63
Thermal transport in classical nonlinear lattices Stefano Lepri Istituto dei Sistemi Complessi ISC-CNR Firenze [email protected] Stefano Lepri (ISC-CNR) 1 / 48

Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Thermal transport in classical nonlinear lattices

Stefano Lepri

Istituto dei Sistemi Complessi ISC-CNR Firenze

[email protected]

Stefano Lepri (ISC-CNR) 1 / 48

Page 2: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 3: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 4: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 5: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 6: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 7: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitations

I Low-dimensional materials (nanotubes, polymers ...) modelingnanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 8: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Introduction

Nonequilibrium statistical mechanics of open, many-particles systems.

Steady states, derivation of phenomenological laws (Fick, Fourier)

Our favourite example: energy transport in low-dimensional lattices:

I Minimal, nonperturbative model for nonequilibrium states[Rieder, Lebowitz, Lieb, 1967; Casati, Ford, Vivaldi and Wisscher, 1984 ...]

I Spatial constraints can significantly alter transport properties:long–time tails and breakdown of hydrodynamics

I Beyond phonons: the role of nonlinear excitationsI Low-dimensional materials (nanotubes, polymers ...) modeling

nanoscale heat transfer

Stefano Lepri (ISC-CNR) 2 / 48

Page 9: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Bibliography

Stefano Lepri (ISC-CNR) 3 / 48

Page 10: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Experimental situations

Nanotube/Nanowire

heater

thermal contact

substrate

Cantilever

heater

molecular chains

Stefano Lepri (ISC-CNR) 4 / 48

Page 11: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Classical nonlinear oscillators on a lattice

Chain of N coupled oscillators with n.n. coupling: (pl = mlxl)

H =

N∑l=1

[p2l

2ml+ V (xl+1 − xl)

].

Equations of motion :

mnxn = −Fn + Fn−1 ; Fn = −V ′(xn+1 − xn) ,

Boundary conditions e.g. periodic xN+1 = x0 + L.

Displacement from eq. position xn = na+ un, L = Na chain length

Symmetry un → un + cst: momentum conservation,∑

l pl const.

”Acoustic dispersion” in the harmonic limit

Stefano Lepri (ISC-CNR) 5 / 48

Page 12: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Conservation laws

L =

N∑n=1

(xn+1 − xn) ≡N∑n=1

rn

P =∑N=1

mxn ≡N∑n=1

pn

E =

N∑n=1

[p2n

2mn+ V (rn)

]≡

N∑n=1

en

Microcanonical equilibrium: (L,P,E) (usually P = 0)

Local conservaton laws of densities (rn, pn, en)

Local currents

Stefano Lepri (ISC-CNR) 6 / 48

Page 13: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Example 1: the Fermi-Pasta-Ulam (FPU) model

V (z) =g2

2(z − a)2 +

g3

3(z − a)3 +

g4

4(z − a)4

Historical namesg3 = 0: ”FPU-β modelg3 6= 0: ”FPU-α+ β model

Stefano Lepri (ISC-CNR) 7 / 48

Page 14: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Example 2: The Toda chain

V (z) = exp(−z),

N integrals of motion, rl = xl+1 − xl

Q1 =

N∑l=1

pl

Q2 =

N∑l=1

p2l

2+ e−rl

Q3 =

N∑l=1

p3l

3+ (pl + pl+1)e−rl

Q4 =N∑l=1

p4l

4+ (p2

l + plpl+1 + p2l+1)e−rl +

1

2e−2rl + e−rle−rl+1

Stefano Lepri (ISC-CNR) 8 / 48

Page 15: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Example 3: The rotor model

Also Hamiltonian XY model:

θn = pn , pn = sin(θn+1 − θn)− sin(θn − θn−1) .

Important difference: θn are phases

Two conserved quantities: momentum and energy

Phase slips

Stefano Lepri (ISC-CNR) 9 / 48

Page 16: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Models with substrate (pinning) potential

H =

N∑l=1

[p2l

2ml+ U(xl) + V (xl+1 − xl)

]. (1)

The substrate potential U breaks the invariance xl → xl + const. thetotal momentum is no longer a constant of the motion. Accordingly,all branches of the dispersion relation have a gap at zerowavenumber. (optical dispersion).

Only one conserved quantity: energy

Stefano Lepri (ISC-CNR) 10 / 48

Page 17: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Example 1: discrete Klein-Gordon

H =

N∑l=1

[pl

2m

2+ U(ul) +

1

2C(ul+1 − ul)2

];

Frenkel-Kontorova potential

U(z) = −U0 cos

(2πz

a

).

Stefano Lepri (ISC-CNR) 11 / 48

Page 18: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Example 2: the Discrete Nonlinear Schrodinger equation

iψn = −ψn+1 − ψn−1 + ν|ψn|2ψn

”Generic model” in different fields: biomolecules, BEC, optics

Nonintegrable many-body problem

Nonlinear localized solution (discrete breathers)

Negative absolute temperatures

Finite-temperature coupled transport

[S. Iubini’s talk ....]

Stefano Lepri (ISC-CNR) 12 / 48

Page 19: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Simulating lattice heat transport

Equilibrium MD: correlation of the heat flux J

κGK =1

kBT 2dlimt→∞

∫ t

0dt lim

L→∞L−d〈J(t) · J(0)〉

Microscopic exp. for 1D lattice: J = a2

∑n(un+1 + un)V ′(un+1 − un)

Non-equilibrium MD: boundary thermostats

T+ T−

κ(L, T±) =J

(T+ − T−)/L

Deterministic (e.g Nose-Hoover) or stochastic (e.g Langevin) thermostats ...

Stefano Lepri (ISC-CNR) 13 / 48

Page 20: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Simulating lattice heat transport

Equilibrium MD: correlation of the heat flux J

κGK =1

kBT 2dlimt→∞

∫ t

0dt lim

L→∞L−d〈J(t) · J(0)〉

Microscopic exp. for 1D lattice: J = a2

∑n(un+1 + un)V ′(un+1 − un)

Non-equilibrium MD: boundary thermostats

T+ T−

κ(L, T±) =J

(T+ − T−)/L

Deterministic (e.g Nose-Hoover) or stochastic (e.g Langevin) thermostats ...

Stefano Lepri (ISC-CNR) 13 / 48

Page 21: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in one dimension

RLL 1967

... For a physical system (anharmonic coupling) we wouldexpect j to reach a limiting value proportional to ∇T .

... The thermal conductivity diverges ..... indicating thatchaotic behavior is not enough to ensure the Fourier law.

Stefano Lepri (ISC-CNR) 14 / 48

Page 22: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in one dimension

RLL 1967

... For a physical system (anharmonic coupling) we wouldexpect j to reach a limiting value proportional to ∇T .

... The thermal conductivity diverges ..... indicating thatchaotic behavior is not enough to ensure the Fourier law.

Stefano Lepri (ISC-CNR) 14 / 48

Page 23: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Evidences

In nonlinear, nonintegrable, momentum-conserving chains:

I Thermal conductivity diverges

II Current correlation have long-time tails

III Energy superdiffusion

IV Anomalous relaxation of fluctuations

V Temperature profiles are ”strange“

Stefano Lepri (ISC-CNR) 15 / 48

Page 24: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in 1D (I)

Breakdown of Fourier’s law: diverging finite-size conductivity

κ(L) ∝ Lα

FPU g3 = 1, NH thermostats T+ = 0.21, T− = 0.19, free boundaries

101

102

103

L

101

102

κ(L)

L0.35

Stefano Lepri (ISC-CNR) 16 / 48

Page 25: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in 1D (II)

Nonintegrable power-law decay at large t:

〈J(t)J(0)〉 ∝ t−(1+δ) (−1 < δ < 0)

Microcanonical FPU g3 = 1, N = 1024, periodic boundaries

10-4

10-2

100

ω10

-2

100

102

S(ω)

ω−0.33

Stefano Lepri (ISC-CNR) 17 / 48

Page 26: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in 1D (III)

Superdiffusion of energy perturbations δe(x, t):

σ2(t) ∝ tβ

Microcanonical, diatomic hard-points gas, t = 40, 80, 160, 320, 640, 1280, 2560, 3840 γ = 3/5

Levy walk model: δe(x, t) = t−γf(x/tγ), β = 3− 1/γ [Cipriani et al. 2005]

Stefano Lepri (ISC-CNR) 18 / 48

Page 27: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Detour: Brownian versus anomalous diffusion

Stefano Lepri (ISC-CNR) 19 / 48

Page 28: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Levy Walks

The simplest model of superdiffusion with finite speeds:

Ballistic motion with speed ±v in between “collisions”

Path length distribution

ψ(l) ∝ l−µ−1

Superdiffusion:〈x2〉 ∼ tγ

γ =

2 0 < µ ≤ 1

3− µ 1 < µ < 2

1 µ ≥ 2

Stefano Lepri (ISC-CNR) 20 / 48

Page 29: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Propagator

PDF to find in x at time t, a particle initially at x = 0

P (x, t) = PL(x, t) + t1−µ[δ(x− vt) + δ(x+ vt)]

PL(x, t) ∝

t−1/µ exp

[−(ηx/t1/µ)2

]|x| . t1/µ

t x−µ−1 t1/µ . |x| < vt

0 |x| > vt

Stefano Lepri (ISC-CNR) 21 / 48

Page 30: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Propagator

x/t1/µ

log

P(x

,t)

Stefano Lepri (ISC-CNR) 22 / 48

Page 31: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in 1D (IV)

“Fast” (i.e. superexponential) relaxation of spontaneous fluctuations

Microcanonical FPU model, dynamical structure factor S(q, ω)

-5 0 5

10-2

10-1

100

10-2

10-1

100

101

102

(ω − ωmax

)/γ(q)

10-6

10-5

10-4

10-3

10-2

10-1

100

S(q,ω

)q=0.049

x-7/3

Linewidths: γ(q) ∝ qz with z < 2 (e.g. FPU: z ≈ 1.5− 1.6).

Stefano Lepri (ISC-CNR) 23 / 48

Page 32: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Anomalous transport in 1D (V)

The temperature field is nonlinear also for small ∆T

0 0.2 0.4 0.6 0.8 1x

0

0.5

1T(x)

Fractional diffusion equation with sources:

DαxT = −σ(x)

σ ∝ x−32

Boundary conditions are very important!Stefano Lepri (ISC-CNR) 24 / 48

Page 33: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

“Hyperscaling” among exponents?

How to compare the two equilibrium with nonequilibrium methodsCut–off in the Green-Kubo formula:

κ(L) ∝∫ L/vs

0〈J(t)J(0)〉 dt ∝ L−δ

vs propagation velocity of excitations (sound waves).

Consistency with linear response implies α = −δ, from continuity eq.β = α+ 1 etc.

Stefano Lepri (ISC-CNR) 25 / 48

Page 34: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

How generic is the anomaly?

Observed for all momentum-conserving models (acoustic dispersion).Exception: the 1D XY potential V (x) = − cosx [Giardina et al., 2000]

0 500 1000

N

0

2

4

6

8

κ

0 2 4 61/T

100

101

102

103

104

105

κ , τ

Stefano Lepri (ISC-CNR) 26 / 48

Page 35: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

What if un → un + cst is broken?

Normal conduction: κ <∞, fast correlation decayExample: the discrete φ4−model

U(x) =a

2x2 +

b

4x4 .

0 100 200 300

N

0.0

0.1

0.2

κ

0 2000 4000

N

0

200

400

600

800

κa b

Stefano Lepri (ISC-CNR) 27 / 48

Page 36: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Is it model-dependent?

Model Reference α −δ

FPU-β Lepri et al (1998) 0.37 0.37FPU-α Lepri (2000) . 0.44 -Diatomic FPU r=2 Vassalli (1999) 0.43 compatibleDiatomic Toda r=2 Hatano (1999) 0.35-0.37 0.35

Vassalli (1999) 0.39 compatibleDiatomic Toda r=8 Vassalli (1999) 0.44 compatibleDiatomic hard points Hatano (1999) 0.35 -

Grassberger et al. (2002) 0.32 0.34Pencase Deutsch et al. (2003) 0.34 -Random collision Deutsch et al. (2003) 0.33(1) compatible

SWNT (Tersoff) Maruyama (2002) 0.32 -

Stefano Lepri (ISC-CNR) 28 / 48

Page 37: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Two-dimensional lattices

Less developed theory! one may expect

Long tail t−1 (with log corrections?)

κ ∼ logL

Stefano Lepri (ISC-CNR) 29 / 48

Page 38: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Two-dimensional lattices

0.0 0.2 0.4 0.6 0.8 1.00.5

1.0

1.5

purely quartic modelFPU model

FPU model

NY

(a)

1024 32 1024 64 2048 32 2048 64

T i

i/NX

(b)

XY

NX

[L. Wang, N.Li, P. Hanggi, 2016]Stefano Lepri (ISC-CNR) 30 / 48

Page 39: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Two-dimensional lattices

100 101 102 103 104

10-4

10-3

10-2

10-1

512 512 1024 512 512 1024 1024 1024 -1

cX()

FPU latttice

100 101 102 103 104

10-3

10-2

10-1

512 512 1024 512 512 1024 1024 1024 -1

FPU latttice

cX()

100 101 102 103 10410-4

10-3

10-2

10-1

512 512 1024 512 512 1024 1024 1024 -1

(c)

(b)

cX()

purely quartic latttice

(a)

101 102 103 1042

4

6

101 103

10

L0.25

GK

L

512 512 1024 512 512 1024 1024 1024

(f)

FPU- lattice

GK(L

)

L

101 102 103 1040

10

20

30

40

512 512 1024 512 512 1024 1024 1024

FPU- lattice

GK(L

)

L

101 102 103 104

2

4

6

8

512 512 1024 512 512 1024 1024 1024

(e)

purely quartic lattice

GK(L

)

L

(d)

[L. Wang, N.Li, P. Hanggi, 2016]

Stefano Lepri (ISC-CNR) 31 / 48

Page 40: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

The 2D hamiltonian XY model

H =∑r

p2r

2+∑〈r,r′〉

[1− cos(θr′ − θr)] ,

[Delfini et al., 2006]Stefano Lepri (ISC-CNR) 32 / 48

Page 41: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Universality and Theoretical approaches

1 Fluctuating hydrodynamics: random fields of deviations of theconserved quantities with respect to their stationary values. The roleof fluctuations is taken into account by renormalization group or somekind of self-consistent theory.

2 Mode-coupling theory: this is closely related to the above, as itamounts to solving (self-consistently) some approximate equations forthe correlation functions of the fluctuating random fields.

3 Kinetic theory : phonon transport by means of the Boltzmann(Peierls) equation.

4 Exact solution of specific models: the original microscopicHamiltonian dynamics is replaced by some suitable stochastic onewhich can be treated by probabilistic methods (e.g. Fokker-Planck).

Stefano Lepri (ISC-CNR) 33 / 48

Page 42: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Theoretical approaches

Dynamical RG [Narayan and Ramaswamy, 2002]

Fluctuating hydrodynamics of a 1D fluid α = 1/3

Mode–coupling equationsNonlinear coupling of sound modes

[Delfini et al. 2007, VanBeijeren 2012] α = 1/3

Fluctuating hydrodynamics [Spohn 2014]Connection with Kardar-Parisi-Zhang growth

α = 1/3

Universality of dynamical scaling!

Stefano Lepri (ISC-CNR) 34 / 48

Page 43: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Nonlinear fluctuating hydrodynamics

[Spohn,2014]

Effective dynamics of the 3 conserved quantities

rn = un+1 − un; un; en

Fluctuations around the equilibrium values

rn = `+ U1; un = U2; en = e+ U3

Write hydrodynamic equations up to second order forU = (U1, U2, U3)

U = −∂x [AU + UGU + ∂xCU +Bξ]

Coupled, noisy Burgers equation (or Kardar-Parisi-Zhang equations)

Stefano Lepri (ISC-CNR) 35 / 48

Page 44: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Nonlinear fluctuating hydrodynamics:predictions

Linear limit: two propagating sound modes and one diffusive heatmode

To leading order, the oppositely moving sound modes are decoupledfrom the heat mode and satisfy noisy Burgers equations. For the heatmode, the leading nonlinear correction is from the sound modes.

Universal dynamical exponents (again!)

Predictions for the scaling functions too e.g. compute the function hsuch that

S(q, ω) ∼ fKPZ((ω − ωmax)/q3/2)

Correlation of the heat mode is Levy-stable distribution function

Estimate of sub-leading terms

Confirmation of two universality classes

Stefano Lepri (ISC-CNR) 36 / 48

Page 45: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Modes

Hydrodynamic fluctuations of fields should be a combination of these.

Stefano Lepri (ISC-CNR) 37 / 48

Page 46: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Modes

sound modeheat mode

+ct-ct

~ t5/3

~ t2/3

Hydrodynamic parts of correlators should be a combination of these.

Stefano Lepri (ISC-CNR) 38 / 48

Page 47: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Numerical check: FPU displacement correlator

10-4

10-3

10-2

10-1

ω

10-4

10-2

100

102

104

106

108

S(k

,ω)

arb

. u

nit

s

-40 -20 0 20 40

(ω −ω max

) / λnum

k3/2

0

0.5

1

S(k

,ω)

/Sm

ax

k=0.0122k=0.0245k=0.0490KPZ

Stefano Lepri (ISC-CNR) 39 / 48

Page 48: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Numerical check: FPU energy correlator

0 10 20 30 40 50 60

ω/q5/3

0

0.2

0.4

0.6

0.8

1S

e(q,ω

) /S

e(q,0

)

e=0.1 α=0.1

Levy peak: Lorenzian with width q5/3

Stefano Lepri (ISC-CNR) 40 / 48

Page 49: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Numerical test: FPU αβ vs β

Effective exponent: δeff = d lnSd lnω

-12 -10 -8 -6

ln ν

-0.5

-0.4

-0.3

-0.2

0

δeff

g3=1

Stefano Lepri (ISC-CNR) 41 / 48

Page 50: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Numerical test: FPU αβ vs β

Effective exponent: δeff = d lnSd lnω

-12 -10 -8 -6

ln ν

-0.5

-0.4

-0.3

-0.2

0

δeff

g3=1

g3=0

Stefano Lepri (ISC-CNR) 41 / 48

Page 51: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Numerical check:energy flux correlator

δeff(ω) =d lnS

d lnω.

-5 -4 -3 -2 -1 0log

10ω

-2

-1.5

-1

-0.5

0

δeff

α=0.1

α=0.25

α=0.50

α=1.0

e=0.5

-5 -4 -3 -2 -1 0log

10ω

-2

-1.5

-1

-0.5

0

δeff

α=0.1

α=0.25

α=0.50

α=1.0

e=0.1

Why this difference despite the convincing KPZ scaling in the otherobservables? Yet an open issue ....

Stefano Lepri (ISC-CNR) 42 / 48

Page 52: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

A solvable stochastic model

Deterministic dynamics and interaction with the baths

qn = pn

pn = ω2(qn+1 − 2qn + qn−1) + δn,1(ξ+ − λq1) + δn,N (ξ− − λqN )

ξ± independent Wiener processes, 〈ξ±〉 = 0, 〈ξ2±〉 = 2λkBT±

Fixed boundary conditions: q0 = qN+1

Random collisions: exchange momenta (with rate γ)

pi ←→ pi+1

Stefano Lepri (ISC-CNR) 43 / 48

Page 53: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

A solvable stochastic model

Deterministic dynamics and interaction with the baths

qn = pn

pn = ω2(qn+1 − 2qn + qn−1) + δn,1(ξ+ − λq1) + δn,N (ξ− − λqN )

ξ± independent Wiener processes, 〈ξ±〉 = 0, 〈ξ2±〉 = 2λkBT±

Fixed boundary conditions: q0 = qN+1

Random collisions: exchange momenta (with rate γ)

pi ←→ pi+1

Stefano Lepri (ISC-CNR) 43 / 48

Page 54: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Master equation

Phase-space probability density P (x, t), xµ in (q1, . . . , qN , p1, . . . , pN )

∂P

∂t= (L + Lcol)P .

Stefano Lepri (ISC-CNR) 44 / 48

Page 55: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Master equation

Phase-space probability density P (x, t), xµ in (q1, . . . , qN , p1, . . . , pN )

∂P

∂t= (L + Lcol)P .

Deterministic forces and the coupling with the heat baths:

LP =∑µ,ν

[aµν

∂xµ(xνP ) +

dµν2

∂2P

∂xµ∂xν

]

a =

(0 −I

ω2g + kI λr

), d =

(0 00 2λkBT (r + ηs)

)

rij = δij(δi1 + δiN ), sij = δij(δi1 − δiN ), gij = 2δij − δi+1,j − δi,j+1

T = (T+ + T−)/2, η = (T+ − T−)/T

Stefano Lepri (ISC-CNR) 44 / 48

Page 56: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Master equation

Phase-space probability density P (x, t), xµ in (q1, . . . , qN , p1, . . . , pN )

∂P

∂t= (L + Lcol)P .

Collisional term

LcolP = γ∑i

[P (. . . pi+1, pi . . .)− P (. . . pi, pi+1 . . .)]

Stefano Lepri (ISC-CNR) 44 / 48

Page 57: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Covariance matrix

In terms of N×N blocks:

uij = 〈qiqj〉, vij = 〈pipj〉, zij = 〈qipj〉

c ≡(u zz† v

)Evolution equation:

c = d− ac− ca† − γ(

0 zggz† w

)

wij ≡

vi+1j + vi−1j + vij−1 + vij+1 − 4vij |i− j| > 1

vi±1j + vij∓1 − 2vij i− j = ±1

vi−1j−1 + vi+1j+1 − 2vij i = j

We can study the steady state and the relaxation to it!

Stefano Lepri (ISC-CNR) 45 / 48

Page 58: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Covariance matrix

In terms of N×N blocks:

uij = 〈qiqj〉, vij = 〈pipj〉, zij = 〈qipj〉

c ≡(u zz† v

)Evolution equation:

c = d− ac− ca† − γ(

0 zggz† w

)

wij ≡

vi+1j + vi−1j + vij−1 + vij+1 − 4vij |i− j| > 1

vi±1j + vij∓1 − 2vij i− j = ±1

vi−1j−1 + vi+1j+1 − 2vij i = j

We can study the steady state and the relaxation to it!

Stefano Lepri (ISC-CNR) 45 / 48

Page 59: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Steady state: main results

Temperature profile

For y ≡ 2i/N − 1

T (y) = T + ∆T

√2

(√

8− 1)ζ(3/2)

∑odd n

n−3/2 cos(nπ

2(y + 1)

),

Heat flux

J =j√N

=∆T

8(√

8− 1)ζ(3/2)

√π3ω3

γN

Thermal conductivity

κ ≡ J

∆T/N=

1

8(√

8− 1)ζ(3/2)

√π3ω3N

γ

Stefano Lepri (ISC-CNR) 46 / 48

Page 60: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Steady state: main results

Temperature profile

For y ≡ 2i/N − 1

T (y) = T + ∆T

√2

(√

8− 1)ζ(3/2)

∑odd n

n−3/2 cos(nπ

2(y + 1)

),

Heat flux

J =j√N

=∆T

8(√

8− 1)ζ(3/2)

√π3ω3

γN

Thermal conductivity

κ ≡ J

∆T/N=

1

8(√

8− 1)ζ(3/2)

√π3ω3N

γ

Stefano Lepri (ISC-CNR) 46 / 48

Page 61: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Steady state: main results

Temperature profile

For y ≡ 2i/N − 1

T (y) = T + ∆T

√2

(√

8− 1)ζ(3/2)

∑odd n

n−3/2 cos(nπ

2(y + 1)

),

Heat flux

J =j√N

=∆T

8(√

8− 1)ζ(3/2)

√π3ω3

γN

Thermal conductivity

κ ≡ J

∆T/N=

1

8(√

8− 1)ζ(3/2)

√π3ω3N

γ

Stefano Lepri (ISC-CNR) 46 / 48

Page 62: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Temperature profiles and comparison with nonlinear model

-1 -0.5 0 0.5 1y

0.9

0.95

1

1.05

1.1T

(y)

FPU Analytic

Stefano Lepri (ISC-CNR) 47 / 48

Page 63: Thermal transport in classical nonlinear lattices · 2018. 9. 17. · I Spatial constraints can signi cantly alter transport properties: long{time tails and breakdown of hydrodynamics

Conclusions

Correlations in d = 1, 2 leads to anomalous energy transport anddiffusion

Universality (toy vs. realistic models)

Interpretation as a Levy process

Fluctuating hydrodynamics: connection with Kardar-Parisi-Zhang

Solvable models

Open problem: the quasi-integrable limit

Stefano Lepri (ISC-CNR) 48 / 48