23
Rupal S. Amin Thermal Compensation in LIGO 1 LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Thermal Compensation in LIGO

  • Upload
    darice

  • View
    29

  • Download
    1

Embed Size (px)

DESCRIPTION

Thermal Compensation in LIGO. Rupal S. Amin. LIGO Layout Thermal Aberrations Thermal Issues Compensation Systems Model Closing Remarks. Outline. ETMy. P ower R ecycled M ichelson. Fabry-Perot Cavity. ITMy. Carrier Resonant Sideband pair Non-resonant sideband pair. RM. ITMx. - PowerPoint PPT Presentation

Citation preview

Page 1: Thermal Compensation in LIGO

1

Rupal S. Amin

Thermal Compensation in LIGO

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 2: Thermal Compensation in LIGO

2

Outline

LIGO LayoutThermal AberrationsThermal IssuesCompensation SystemsModelClosing Remarks

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 3: Thermal Compensation in LIGO

3

Optical Layout

CarrierResonant Sideband pairNon-resonant sideband pair

RM

ETMy

BS

ITMy

ITMx ETMx

Power Recycled Michelson

Fabry-Perot Cavity

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 4: Thermal Compensation in LIGO

4

Thermal Aberrations

Causes HEAT GRADIENT

◦Thermal Lensing◦Thermal Expansion◦Induced Birefringence◦…

Effects

◦Differential Expansion

MainLaser Beam

AberrationsCold Hot

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 5: Thermal Compensation in LIGO

5

Thermal Issues: eLIGO

PRM Stability Issues

Not stable for RSBCavity g-factor > 1No containment in

cold state

Contrast Defect

Imbalanced thermal lenses increases junk light output

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 6: Thermal Compensation in LIGO

6

Thermal Compensation System

TCS Laser Box

Pointing optics

Initial Test MassTowards 4 km arm

CO2 laser light

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 7: Thermal Compensation in LIGO

7

TCS HardwareLIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 8: Thermal Compensation in LIGO

8

Solution for eLIGO

(Dramatic music)

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 9: Thermal Compensation in LIGO

9

2) Matlab

0) Matlab1)Comsol

FEMof

ITMs

FINESSE

Interferograms,t(f) results,

Power build up,Beam

parameters

1

4

3

2

Model: Matlab+Comsol+FinesseLIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 10: Thermal Compensation in LIGO

10

Step 1: FEM of ITMs

Comsol Finite Element Analysis

Simulate mirror heating patterns with and without TCS

Inputs: Boundary ConditionsSubstrate Materials

Outputs: Deformed Surface Thermally Dependent n

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 11: Thermal Compensation in LIGO

11

Step 2: In-house sim. code

Config fileWith layout and simple instructions

Luxor GUI config builder

Finesse: http://www.rzg.mpg.de/~adf/Luxor: http://www.aei.mpg.de/~jah/luxor.html

Optical interaction only No mechanical interactions No radiation pressure

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 12: Thermal Compensation in LIGO

12

Step 3: FEM + Simulation

LHO AS patterns Mich only

Jan 15, 2009

K. Dooley ilog LHO

Simulated Interferogram

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 13: Thermal Compensation in LIGO

13

Closing

Interferometers require thermal compensation to maintain stability at high power

Thermal model construction in progress

Sensible control signals are needed

Cannot assume that new TCS behave exactly like old TCS

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 14: Thermal Compensation in LIGO

14

Thanks to…

Special Thanks toJ. Giaime LSU Associate Prof. of Physics

Phil Willems TCS Group Leader CIT

Aidan Brooks Cheryl Vorvick Carl Adams Viginio Sannibale Mohana Mageswaran

NSF grant number:◦NSF-PHY-0605496

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 15: Thermal Compensation in LIGO

15

Problems with cut and paste

Unexpected TCS induced ASC signals◦Due to surface expansion and mirror expansion

lzr

lzr

OSEMs

Magnets

Cold

Heated w/ TCS

Optical lever response

OSEM response

~10 mradHalf-story

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 16: Thermal Compensation in LIGO

16

Problems with cut and paste

Common Differential

iLIGO

eLIGO

Sideband power build-up

Working on it

AS_IIn-phase demodulation

Sideband power build-up?

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 17: Thermal Compensation in LIGO

17

8.9985 8.9986 8.9987 8.9988 8.9989 8.999 8.9991 8.9992 8.9993 8.9994 8.9995

x 108

0

0.5

1

1.5

2

2.5x 10

4

QP

Dx t

rans (

cts

)

GPS (x)

8.9986 8.9987 8.9988 8.9989 8.999 8.9991 8.9992 8.9993 8.9994

x 108

9325.31

9325.32

9325.33

9325.34

9325.35

9325.36

9325.37

9325.38

GPS time (s)

Fitt

ed F

requ

ency

(H

z)

ITMy frequency trends for July 12, 2008 with linear fits

Need to measure mirror absorption ratios

f (Hz)f0 fhot

Heat and cool interferometer mirrors

Results in frequency shifts

FEM of drumhead modefreq. evolution

Step 1: Model actual heatingLIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 18: Thermal Compensation in LIGO

18

Thermal issues: eLIGOLIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 19: Thermal Compensation in LIGO

19

Problems with cut and paste

Resonant Sideband Imbalance Still Here

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 20: Thermal Compensation in LIGO

20

Thermal Issues: iLIGO

-2003-2004 LHO ilog Indicate poor power build-

up PRIOR to mirror replacement

Due to excessive thermal lensing

Sideband overlap and imbalance NOT controlled

-LLO Phase Cam. (A. Gretarsson LLO ilog 2004)

Pwr in

Pwr PRM

S. Ballmer (MIT thesis, 2006)

Resonant Sideband Build-up

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 21: Thermal Compensation in LIGO

21

Thermal issues: iLIGO

Effects on Strain Sensitivity Decrease arm cavity gain Arm length sensing Decrease PRM carrier gain Shot noise Decrease PRM SB gain Locking and alignment

precision Increase total carrier contrast defect Shot noise

R. Lawrence (MIT Thesis, 2003)

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 22: Thermal Compensation in LIGO

22

Thermal Compensation System

Objective

Control thermal aberrations with auxiliary lasers

◦Reduce optical noise ◦Improve high frequency sensitivity◦Reduce down time with pre-heating

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009

Page 23: Thermal Compensation in LIGO

23

Step 1: Result

Result:Absorption ratio for ITMX = 3.5 ppm

ITMY = 5 ppm +/- 10%

LIGO-G0900358. Rupal S. Amin GCGW 17 April 2009