22
Thermal energy storage modelling – device scale prospective Dr Adriano Sciacovelli Birmingham Centre of Energy Storage University of Birmingham, United Kingdom [email protected]

Thermal energy storage modelling device scale prospective

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermal energy storage modelling device scale prospective

Thermal energy storage modelling –device scale prospective

Dr Adriano Sciacovelli

Birmingham Centre of Energy Storage University of Birmingham, United Kingdom

[email protected]

Page 2: Thermal energy storage modelling device scale prospective

Outline

Thermal energy storage technologies

Relevant scales in TES – focus on device

Modelling similarities and distinctive features of TES

technologies

– Sensible

– Latent

– Thermochemical

Couplings across scales

Conclusions

Page 3: Thermal energy storage modelling device scale prospective

TES modelling scales – focus at device scale

Informed by techno-

economic

Informed by

fundamental science

Page 4: Thermal energy storage modelling device scale prospective

TES technologies – Top down view

Energy conversion

Transport

Medium

Heat/cold storage process

Heat or

cold

Energy network

UsersEnergy

Ding, Y et al. UK TES (2015).

Page 5: Thermal energy storage modelling device scale prospective

TES technologies – Top down view

Transport

Medium

Heat / cold release process

Energy conversion

Heat or

cold

Energy network

UsersEnergy

Ding, Y et al. UK TES (2015).

Page 6: Thermal energy storage modelling device scale prospective

TES technologies – Classification

Energy conversion

Heat or

cold

Energy conversion

Heat or

cold

Transport

Medium

Transport

Medium

Sensible storage materials Phase change materials Thermochemical storage material

Energy and Buildings 2015;15:414-419

Thermochemical TRL 3-4Latent TRL 4-6Sensible – in use

Technological potential Modelling challenges

Page 7: Thermal energy storage modelling device scale prospective

TES technologies – Classification

Salt hydrates,

water-salt

solutions

Macro-

encapsulated

materials

Composites

Zeolites

Salt hydrates

Paraffin, sugar

alcohols

Metal

Oxides

Hydro-oxides

Cabeza, L.F. et al. Advances in Thermal storage (2015).

Page 8: Thermal energy storage modelling device scale prospective

TES - common features across technologies

Energy conversion

Heat or

cold

Energy conversion

Heat or

cold

Transport

Medium

Transport

Medium

Heat transfer fluid

(direct)Heat transfer fluid

(indirect)Integrate heat transfer &

storage fluid

Mehling, H. et al. Heat and cold storage with PCM An up to date introduction (2008)

Page 9: Thermal energy storage modelling device scale prospective

Physical modelling similarities/distinct features

Sensible Latent Thermochemical

Single phase flow

Conduction/convection

heat transfer

Phase change

Multi species

Multiphase flow ( )

reactions

Page 10: Thermal energy storage modelling device scale prospective

Physical modelling similarities/distinct features

Ph

ysic

al in

sig

ht a

nd

assu

mp

tion

s

Balance equations• Mass balance(s)

• Linear/angular momentum

• Energy balance(s)

• Entropy

Constitutive relations• Mass (Darcy, Forchheimer,..)

• Heat (Fourier, Newton,

Radiation

• Phase change (enthalpy, cp)

• Reaction kinetics (linear driving

force, …)

• Mixture rules (effective

properties, interactions…)

• Constraints

• …G

ove

rnin

g e

qu

atio

ns

Boundary and initial

conditions

Numerical methods• FEM

• FDM

• FVM

• …

Reference solution• Analytic solutions

• Test cases

• …

Model

Sim

ula

tion

res

ults

Performance

Predictions

Parametrization &

design

Control &

diagnostic

Inverse modelling

Forward modelling

Optimization

Material

dependentSystem

dependentValidation

Experiments

Page 11: Thermal energy storage modelling device scale prospective

Sensible thermal energy storage

Liquid air

storage

WO 2012/020233 A2

𝑇 → 𝑇𝑜𝑢𝑡𝑇𝑜𝑢𝑡 𝑇𝑖𝑛

𝑻 → 𝑻𝒐𝒖𝒕

Sciacovelli, A. et al. Appl. Energy 190, 84–98, 2017.

Sciacovelli, A. et al. J. Energy Resour. Technol. 140, 22001, 2017.

Page 12: Thermal energy storage modelling device scale prospective

Sensible thermal energy storage

Momentum:

Continuity:

Energy (fluid/solid):

0i

i

v

x

iji ij L

j j

v vv F

t x x

f ss s sj f s

j j j

T TT T Tv St Nu T T

t x x x

1s s

f s

j j

T TSt T T

t Pe x x

2

2

1p p

p

T TPe r

t r r r

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛

Sciacovelli, A. et al. Appl. Energy 190, 84–98, 2017.Esence, T. et al. Sol. Energy 153, 628–654, 2017

Page 13: Thermal energy storage modelling device scale prospective

Sensible thermal energy storage

LAES cycles

TES cycles

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛

𝑻 → 𝑻𝒐𝒖𝒕

𝑻 → 𝑻𝒐𝒖𝒕

Sciacovelli, A. et al. Appl. Energy 190, 84–98, 2017.

Page 14: Thermal energy storage modelling device scale prospective

Sensible thermal energy storage

Material-device coupling plays a role even for conventional

materials

Sciacovelli, A. et al. Appl. Energy 190, 84–98, 2017.

Quartzite rocks

Page 15: Thermal energy storage modelling device scale prospective

Latent heat thermal storage

Materials

Ta

rge

t a

pp

lic

ati

on

1

2

46

5

3

[1] Axial fins [2] Y fins [3] Radial fins

[4] Corrugated

fins[5] Pin fins [6] Triple tube

Page 16: Thermal energy storage modelling device scale prospective

Latent heat thermal storage

Heat transfer fluid

(indirect)

Solid PCM (on

the pipe)

Liquid PCM

Heat transfer fluid

𝑻 → 𝑻𝒐𝒖𝒕

𝑻𝒊𝒏

𝑻𝒐𝒖𝒕

Sciacovelli, A. et al. Int. J. energy Res. 73, 1610–1623, 2013.

Sciacovelli, A. et al. Int. J. Numer. Methods Heat Fluid Flow 26, 489–503, 2016

Page 17: Thermal energy storage modelling device scale prospective

Latent heat thermal storage

phase change (energy) enthalpy method

co-existence of solid/liquid (fluid flow) liquid fraction/darcy term

Natural convection Boussinesq approximation

Sciacovelli, A. et al. Int. J. Numer. Methods Heat Fluid Flow 26, 489–503, 2016

Page 18: Thermal energy storage modelling device scale prospective

Latent thermal energy storage

Momentum:

Continuity:

Energy (solid/liquid PCM):

0i

i

v

x

Prij gi i

j i i L

j j

v vv Ra e T s v F

t x x

1 1 s sj

j j j

T Tf T fL v L k f

T t T x x x

• Flow-energy coupling

• Intrinsically non linear

• Need to track melting front

• Strong property-process coupling

Sciacovelli, a et al. Appl. Energy 137, 707–715, 2015

Page 19: Thermal energy storage modelling device scale prospective

Latent thermal energy storage

Extracted energy 1000s 2000s

Initial configuration 46.3% 63.9%

Single bifurcation 52.2% 71.8%

Double bifurcation 58.5% 88.0%

-20

0

20

40

60

80

100

-200

-150

-100

-50

0

0 250 500 750 1000 1250 1500 1750 2000

Time

Rel

ativ

e d

iffe

ren

ce

Hea

t fl

ux

(W/c

m2

)

Sciacovelli, a et al. Appl. Energy 137, 707–715, 2015

T [K]

Page 20: Thermal energy storage modelling device scale prospective

Latent TES – optimization coupling

FE analysis

Sensitivityanalysis

Update with gradient based

optimizer

Convergence?

STOP

No

Yes

Regularization

START

- 71 %

Pizzolato, A. Sciacovelli A et al. Int. J. Heat Mass Transf. 113, 875–888, 2017

Page 21: Thermal energy storage modelling device scale prospective

Conclusions – couplings across the scales

Ph

ysic

al in

sig

ht a

nd

assu

mp

tion

s

Balance equations• Mass balance(s)

• Linear/angular momentum

• Energy balance(s)

• Entropy

Constitutive relations• Mass (Darcy, Forchheimer,..)

• Heat (Fourier, Newton,

Radiation

• Phase change (enthalpy, cp)

• Reaction kinetics (linear driving

force, …)

• Mixture rules (effective

properties, interactions…)

• Constraints

• …G

ove

rnin

g e

qu

atio

ns

Boundary and initial

conditions

Numerical methods• FEM

• FDM

• FVM

• …

Reference solution• Analytic solutions

• Test cases

• …

Model

Sim

ula

tion

res

ults

Performance

Predictions

Parametrization &

design

Control &

diagnostic

Inverse modelling

Forward modelling

Optimization

Material

coupling

(direct)

System

coupling

(direct) Validation

Experiments

material and

system couplings

(Indirect)

Page 22: Thermal energy storage modelling device scale prospective

Thank you!

Dr. Adriano Sciacovelli

[email protected]

@Sciacovelli_UoB