.

7. Place the Thermocouple wire inside the groove and let the exposed wire extend slightly over the end of groove. Refer to Figure 5-7.

Figure 5-5. Inspection of Insulation on Thermocouple

Figure 5-6. Bending the Tip of the Thermocouple

Page 24: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

24 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

8. Bend the wire at the edge of the IHS groove and secure it in place using Kapton* tape. Refer to Figure 5-8.

9. Verify under the microscope that the Thermocouple bead is still slightly bent, if not, use a fine point tweezers to put a slight bend on the tip. The purpose of this step is to ensure that the Thermocouple tip is in contact with the bottom of groove. Refer to Figure 5-9.

Figure 5-7. Extending Slightly the Exposed Wire over the End of Groove

Figure 5-8. Securing Thermocouple Wire with Kapton* Tape Prior to Attach

Page 25: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 25

Thermal Metrology

10. Place the device under the microscope to continue with the process.

11. Using tweezers or a finger, slightly press the wire down inside the groove for about 5 mm from tip and place small piece of Kapton* tape to hold the wire inside the groove. Refer to Figure 5-10.

12. Thermocouple bead is placed into the bottom of the groove (Refer to Figure 5-11) and a small piece of tape is installed to secure it under the microscope to perform this task.

Figure 5-9. Detailed Thermocouple Bead Placement

Figure 5-10. Tapes Installation

Page 26: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

26 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

13. Place a second small piece of Kapton* tape on top of the IHS where it narrows at the tip. This tape will create a solder dam and keep solder from flowing down the IHS groove during the melting process. Refer to Figure 5-12.

14. Measure resistance from the Thermocouple connector (hold both wires to a DMM probe) to the IHS surface, this should display the same value as read during Thermocouple conditioning Section 5.1.4.1 step 3. This step insures the bead is still making good contact to the IHS. Refer to Figure 5-13.

Figure 5-11. Placing Thermocouple Bead into the Bottom of the Groove

Figure 5-12. Second Tape Installation

Page 27: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 27

Thermal Metrology

15. Using a fine-point device such as a toothpick, place a small amount of Indium paste flux on the Thermocouple bead. Refer to Figure 5-14.

Note: Make sure you are careful to keep solder flux from spreading on the IHS surface or down the groove. It should be contained to the bead area and only the tip (narrow section of the groove). This will keep the solder from flowing onto the top of the device or down the groove to the insulation area.

16. Cut two small pieces of solder 1/16 inch (0.065 inch/ 1.5 mm) from the roll using tweezers to hold the solder while cutting with a fine blade. Refer to Figure 5-15.

Figure 5-13. Measuring Resistance between Thermocouple and IHS

Figure 5-14. Adding a Small Amount of Past Flux to the Bead for Soldering

Page 28: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

28 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

17. Place the two pieces of solder in parallel, directly over the thermocouple bead. Refer to Figure 5-16.

18. Measure the resistance from the thermocouple end wires again using the DMM (Refer to Section 5.1.4.1 step 3) to ensure that the bead is still properly contacting the IHS.

5.1.4.3 Solder Process

19. Turn on the Solder Block station and heat it up to 170 °C±5 °C.

Note: The heater block temperature must be set at a greater temperature to ensure that the solder on the IHS can reach 150 °C - 155 °C. Make sure to monitor the Thermocouple meter when waiting for solder to flow. Damage to the package may occur if a temperature of 155 °C is exceeded on the IHS.

Figure 5-15. Cutting Solder

Figure 5-16. Positioning Solder on IHS

Page 29: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 29

Thermal Metrology

20. Attach the tip of the thermocouple to the solder block (perform this before turning on the solder station switch) and connect to a Thermocouple meter to monitor the temperature of the block. Refer to Figure 5-17.

21. Connect (Thermocouple being installed) to a second thermocouple meter to monitor the IHS temperature and make sure this doesn’t exceed 155 °C at any time during the process. Refer to Figure 5-17.

Note: Device in place; Two temperature monitoring meters; Heater block fixture. The heater block is currently reading 157 °C and the Thermocouple inside IHS is reading 23 °C.

22. Place the solder fixture on the IHS device. Refer to Figure 5-18.

Figure 5-17. Solder Block Setup

Page 30: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

30 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Note: Do not touch the copper block at any time as it is hot.

23. Move a magnified lens light close to the device to get a better view when the solder starts melting. Manually assist this if necessary as the solder sometimes tends to move away from the end of the groove. Use fine tip tweezers to push solder into the end of groove until a solder ball is built up. Refer to Figure 5-19.

Figure 5-18. Observing the Solder Melting

Figure 5-19. Pushing Solder Back into the End of Groove

Page 31: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 31

Thermal Metrology

Note: The target IHS temperature during reflow is 150°C ±3°C. At no time should the IHS temperature exceed 155 °C during the solder process as damage to the device may occur.

24. Lift the solder block and magnified lens, quickly rotate the device 90 degrees clockwise and use the back side of the tweezers to press down on the solder. This will force out excess solder. Refer to Figure 5-20.

25. Allow the device to cool down. Blowing compressed air on the device can accelerate the cooling time. Monitor the device IHS temperature with a handheld meter until it drops below 70 °C before moving it to the microscope for the final steps.

5.1.4.4 Cleaning and Completion of Thermocouple Installation

26. Remove the Kapton* tape with tweezers (avoid damaging the wire insulation) and straighten the wire to insert the remaining portion in the groove for the final gluing process.

Note: The wire needs to be straighten in order to keep it at or below the IHS surface. Refer to Figure 5-21.

Figure 5-20. Remove Excess Solder

Page 32: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

32 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

27. Using a blade, carefully shave the excess solder above the IHS surface. Only shave in one direction until solder is flush with the groove surface. Refer to Figure 5-22.

Notes:1. Always insure tools are very sharp and free from any burrs that may scratch the IHS surface. It is a good

practice to minimize any surface scratching or other damage during this process. 2. Shaving excess solder to insure the IHS surface is flat and will mate properly with the heatsink surface.

Scratches and protrusions may impact the thermal transfer from IHS.

28. Clean the surface of the IHS with Alcohol and wipes, use compressed air to remove any remaining contaminants.

29. Fill the test of the groove with Loctite* 498 Adhesive. Verify under the microscope that the Thermocouple wire is below the surface along the entire IHS groove. Refer to Figure 5-23.

Figure 5-21. Thermocouple Placed into Groove

Figure 5-22. Remove Excess Solder

Page 33: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 33

Thermal Metrology

30. To speed up the curing process apply Loctite* Accelerator on top of the Adhesive and let it set for a couple of minutes.

31. Using a blade carefully shave any Loctite* left above the IHS surface; take into consideration instructions from step 27.

Note: The adhesive shaving process should be performed when the glue is partially cured but still soft (about 1 hour after applying). This will keep the adhesive surface flat and smooth with no pits or voids. If you have void areas in the groove, refill them and shave the surface a second time.

32. Clean the IHS surface with Alcohol and keep the Thermocouple wire properly managed to avoid insulation damage kinks and tangling.

33. Once again, measure resistance from the Thermocouple connector (hold both wires to a DMM probe) to the IHS surface, this should display the same value as read during Thermocouple conditioning Section xxx. This step insures the bead is still making good contact to the IHS after attachment is complete.

34. Wind the thermocouple wire into loops and now it’s ready to be used for thermal testing use. Refer to Figure 5-24.

Figure 5-23. Fill Groove with Adhesive

Page 34: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Metrology

34 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

§

Figure 5-24. Finished Thermocouple Installation

Page 35: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 35

Reference Thermal Solution

6 Reference Thermal Solution

The design strategy of the reference thermal solution for the Intel® 3210 and 3200 Chipset uses backing plate stiffness/design to show significant improvement in MB strain and BGA forces. The thermal interface material and extrusion design requirements are being evaluated for changes necessary to meet the Intel® 3210 and 3200 Chipset thermal requirements. The Keep Out Zone (KOZ) will have the requirements of heatsink mounting hole with Intel® 3210 and 3200 Chipset. Refer to Figure B-2 and Figure B-3 for details. Other chipset components may or may not need attached thermal solutions, depending on the specific system local-ambient operating conditions. For information on the Intel® ICH9, refer to thermal specification in the Intel® I/O Controller Hub9 (ICH9) Thermal Design Guidelines.

6.1 Operating EnvironmentThe reference thermal solution will be designed assuming a maximum local-ambient temperature of 55 °C. The minimum recommended airflow velocity through the cross-section of the heatsink fins is 350 linear feet per minute (lfm) for 1U system and 450 linear feet per minute (lfm) for 2U+ system. The approaching airflow temperature is assumed to be equal to the local-ambient temperature. The thermal designer must carefully select the location to measure airflow to obtain an accurate estimate. These local-ambient conditions are based on a 35 °C external-ambient temperature at sea level. (External-ambient refers to the environment external to the system.)

6.2 Heatsink PerformanceFigure 6-1 depicts the measured thermal performance of the reference thermal solution versus approach air velocity. Since this data was measured at sea level, a correction factor would be required to estimate thermal performance at other altitudes.

Page 36: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Reference Thermal Solution

36 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

6.3 Mechanical Design EnvelopeWhile each design may have unique mechanical volume and height restrictions or implementation requirements, the height, width, and depth constrains typically placed on the Intel® 3210 and 3200 Chipset thermal solution are shown in Appendix B.

The location of hole patens and keepout zones for the reference thermal solution are shown in Figure B-2 and Figure B-3.

6.4 Thermal Solution AssemblyThe reference thermal solution for the Intel® 3210 and 3200 Chipset is a passive extruded heatsink with thermal interface. Figure 6-2 shows the reference thermal solution assembly and associated components.

Full mechanical drawings of the thermal solution assembly and the heatsink are provided in Appendix B.

Figure 6-1. Reference Heatsink Measured Thermal Performance vs. Approach Velocity

Page 37: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 37

Reference Thermal Solution

6.4.1 Extruded Heatsink Profiles

The reference thermal solution uses an extruded heatsink for cooling the chipset MCH. Figure 6-3 shows the heatsink profile. Other heatsinks with similar dimensions and increased thermal performance may be available. A full mechanical drawing of this heatsink is provided in Appendix B.

Figure 6-2. Design Concept for Reference Thermal Solution

Figure 6-3. Heatsink Extrusion Profiles

Page 38: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Reference Thermal Solution

38 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

6.4.2 Retention Mechanism Responding in Shock and Vibration

The lead-free process, large package and Integrated Heat Spreader (IHS) application on the Intel® 3210 and 3200 Chipset changed the mechanical responses during shock and vibration comparing with the legacy generation MCH chipset.

The Intel reference thermal solution uses a back plate design that adequately protects the Solder Ball Joint Reliability (SBJR) of the Intel® 3210 and 3200 Chipset. Analysis data indicates that the back plate design provides measurable improvement in SBJR of the Intel® 3210 and 3200 Chipset in ATX form factors (1U ATX-like system is included) where processor heatsink is attached to the motherboard. Hence, Intel recommends using the back plate design on chipset heatsink in such a circumstance to protect the SBJR.

For customized form factors where the processor heatsink is Direct Chassis Attach (DCA), customers are recommended to do shock and vibration analysis and test to determine whether a back plate design is needed or not, which probably will benefit the customer in controlling the heatsink cost.

6.4.3 Thermal Interface Material

A Thermal Interface Material (TIM) provides improved conductivity between the IHS and heatsink. The reference thermal solution uses Honeywell PCM45 F*, 0.25mm (0.010 in.) thick, 20mm x 20mm (0.79 in. x 0.79 in.) square.

Note: Unflowed or “dry“ Honeywell PCM45F has a material thickness of 0.010 inch. The flowed or “wet“ Honeywell PCM45F has a material thickness of ~0.003 inch after it reaches its phase change temperature.

6.4.3.1 Effect of Pressure on TIM Performance

As mechanical pressure increases on the TIM, the thermal resistance of the TIM decreases. This phenomenon is due to the decrease of the bond line thickness (BLT). BLT is the final settled thickness of the thermal interface material after installation of heatsink. The effect of pressure on the thermal resistance of the Honeywell PCM45F TIM is shown in Table 6.1.

Intel provides both End of Line and End of Life TIM thermal resistance values of Honeywell PCM45F. End of Line and End of Life TIM thermal resistance values are obtained through measurement on a Test Vehicle similar to Intel® 3210 and 3200 Chipset’s physical attributes using an extruded aluminum heatsink. The End of line value represents the TIM performance post heatsink assembly while the End of Life value is the predicted TIM performance when the product and TIM reaches the end of its life. The heatsink clip provides enough pressure for the TIM to achieve End of Line thermal resistance of 0.345 °C inch2/W and End of Life thermal resistance of 0.459 °C inch2/W.

Table 6-1. Honeywell PCM45F* TIM Performance as a Function of Attach Pressure

Pressure on PsiThermal Resistance (°C x in2)/W

End of Line End of Life

2.18 0.391 0.551

4.35 0.345 0.459

Page 39: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 39

Reference Thermal Solution

6.4.4 Reference Thermal Solution Assembly Process

1. Snap the preload clip spring onto the bracket. Assemble the bracket with heatsink, as shown in Figure 6-4.

2. Populate the backplate to the motherboard and align the nuts with the studs on the backplate, as shown in Figure 6-5.

Figure 6-4. Reference Thermal Solution Assembly Process - Heatsink Sub-Assembly (Step 1)

Page 40: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Reference Thermal Solution

40 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

3. To assemble the heatsink with the backplate, screw in the nuts with 8 in-lb.

6.5 Reliability GuidelinesThe environmental reliability requirements for the reference thermal solution are shown in Table 6-2. These should be considered as general guidelines. Each motherboard, heatsink and attach combination may vary the mechanical loading of the component. Based on the end-user environment, the user should define the appropriate reliability test criteria and carefully evaluate the completed assembly prior to use in high volume.

The testing will be performed with the sample board mounted on a test fixture. The test profiles are unpacked board level.

Figure 6-5. Reference Thermal Solution Assembly Process - Heatsink Assembly (Step 2)

Page 41: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 41

Reference Thermal Solution

Notes:1. It is recommended that the above tests be performed on a sample size of at least twelve assemblies from

three lots of material. 2. Additional pass/fail criteria may be added at the discretion of the user.

§

Table 6-2. Reference Thermal Solution Environmental Reliability Guidelines

Test (1) Requirement Pass/Fail Criteria (2)

Mechanical Shock 3 drops for + and – directions in each of 3 perpendicular axesProfile: 50 G, Trapezoidal waveform, 4.3 m/s [170 in/s] minimum velocity change

Visual Check and Electrical Functional Test

Random Vibration Duration: 10 min/axis, 3 axesFrequency Range: 5 Hz to 500 HzPower Spectral Density (PSD) Profile: 3.13 g RMS

Visual Check and Electrical Functional Test

Temperature Life 85 °C, 2000 hours total, checkpoints at 168, 500, 1000, and 2000 hours

Visual Check

Thermal Cycling -40 °C to +70 °C, 50 cycles Visual Check

Page 42: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Reference Thermal Solution

42 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 43: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 43

Thermal Solution Component Suppliers

A Thermal Solution Component Suppliers

A.1 Heatsink Thermal Solution

§

Part Intel Part Number Quantity Contact Information

Heatsink Assembly D96730-001 Monika [email protected]

Heatsink D96729-001 1

Retainer D92698-001 1

Nuts-Inserts D92621-001 4

Bracket E11663-001 1

Stiffener-backplate D94244-001 1

Page 44: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Thermal Solution Component Suppliers

44 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Page 45: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 45

Mechanical Drawings

B Mechanical Drawings

The following table lists the mechanical drawings available in this document.

Drawing Name Page Number

Intel® 3210 and 3200 Chipset Package Drawing page 46

Intel® 3210 and 3200 Chipset Motherboard Component Top-Side Keep-Out Restrictions page 47

Intel® 3210 and 3200 Chipset Motherboard Component Back-Side Keep-Out Restrictions page 48

Intel® 3210 and 3200 Chipset Reference Thermal Solution Assembly page 49

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Heatsink Drawing page 50

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Spring Preload Clip page 51

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Fastener Nut page 52

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (1 of 2) page 53

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (2 of 2) page 54

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate Assembly page 55

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate page 56

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Insulator page 57

Intel® 3210 and 3200 Chipset Reference Thermal Solution - Flush Mount Stud page 58

Page 46: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

46 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-1. Intel® 3210 and 3200 Chipset Package Drawing

Page 47: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 47

Mechanical Drawings

Figure B-2. Intel® 3210 and 3200 Chipset Motherboard Component Top-Side Keep-Out Restrictions

13

45

67

8

BCD A

12

34

56

78

BCD A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L IN

FO

RM

AT

ION

. IT

IS

D

ISC

LO

SE

D IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

SM

AY

NO

T B

E D

ISC

LO

SE

D, R

EP

RO

DU

CE

D, D

IS

PLA

YE

D O

R M

OD

IFIE

D, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

SH

EE

T1

OF

2

DO

NO

T S

CA

LE

DR

AW

ING

SC

ALE

:N

ON

E

1D

94

91

0D

RE

VD

RA

WIN

G N

UM

BE

RC

AG

E C

OD

ES

IZE

AT

X B

EA

RL

AK

E M

CH

H

EA

T S

INK

KE

EP

OU

T

TIT

LE

2200 M

ISS

ION

CO

LLE

GE

BLV

D.

P.O

. B

OX

58119

SA

NT

A C

LA

RA

, C

A 9

5052-8

119

CO

RP

.

R

PS

T

DE

PA

RT

ME

NT

NA

FIN

ISH

:

NA

MA

TE

RIA

L:

DA

TE

AP

PR

OV

ED

BY

DA

TE

CH

EC

KE

D B

Y

DA

TE

CH

EC

KE

D B

Y

03

/15

/07

K.C

EU

RT

ER

DA

TE

DE

SIG

NE

D B

Y U

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

D IN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN

AC

CO

RD

AN

CE

WIT

H A

SM

E Y

14.5

M-1

994

D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

S T

OLE

RA

NC

ES

: LIN

EA

R 0

.1M

M

TH

IRD

AN

GLE

PR

OJE

CT

ION

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

***

1P

RE

LIM

INA

RY

RE

LE

AS

E03/1

5/0

7

D9

49

10

11

DW

G. N

OS

HT

.R

EV

PA

RT

S L

IST

DE

SC

RIP

TIO

NP

AR

T N

UM

BE

RIT

EM

NO

QT

Y P

ER

AS

SY

-001

-002

-003

DR

AW

ING

,KO

,MC

H,B

EA

RLA

KE

C,B

ON

E T

RA

ILD

94

91

0T

OP

4.1

57

5[

]

74 2

.91

34

[]

4X

10.5 .4134

[]

4X

TH

RO

UG

H H

OL

E4.0

4.1

59

1[

]

81 3

.18

9[

]

60

.6 2.3

86

[]

26

.79

1.0

55

[]

45

.79

1.8

03

[]

13

5

48 1

.89

0[

]

67 2

.63

8[

]

DE

TA

IL A

MA

X 1

.27

[.0

50

] C

OM

PO

NE

NT

HE

IGH

T

(NO

N-M

CH

CO

MP

ON

EN

TS

)

NO

TE

S:

1 H

OL

E P

LA

CE

ME

NT

FA

BR

ICA

TIO

N

T

OL

ER

AN

CE

PE

R I

NT

EL

45

49

79

, C

LA

SS

1,2

,32

. H

EA

TS

INK

CO

MP

ON

EN

T H

EIG

HT

NO

T T

O E

XC

EE

D

3

8.1

MM

AB

OV

E M

OT

HE

RB

OA

RD

SU

RF

AC

E.

CO

MP

ON

EN

T C

EN

TE

R

NO

RT

H

EA

ST

PR

IMA

RY

SID

E K

EE

PO

UT

S

MA

X 2

5 [

1.0

00

]C

OM

PO

NE

NT

HE

IGH

T

DE

TA

ILA

SC

ALE

8

NO

CO

MP

ON

EN

TS

TH

IS A

RE

A

4X

5.0

6 T

RA

CE

KE

EP

OU

T

AR

OU

ND

HO

LE

S

Page 48: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

48 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-3. Intel® 3210 and 3200 Chipset Motherboard Component Back-Side Keep-Out Restrictions

13

45

67

8

BCD A

12

34

56

78

BCD A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L I

NF

OR

MA

TIO

N.

IT I

S

DIS

CL

OS

ED

IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

SM

AY

NO

T B

E D

ISC

LO

SE

D,

RE

PR

OD

UC

ED

, D

IS

PL

AY

ED

OR

MO

DIF

IED

, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

SH

EE

T2

OF

2

DO

NO

T S

CA

LE

DR

AW

ING

SC

AL

E:

1

2200 M

ISS

ION

CO

LLE

GE

BLV

D.

P.O

. B

OX

58119

SA

NT

A C

LA

RA

, C

A 9

5052-8

119

CO

RP

.

R

TM

D1

D9

49

10

XD

RE

VD

RA

WIN

G N

UM

BE

RC

AG

E C

OD

ES

IZE

DE

PA

RT

ME

NT

D9

49

10

21

DW

G.

NO

SH

T.

RE

V

81 3

.18

90

[]

60

.6 2.3

85

8[

]

38

.05

1.4

98

0[

]

19

.05

.75

00

[]

SE

CO

ND

AR

Y S

IDE

KE

EP

OU

TS

NO

CO

MP

ON

EN

TS

TH

IS A

RE

A

CO

MP

ON

EN

T C

EN

TE

R

Page 49: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 49

Mechanical Drawings

Figure B-4. Intel® 3210 and 3200 Chipset Reference Thermal Solution Assembly

Page 50: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

50 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-5. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Heatsink Drawing

Page 51: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 51

Mechanical Drawings

Figure B-6. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Spring Preload Clip

8

7

6

5

4

3

2

H G F E D C B A

8

7

6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L I

NF

OR

MA

TIO

N.

IT I

S

DIS

CL

OS

ED

IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D,

RE

PR

OD

UC

ED

, D

IS

PL

AY

ED

OR

MO

DIF

IED

, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL

DV

RE

LE

AS

E0

3/0

9/0

7K

JC

1P

RO

DU

CT

ION

RE

LE

AS

E0

6/2

0/0

7K

JC

D9

26

98

11

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2

20

0 M

ISS

ION

CO

LL

EG

E B

LV

D.

P.O

. B

OX

58

11

9S

AN

TA

CL

AR

A,

CA

95

05

2-8

11

9P

ST

TIT

LE BO

NE

TR

AIL

,SP

RIN

G C

LIP

,PR

EL

OA

D

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D9

26

98

1S

CA

LE

:4

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03

/09

/07

P.B

OR

NE

MA

NN

DA

TE

AP

PR

OV

ED

BY

03

/09

/07

R.A

OK

I

03

/09

/07

A.V

AL

PIA

NI

DA

TE

CH

EC

KE

D B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DR

AW

N B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DE

SIG

NE

D B

YU

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

DIN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN A

CC

OR

DA

NC

E W

ITH

AS

ME

Y14.5

M-1

994

DIM

EN

SIO

NS

AR

E IN

MIL

LIM

ET

ER

SA

LL U

NT

OLE

RA

NC

ED

LIN

EA

RD

IME

NS

ION

S ±

0.3

AN

GLE

S ±

1

TH

IRD

AN

GLE

PR

OJE

CT

ION

5

Cp

k T

AR

GE

T =

1.0

A

CC

EP

TA

BL

E

0.4

51

0.1

5

9.6

51

8

53

.80

.1

4.2

0.2

5

51

.20

.05

1.9

B5

43

.70

.25

AA

C

NO

TE

S:

1.

DIM

EN

SIO

NS

AR

E I

N M

ILL

IME

TE

RS

2.

BR

EA

K A

LL

SH

AR

P E

DG

ES

AN

D C

OR

NE

RS

, G

RIN

D P

UN

CH

MA

RK

S F

LA

T,

NO

BU

RS

FR

OM

P

UN

CH

3.

MA

TE

RIA

L:

AIS

I T

YP

E 3

01

1/2

HA

RD

FO

R M

IN Y

IEL

D S

TR

EN

GT

H O

F 7

60

MP

a O

R I

NT

EL

A

PP

RO

VE

D E

QU

IVA

LE

NT

CR

ITIC

AL

MA

TE

RIA

L P

RO

PE

RT

IES

: M

IN Y

IEL

D S

TR

EN

GT

H =

76

0 M

Pa

4.

FIN

ISH

: Z

INC

OR

EL

EC

TR

OL

YT

IC N

ICK

EL

PL

AT

ING

PL

US

CL

EA

R C

HR

OM

AT

E C

OL

OR

LE

SS

P

ER

AS

TM

B 6

33

IF N

ON

ST

AIN

LE

SS

ST

EE

L A

LT

ER

NA

TE

CH

OS

EN

5.

CR

ITIC

AL

TO

FU

NC

TIO

N D

IME

NS

ION

/FE

AT

UR

E

Page 52: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

52 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-7. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Fastener Nut

8 7 6

5

4

3

2

H G F E D C B A

8 7 6

5

4

3

2

1

H G F E D C B A

AA

B

B

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L I

NF

OR

MA

TIO

N.

IT I

S

DIS

CL

OS

ED

IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D,

RE

PR

OD

UC

ED

, D

IS

PL

AY

ED

OR

MO

DIF

IED

, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL

DV

RE

LE

AS

E0

3/0

9/0

7K

JC

B3

BC

HA

NG

ED

CO

LLA

R H

T F

RO

M 2

TO

4

05/0

9/0

7K

JC

1P

RO

DU

CT

ION

RE

LE

AS

E06/2

0/0

7K

JC

D9

26

21

11

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2

20

0 M

ISS

ION

CO

LL

EG

E B

LV

D.

P.O

. B

OX

58

11

9S

AN

TA

CL

AR

A,

CA

95

05

2-8

11

9P

ST

TIT

LE

BO

NE

TR

AIL

, F

AS

TN

ER

, N

UT

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D92621

1S

CA

LE

:1

5D

O N

OT

SC

AL

E D

RA

WIN

GS

HE

ET

1 O

F 1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03

/09

/07

P.B

OR

NE

MA

NN

DA

TE

AP

PR

OV

ED

BY

03

/09

/07

R.A

OK

I

03

/09

/07

A.V

AL

PIA

NI

DA

TE

CH

EC

KE

D B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DR

AW

N B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DE

SIG

NE

D B

YU

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

DIN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN A

CC

OR

DA

NC

E W

ITH

AS

ME

Y14.5

M-1

994

DIM

EN

SIO

NS

AR

E IN

MIL

LIM

ET

ER

SA

LL U

NT

OLE

RA

NC

ED

LIN

EA

RD

IME

NS

ION

S ±

0.1

AN

GLE

S ±

0.5

TH

IRD

AN

GL

E P

RO

JE

CT

ION

40

.1

50

.1

0.1

3A

B

60

.25

0.1

3A

B

2.7

1

B5

70

.01

A

AA

()

62

NO

TE

S:

1. U

SE

PE

M P

AR

T N

UM

BE

R =

OR

IN

TE

L A

PP

RO

VE

D A

LT

ER

NA

TE

2. D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

S

3. M

AT

ER

IAL:

-

LO

W C

AR

BO

N S

TE

EL

4. F

INIS

H:

-

ZIN

C P

LU

S C

LE

AR

CH

RO

MA

TE

PE

R A

ST

M B

633 C

OLO

RLE

SS

5. C

RIT

ICA

L T

O F

UN

CT

ION

6. R

EF

ER

EN

CE

AN

D N

ON

-DIM

EN

SIO

NE

D F

EA

TU

RE

S M

AY

BE

MO

DIF

IED

PE

R IN

TE

L A

PP

RO

VA

L

RE

CE

SS

FO

R #

2 P

HIL

LIP

S D

RIV

ER

SE

CT

ION

A-A

6-3

2U

NC

- 2

BT

AP

5#

36

DR

ILL

(

2.7

1 )

T

HR

U -

( 1

) H

OL

E

SE

CT

ION

B-B

Page 53: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 53

Mechanical Drawings

Figure B-8. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (1 of 2)

8 7 6

5

4

3

2

H G F E D C B A

8 7 6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L IN

FO

RM

AT

ION

. IT

IS

D

ISC

LO

SE

D IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D, R

EP

RO

DU

CE

D, D

IS

PLA

YE

D O

R M

OD

IFIE

D, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL D

V R

ELE

AS

E03/0

9/0

7K

JC

S1-C

3S

2-B

7B

RE

MO

VE

D R

OU

ND

SC

HA

NG

ED

DR

AF

T A

NG

LE

FR

OM

0.5

TO

1 D

EG0

3/2

3/0

7K

JC

1P

AR

T N

UM

BE

R C

HA

NG

ED

FR

OM

D92625-0

01;

RE

MO

VE

D Z

-ST

OP

FR

OM

SE

C III

; IN

CR

EA

SE

D

NU

T L

AT

CH

SIZ

E IN

SE

C II

05/1

6/0

7K

JC

E11663

11

DW

G.

NO

SH

T.

RE

V

DE

PA

RT

ME

NT

R2200 M

ISS

ION

CO

LLE

GE

BLV

D.

P.O

. B

OX

58119

SA

NT

A C

LA

RA

, C

A 9

5052-8

119

PS

T

TIT

LE

BO

NE

TR

AIL

,FR

AM

E,T

OP

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

E11663

1S

CA

LE

:3

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

2

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03/1

2/0

7K

.KO

EP

SE

LL

DA

TE

AP

PR

OV

ED

BY

03/1

2/0

7R

.AO

KI

03/1

2/0

7A

.VA

LP

IAN

I

DA

TE

CH

EC

KE

D B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DR

AW

N B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DE

SIG

NE

D B

YU

NL

ES

S O

TH

ER

WIS

E S

PE

CIF

IED

INT

ER

PR

ET

DIM

EN

SIO

NS

AN

D T

OL

ER

AN

CE

SIN

AC

CO

RD

AN

CE

WIT

H A

SM

E Y

14

.5M

-19

94

DIM

EN

SIO

NS

AR

E I

N M

ILL

IME

TE

RS

AL

L U

NT

OL

ER

AN

CE

D L

INE

AR

DIM

EN

SIO

NS

±0

.1A

NG

LE

S ±

0.5

TH

IRD

AN

GLE

PR

OJE

CT

ION

II

II

II

III

III

IVIV

60

4X

7.4

38

0.1

2

47.6

0.1

23.5

33

2X

3

4X

10

44

1.5

TY

P2

4X

1.8

4

63

66.4

0.0

18

2X

4

22.2

0.1

5A

H

4X

610.2

0.1

2

0.1

5A

H

4X

63.7

0.1

66

47

0.1

AH

C

38

0.1

C

C

A

NO

TE

S:

1. T

HIS

DR

AW

ING

TO

BE

US

ED

IN

CO

NJU

NC

TIO

N W

ITH

SU

PP

LIE

D 3

D D

AT

AB

AS

E F

ILE

. A

LL

DIM

EN

SIO

NS

AN

D T

OLE

RA

NC

ES

ON

TH

IS D

RA

WIN

G T

AK

E

P

RE

CE

DE

NC

E O

VE

R S

UP

PLIE

D F

ILE

AN

D A

RE

AP

PLIC

AB

LE

AT

PA

RT

FR

EE

, U

NC

ON

ST

RA

INE

D

ST

AT

E U

NLE

SS

IN

DIC

AT

ED

OT

HE

RW

ISE

.2. T

OLE

RA

NC

ES

ON

DIM

EN

SIO

NE

D A

ND

UN

DIM

EN

SIO

NE

D F

EA

TU

RE

S U

NLE

SS

OT

HE

RW

ISE

S

PE

CIF

IED

: D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

S.

F

OR

FE

AT

UR

E S

IZE

S <

10M

M: LIN

EA

R

.07

F

OR

FE

AT

UR

E S

IZE

S B

ET

WE

EN

10 A

ND

25 M

M: LIN

EA

R

.08

F

OR

FE

AT

UR

E S

IZE

S B

ET

WE

EN

25 A

ND

50 M

M: LIN

EA

R

.10

F

OR

FE

AT

UR

E S

IZE

S >

50M

M: LIN

EA

R

.18

A

NG

LE

S:

0.5

3. M

AT

ER

IAL:

A

) T

YP

E: E

NV

IRO

NM

EN

TA

LLY

CO

MP

LIA

NT

TH

ER

MO

PLA

ST

IC O

R E

QU

IVA

LE

NT

UP

ON

IN

TE

L A

PP

RO

VA

L (

RE

F. G

E L

EX

AN

500E

CR

-739)

B

) C

RIT

ICA

L M

EC

HA

NIC

AL M

AT

ER

IAL P

RO

PE

RT

IES

F

OR

EQ

UIV

ALE

NT

MA

TE

RIA

L S

ELE

CT

ION

: T

EN

SIL

E Y

IELD

ST

RE

NG

TH

(A

ST

M D

638)

> 5

7 M

Pa

F

LE

XU

RA

L Y

IELD

ST

RE

GT

H (

AS

TM

D638)

> 9

9 M

Pa

T

EN

SIL

E E

LO

NG

AT

ION

AT

BR

EA

K (

AS

TM

D638)

>=

46%

F

LE

XU

RA

L M

OD

ULU

S (

AS

TM

D638)

3116 M

Pa

10%

S

OF

TE

NIN

G T

EM

P (

VIC

AT

, R

AT

E B

): 1

54

C C

) C

OLO

R: A

PP

RO

XIM

AT

ING

BLA

CK

, (R

EF

GE

739)

D

) R

EG

RIN

D: 25%

PE

RM

ISS

IBLE

.

5 M

AR

K P

AR

T W

ITH

IN

TE

L P

/N, R

EV

ISIO

N, C

AV

ITY

NU

MB

ER

AN

D D

AT

E C

OD

E A

PP

RO

X W

HE

RE

S

HO

WN

PE

R IN

TE

L M

AR

KIN

G S

TA

ND

AR

D 1

64997

6 C

RIT

ICA

L T

O F

UN

CT

ION

DIM

EN

SIO

N

7. A

LL D

IME

NS

ION

S S

HO

WN

SH

ALL B

E M

EA

SU

RE

D F

OR

FA

I8. D

EG

AT

E: F

LU

SH

TO

0.3

5 B

ELO

W S

TR

UC

TU

RA

L T

HIC

KN

ES

S (

GA

TE

WE

LL O

R G

AT

E R

EC

ES

S

AC

CE

PT

AB

LE

)9. F

LA

SH

: 0.1

5 M

AX

.10. S

INK

: 0.2

5 M

AX

.11. E

JE

CT

OR

MA

RK

S: F

LU

SH

TO

-0.2

512. P

AR

TIN

G L

INE

MIS

MA

TC

H N

OT

TO

EX

CE

ED

0.2

5.

13. E

JE

CT

ION

PIN

BO

SS

ES

, G

AT

ING

, A

ND

TO

OLIN

G IN

SE

RT

S R

EQ

UIR

E IN

TE

L'S

AP

PR

OV

AL

PR

IOR

TO

TO

OL C

ON

ST

RU

CT

ION

. A

LL E

JE

CT

ION

PIN

BO

SS

ES

AN

D G

AT

E F

EA

TU

RE

S S

HO

WN

AR

E F

OR

RE

FE

RE

NC

E O

NLY

.14. E

DG

ES

SH

OW

N A

S S

HA

RP

R 0

.1 M

AX

. 15. T

OO

LIN

G R

EQ

UIR

ED

TO

MA

KE

TH

IS P

AR

T S

HA

LL B

E T

HE

PR

OP

ER

TY

OF

IN

TE

L, A

ND

S

HA

LL B

E P

ER

MA

NE

NT

LY

MA

RK

ED

W

ITH

IN

TE

L'S

NA

ME

AN

D A

PP

RO

PR

IAT

E P

AR

T N

UM

BE

R.

16. A

LL S

EC

ON

DA

RY

UN

IT D

IME

NS

ION

S A

RE

FO

R R

EF

ER

EN

CE

ON

LY

.

5

RE

V B

RE

MO

VE

D R

OU

ND

S

RE

V B

4X

RE

M R

OU

ND

S

H

Page 54: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

54 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-9. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Bracket (2 of 2)

H G F E D C B A

H G F E D C B A

8 7 6

5

4

3

2

8 7 6

5

4

3

2

1

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L I

NF

OR

MA

TIO

N.

IT I

S

DIS

CL

OS

ED

IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D,

RE

PR

OD

UC

ED

, D

IS

PL

AY

ED

OR

MO

DIF

IED

, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

E1

16

63

21

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2

20

0 M

ISS

ION

CO

LL

EG

E B

LV

D.

P.O

. B

OX

58

11

9S

AN

TA

CL

AR

A,

CA

95

05

2-8

11

9P

ST

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

E11663

1S

CA

LE

:3

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T2

OF

2

2X

4.5

0.0

7

8

2

TY

P2

.8

RE

V B

TY

P (

)2

7.5

2.5

5 4

1.5

A

A

A

A

SE

CT

ION

I-I

SC

AL

E1

0

SE

CT

ION

II-I

IS

CA

LE

10

SE

CT

ION

III-

III

SC

AL

E1

0

SE

CT

ION

IV-I

VS

CA

LE

10

Page 55: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 55

Mechanical Drawings

Figure B-10. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate Assembly

8

7

6

5

4

3

2

H G F E D C B A

8

7

6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L IN

FO

RM

AT

ION

. IT

IS

D

ISC

LO

SE

D IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D, R

EP

RO

DU

CE

D, D

IS

PLA

YE

D O

R M

OD

IFIE

D, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL D

V R

ELE

AS

E03/0

9/0

7K

JC

1P

RO

DU

CT

ION

RE

LE

AS

E06/2

0/0

7K

JC

D94244

11

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2200 M

ISS

ION

CO

LLE

GE

BLV

D.

P.O

. B

OX

58119

SA

NT

A C

LA

RA

, C

A 9

5052-8

119

PS

T

TIT

LE BO

NE

TR

AIL

,MC

H,S

TIF

FE

NE

R,P

LA

TE

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D94244

1S

CA

LE

:2

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03/1

2/0

7K

.KO

EP

SE

LL

DA

TE

AP

PR

OV

ED

BY

03/1

2/0

7R

.AO

KI

03/1

2/0

7A

.VA

LP

IAN

I

DA

TE

CH

EC

KE

D B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DR

AW

N B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DE

SIG

NE

D B

YU

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

DIN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN A

CC

OR

DA

NC

E W

ITH

AS

ME

Y14.5

M-1

994

DIM

EN

SIO

NS

AR

E IN

MIL

LIM

ET

ER

SA

LL U

NT

OLE

RA

NC

ED

LIN

EA

RD

IME

NS

ION

S ±

0.1

AN

GLE

S ±

1

TH

IRD

AN

GLE

PR

OJE

CT

ION

PA

RT

S L

IST

DE

SC

RIP

TIO

NP

AR

T N

UM

BE

RIT

EM

NO

QT

Y

AS

SY

,ST

IFF

EN

ER

,BD

,BO

NE

TR

AIL

D94244-0

01

TO

P

BO

NE

TR

AIL

, M

CH

, S

TIF

FE

NE

R, P

LA

TE

D92620-0

01

11

BO

NE

TR

AIL

,ST

UD

,SE

LF

-CLIN

CH

ING

, D

OG

PO

INT

D92622-0

01

24

BO

NE

TR

AIL

,IN

SU

LA

TO

R,B

AC

K P

LA

TE

D92624-0

01

31

0.1

3

()

2.1

27

NO

TE

S:

1. D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

S2. R

EM

OV

E O

ILS

-GR

EA

SE

FR

OM

PLA

TE

PR

IOR

TO

IN

SU

LA

TO

R (

3)

INS

TA

LLA

TIO

N.

3 IN

ST

ALL S

TU

DS

FLU

SH

TO

TH

IS S

UR

FA

CE

+0.1

/ -

0.2

5 M

M

4 IN

SU

LA

TO

R W

ILL O

VE

RH

AN

G E

DG

E U

PO

N P

LA

CE

ME

NT

AN

D IS

AC

CE

PT

AB

LE

PLA

TE

PU

NC

H/B

UR

R D

IRE

CT

ION

3

4

1 1

2 4

3 1

Page 56: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

56 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

Figure B-11. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Backplate

8 7 6

5

4

3

2

H G F E D C B A

8 7 6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L I

NF

OR

MA

TIO

N.

IT I

S

DIS

CL

OS

ED

IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D,

RE

PR

OD

UC

ED

, D

IS

PL

AY

ED

OR

MO

DIF

IED

, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL

DV

RE

LE

AS

E0

3/0

9/0

7K

JC

D9

26

20

1A

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2

20

0 M

ISS

ION

CO

LL

EG

E B

LV

D.

P.O

. B

OX

58

11

9S

AN

TA

CL

AR

A,

CA

95

05

2-8

11

9P

ST

TIT

LE

BO

NE

TR

AIL

, M

CH

, S

TIF

FE

NE

R, P

LA

TE

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D92620

AS

CA

LE

:3

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03

/09

/07

P.B

OR

NE

MA

NN

DA

TE

AP

PR

OV

ED

BY

03

/09

/07

R.A

OK

I

03

/09

/07

A.V

AL

PIA

NI

DA

TE

CH

EC

KE

D B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DR

AW

N B

Y

03

/09

/07

K.C

EU

RT

ER

DA

TE

DE

SIG

NE

D B

YU

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

DIN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN A

CC

OR

DA

NC

E W

ITH

AS

ME

Y14.5

M-1

994

DIM

EN

SIO

NS

AR

E IN

MIL

LIM

ET

ER

SA

LL U

NT

OLE

RA

NC

ED

LIN

EA

RD

IME

NS

ION

S ±

0.3

AN

GLE

S ±

1

TH

IRD

AN

GLE

PR

OJE

CT

ION

52

0.0

5

47

66

39

.75

29

.5

59

0.2

5

79

.50

.25

TY

PR

1

40

21

0.2

5A

BC

0.1

25

AB

4X

53

.48

+0

.08

0

TY

PR

2

B

C

B

A

NO

TE

S:

1.

DIM

EN

SIO

NS

AR

E I

N M

ILL

IME

TE

RS

2.

BR

EA

K A

LL

SH

AR

P E

DG

ES

AN

D C

OR

NE

RS

, G

RIN

D P

UN

CH

MA

RK

S F

LA

T,

NO

BU

RR

S F

RO

M

PU

NC

H3

. M

AT

ER

IAL

: A

ISI

10

20

CO

LD

RO

LL

ED

ST

EE

L O

R I

NT

EL

AP

PR

OV

ED

EQ

UIV

AL

EN

T

C

RIT

ICA

L M

AT

ER

IAL

PR

OP

ER

TIE

S:

MIN

YE

ILD

ST

RE

NG

TH

= 2

50

MP

a4

. F

INIS

H:

ZIN

C O

R E

LE

CT

RO

LY

TIC

NIC

KE

L P

LA

TIN

G P

LU

S C

LE

AR

CH

RO

MA

TE

P

ER

AS

TM

B 6

33

CO

LO

RL

ES

S

5.

CR

ITIC

AL

TO

FU

NC

TIO

N D

IME

NS

ION

/FE

AT

UR

E

Page 57: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide 57

Mechanical Drawings

Figure B-12. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Insulator

8

7

6

5

4

3

2

H G F E D C B A

8

7

6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L IN

FO

RM

AT

ION

. IT

IS

D

ISC

LO

SE

D IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D, R

EP

RO

DU

CE

D, D

IS

PLA

YE

D O

R M

OD

IFIE

D, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL D

V R

ELE

AS

E03/0

9/0

7K

JC

1P

RO

DU

CT

ION

RE

LE

AS

E06/2

0/0

7K

JC

D92624

11

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2

20

0 M

ISS

ION

CO

LL

EG

E B

LV

D.

P.O

. B

OX

58

11

9S

AN

TA

CL

AR

A,

CA

95

05

2-8

11

9P

ST

TIT

LE

BO

NE

TR

AIL

,IN

SU

LA

TO

R,B

AC

K P

LA

TE

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D9

26

24

1S

CA

LE

:3

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03/0

9/0

7P

.BO

RN

EM

AN

N

DA

TE

AP

PR

OV

ED

BY

03/0

9/0

7R

.AO

KI

03/0

9/0

7A

.VA

LP

IAN

I

DA

TE

CH

EC

KE

D B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DR

AW

N B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DE

SIG

NE

D B

YU

NLE

SS

OT

HE

RW

ISE

SP

EC

IFIE

DIN

TE

RP

RE

T D

IME

NS

ION

S A

ND

TO

LE

RA

NC

ES

IN A

CC

OR

DA

NC

E W

ITH

AS

ME

Y14.5

M-1

994

DIM

EN

SIO

NS

AR

E IN

MIL

LIM

ET

ER

SA

LL U

NT

OLE

RA

NC

ED

LIN

EA

RD

IME

NS

ION

S ±

0.3

AN

GLE

S ±

1

TH

IRD

AN

GLE

PR

OJE

CT

ION

47

66

TH

ICK

0.1

27

C4

59.5

0.2

5B

480.5

0.2

5

TY

PR

1

40

21

0.2

AC

B

4X

44.2

0.2

TY

PR

2A

NO

TE

S:

1. D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

2. M

AT

ER

IAL: P

OLY

PR

OP

YLE

NE

SH

EE

T(

ITW

FO

RM

EX

GK

-5B

K)

.127M

M N

OM

INA

L T

HIC

KN

ES

S O

NE

SID

E P

RE

SS

UR

E S

EN

SIT

IVE

AD

HE

SIV

E A

PP

LIE

D; T

OT

AL T

HIC

KN

ES

S=

.178M

M.

3: F

LA

MM

AB

ILIT

Y: U

L 9

4-V

0 O

R V

TM

-0 R

AT

ING

4. C

RIT

ICA

L T

O F

UN

CT

ION

FE

AT

UR

E.

Page 58: Thermal/Mechanical Design Guide - Intel · PDF file · 2015-10-01A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip

Mechanical Drawings

58 Intel® 3210 and 3200 Chipset Thermal/Mechanical Design Guide

§

Figure B-13. Intel® 3210 and 3200 Chipset Reference Thermal Solution - Flush Mount Stud

8 7 6

5

4

3

2

H G F E D C B A

8 7 6

5

4

3

2

1

H G F E D C B A

TH

IS D

RA

WIN

G C

ON

TA

INS

IN

TE

L C

OR

PO

RA

TIO

N C

ON

FID

EN

TIA

L IN

FO

RM

AT

ION

. IT

IS

D

ISC

LO

SE

D IN

CO

NF

IDE

NC

E A

ND

IT

S C

ON

TE

NT

S M

AY

NO

T B

E D

ISC

LO

SE

D, R

EP

RO

DU

CE

D, D

IS

PLA

YE

D O

R M

OD

IFIE

D, W

ITH

OU

T T

HE

PR

IO

R W

RIT

TE

N C

ON

SE

NT

OF

IN

TE

L C

OR

PO

RA

TIO

N.

RE

VIS

ION

HIS

TO

RY

ZO

NE

RE

VD

ES

CR

IPT

ION

DA

TE

AP

PR

OV

ED

-A

INIT

IAL D

V R

ELE

AS

E03/0

9/0

7K

JC

1P

RO

DU

CT

ION

RE

LE

AS

E0

6/2

0/0

7K

JC

D92622

11

DW

G. N

OS

HT

.R

EV

DE

PA

RT

ME

NT

R2200 M

ISS

ION

CO

LLE

GE

BLV

D.

P.O

. B

OX

58119

SA

NT

A C

LA

RA

, C

A 9

5052-8

119

PS

T

TIT

LE

BO

NE

TR

AIL

,ST

UD

,SE

LF

-CL

INC

HIN

G,

DO

G P

OIN

T

SIZ

E D

RA

WIN

G N

UM

BE

RR

EV

A1

D92622

1S

CA

LE

:20

DO

NO

T S

CA

LE

DR

AW

ING

SH

EE

T1

OF

1

SE

E N

OT

ES

SE

E N

OT

ES

FIN

ISH

MA

TE

RIA

L

03/0

9/0

7P

.BO

RN

EM

AN

N

DA

TE

AP

PR

OV

ED

BY

03/0

9/0

7R

.AO

KI

03/0

9/0

7A

.VA

LP

IAN

I

DA

TE

CH

EC

KE

D B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DR

AW

N B

Y

03/0

9/0

7K

.CE

UR

TE

R

DA

TE

DE

SIG

NE

D B

YU

NL

ES

S O

TH

ER

WIS

E S

PE

CIF

IED

INT

ER

PR

ET

DIM

EN

SIO

NS

AN

D T

OL

ER

AN

CE

SIN

AC

CO

RD

AN

CE

WIT

H A

SM

E Y

14

.5M

-19

94

DIM

EN

SIO

NS

AR

E I

N M

ILL

IME

TE

RS

AL

L U

NT

OL

ER

AN

CE

D L

INE

AR

DIM

EN

SIO

NS

±0

.3A

NG

LE

S ±

1

TH

IRD

AN

GL

E P

RO

JE

CT

ION

0.0

5A

B

3.5

10.0

8

()

4

()

5.8

()

NO

MIN

AL B

AC

K P

LA

TE

+

IN

SU

LA

TO

R T

HIC

KN

ES

S

2.2

()

NO

MIN

AL D

T P

CB

TH

ICK

NE

SS

1.5

8

8.5

25

0.3

5

10.2

5

B2.2

A

()

RE

FE

RE

NC

E F

OR

LO

WE

ST

TH

RE

AD

ED

AR

EA

3.7

8

()

UN

C #

6-3

2

TH

RE

AD

ED

SE

CT

ION

S(T

HR

EA

DS

SH

OW

N F

OR

RE

FE

RE

NC

E O

NLY

)

4.7

45

NO

TE

S:

1. U

SE

PE

M P

AR

T N

UM

BE

R (

TB

D)

OR

IN

TE

L A

PP

RO

VE

D A

LT

ER

NA

TE

2. D

IME

NS

ION

S A

RE

IN

MIL

LIM

ET

ER

S

3. M

AT

ER

IAL:

-

LO

W C

AR

BO

N S

TE

EL

4. F

INIS

H:

-

ZIN

C P

LU

S C

LE

AR

CH

RO

MA

TE

PE

R A

ST

M B

633 C

OLO

RLE

SS

5. C

RIT

ICA

L T

O F

UN

CT

ION

6. F

EA

TU

RE

DE

TA

IL P

ER

VE

ND

OR

SP

EC

IFIC

AT

ION

-

FLU

SH

MO

UN

T H

EA

D

-

PU

SH

OU

T F

OR

CE

> 2

50LB

S

-

TO

RQ

UE

OU

T F

OR

CE

> 1

8 IN

-LB

S

-

SH

EE

T M

ET

AL H

OLE

SIZ

E =

4 +

0.0

8 -

0M

M

-

SH

EE

T M

ET

AL T

HIC

KN

ES

S =

2.2

0.0

5M

M

7. R

EF

ER

EN

CE

AN

D N

ON

-DIM

EN

SIO

NE

D F

EA

TU

RE

S M

AY

BE

MO

DIF

IED

P

ER

IN

TE

L A

PP

RO

VA

L

6

"DO

G P

OIN

T"

TO

A

SS

IST

BLIN

G A

SS

EM

BLY