23
GAME THEORY By: Rishika and Nithya 12/04/13

GAMETHEORYbest.eng.buffalo.edu/Teaching/EE611/GAME THEORY.pdf · GameTheoryandInformaonSystems • The!internal!consistency!and!mathemacal!foundaons!of! game!theory!make!itaprime!tool!for!modeling!and!designing!

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • GAME  THEORY  

                                                                                                                                                                                                                                   

    By:  Rishika  and  Nithya  12/04/13  

  • Outline  

    •  What  is  game  theory?  •  History  of  game  theory  •  Basic  concepts  of  game  theory  •  Game  theory  and  Informa8on  Systems  •  Defini8on  of  Games  •  Nash  Equilibrium  •  Applica8on  of  game  theory  in  Power  pools  •  The  power  transac8ons  game  •  Costs  and  benefits  in  power  transac8on  •  Conclusion  •  References  

  • What  is  game  theory?  •   It  is  the  formal  study  of  decision-‐making  where  several  players  must  make  choices  that  poten8ally  affect  the  interests  of  the  other  players.  

  • History  of  Game  Theory  

    •  Earliest  example-‐study  of  duopoly  by  Antonie  Cournot  in  1838.  

    •  In  1950-‐1960’s  it  broadened  and  was  applied  to  problems  of  war  and  poli8cs.  It  has  found  applica8ons  in  sociology  and  psychology,  and  established  links  with  evolu8on  and  biology.  

    •  Received  special  aWen8on  in  1994  with  the  awarding  of  the  Nobel  prize  in  economics  to  Nash.  

     •  1990’s-‐applica8on  of  game  theory  has  been  the  design  of  auc8ons.  

  • Basic  Concepts  of  Game  Theory  

    Players   Nodes  

    Moves   Pay-‐offs  

    Game  

  • •  Players-‐Players  are  independent  decision-‐makers  who  influence  the  development  of  a  game  through  their  decisions.  

    •  Nodes-‐As  a  game  proceeds,  various  states  of  the  world  it  is  describing  can  be  achieved.  Such  states  are  also  called  nodes.    

     •  Move-‐A  move  allows  the  game  to  evolve  from  a  well-‐defined  state  to  another  and  therefore  may  indicate  sequen8ality  .  

    •  Pay-‐offs-‐A  payoff  is  a  development  of  the  game  that  the  players  value  for  itself  according  to  their  respec8ve  preferences.    

  • Game  Theory  and  InformaLon  Systems  •  The  internal  consistency  and  mathema8cal  founda8ons  of  game  theory  make  it  a  prime  tool  for  modeling  and  designing  automated  decision-‐making  processes  in  interac8ve  environments.  

     •  For  example,  one  might  like  to  have  efficient  bidding  rules  for  an  auc8on  website.  

    •  As  a  mathema8cal  tool  for  the  decision-‐maker  the  strength  of  game  theory  is  the  methodology  it  provides  for  structuring  and  analyzing  problems  of  strategic  choice.  

  • DefiniLons  of  Games  

    Coopera8ve   Non-‐coopera8ve  

  • CooperaLve  Game  •  In  game  theory,  a  cooperaLve  game  is  a  game  where  groups  of  players  ("coali8ons")  may  enforce  coopera8ve  behavior,  hence  the  game  is  a  compe88on  between  coali&ons  of  players,  rather  than  between  individual  players.  

    •  For  example,  Recrea8onal  games  are  rarely  coopera8ve.    

    Non-‐cooperaLve  Game    •  In  game  theory,  a  non-‐cooperaLve  game  is  one  in  which  players  make  decisions  independently.  

    •  Examples  include  Auc8on  theory,  Strategic  vo8ng.  

  • Extensive  form  game  •  The  extensive  form,  also  called  a  game  tree,  is  more  detailed  than  the  strategic  form  of  a  game.  

    •  It  is  a  complete  descrip8on  of  how  the  game  is  played  over8me  and  includes  the  order  in  which  players  take  ac8ons.  

    Example    

  • Strategic  form  game  •  The  strategic  form  game  is  usually  represented  by  a  matrix  which  shows  the  players,  strategies,  and  pay-‐offs.  

    •   More  generally  it  can  be  represented  by  any  func8on  that  associates  a  payoff  for  each  player  with  every  possible  combina8on  of  ac8ons  

    Example    

  • Nash  Equilibrium  •   A  set  of  strategies  is  a  Nash  equilibrium  if  no  player  can  do  beWer  by  unilaterally  changing  his  or  her  strategy.  

     •  Imagine  that  each  player  is  told  the  strategies  of  the  others  Suppose  then  that  each  player  asks  himself  or  herself:  "Knowing  the  strategies  of  the  other  players,  and  trea8ng  the  strategies  of  the  other  players  as  set  in  stone,  can  I  benefit  by  changing  my  strategy?“  

     •  If  any  player  would  answer  "Yes",  then  that  set  of  strategies  is  not  a  Nash  equilibrium.  

  • Structure  of  deregulated  system  

  • ApplicaLon  of  Game  Theory  for  pricing  Electricity  in  deregulated  power  pools  •  Independent  System  Operator  receives  bids  by  Pool  par8cipants  and  defines  transac8ons  among  par8cipants  by  looking  for  the  minimum  price  that  sa8sfies  the  demand  in  the  Pool.  

    •  As  deregula8on  evolves,  pricing  electricity  becomes  a  major  issue  in  the  electric  industry.  

     •  In  deregulated  power  systems,  emphasis  is  given  to  benefit  maximiza8on  from  the  perspec8ve  of  par8cipants  rather  than  maximiza8on  of  system-‐wide  benefits.  

       

  • The  Pool  Co  

  • •  Bids  by  generators  as  well  as  loads  create  a  spot  market  for  electricity.    

    •  The  spot  price  is  set  by  the  last  generator  dispatched  by  the  IS0  to  balance  Pool  Co.'s  genera8on  and  demand.  

    •  The  objec8ve  is  to  maximize  each  par8cipant’s  benefits  hence,  earnings  from  transac8ons  should  be  maximized.  

    •  A  seller  has  to  evaluate  the  possibility  of  either  selling  more  power  at  a  low  per  unit  price  or  selling  less  at  a  high  price  per  unit  of  power.  A  similar  analysis  can  be  made  for  a  buyer.  

    •  Each  par8cipant  defines  bids  based  on  incomplete  informa8on  on  other  par8cipant’s  bids.  

  • The  Power  TransacLons  Game  •  Game  theory  has  been  used  in  power  systems  to  understand  a  par8cipant's  behavior  in  deregulated  environments  and  to  allocate  costs  among  Pool  par8cipants.  

    •  The  game  is  assumed  non-‐coopera8ve  and  the  Nash  equilibrium  idea  for  non-‐coopera8ve  games  is  used.  

    •  In  power  transac8on  game,  par8cipants  compete  against  each  other  to  maximize  their  benefits.  

    •  Economic  benefits  from  transac8ons  are  the  payoff  of  the  game.  

    •  The  basic  probability  of  the  game  is  based  on  a  random  fuel  price.  

  • Costs  and  Benefits  in  Power  TransacLons  •  Each  par8cipant  k  has  several  generators  and  a  total  load  Lk;  in  this  case  ƩPi0=  Lk  corresponds  to  the  genera8on  level  before  transac8ons  are  defined.  

     •  The  increment  in  cost  incurred  to  change  the  genera8on  level  in        is  

     

    •  The  marginal  cost  is  given  by    

    •  The  incremental  cost  and  the  marginal  cost  of  generators  are  the  linear  func8ons  of  genera8on  levels.  

  • •  The  par8cipant’s  bids  are  also  linear  func8ons  of  genera8on  level.  

    •  The  IS0  receives  par8cipants'  bids  as  in  equa8on  and  matches  the  lowest  bid  with  the  Pool  Co.'s  load.  

    •  Power  transac8on  for  par8cipant  K  is  computed  as                      

    •  The  minimum  price  that  matches  genera8on  and  load  is  called  the  spot  price  of  electricity  ƿ.  

     •  For  a  given  spot  price,  the  par8cipant’s  benefit  is      

  • •  Condi8on  for  benefit  maximiza8on  is                                                            

    •                 •  The  par8cipant  adjusts  its  genera8on  so  as  in  the  absence  of  binding  constraints:  

    •  In  a  perfect  compe00on,  sellers  and  buyers  are  very  small  as  compared  with  the  market  size;  no  par8cipant  can  significantly  affect  the  exis8ng  spot  price.  

  • Conclusion  •  In  a  perfect  compe88on,  the  spot  price  in  the  Pool  Co  is  essen8ally  given  and  the  op8mal  price  decision  can  be  obtained  without  a  game-‐theore8cal  approach.  Condi8ons  of  perfect  compe88on  are  altered  by  several  factors  including  network  constraints.  

     •  Game  theory  approaches  have  been  used  to  study  imperfect  compe88on  in  electricity  markets.  

    •  Pricing  electricity  in  deregulated  pool  is  becoming  a  major  issue  in  the  electric  industry  and  addi8onal  mathema8cal  support  is  needed  to  define  pricing  strategies  in  this  environment.  

     •  If  we  analyze  the  problem  without  a  game-‐theore8cal  approach,  a  par8cipant  may  obtain  lower  benefits  than    those  obtained  from  the  applica8on  of  the  proposed  method.  

  • References  

    [1]  Fudenberg,  Drew  and  Tirole,  Jean  (1991),  Game  Theory.  MIT  Press,  Cambridge,  MA.  [2]  Gibbons,  Robert  (1992),  Game  Theory  for  Applied  Economists.  Princeton  University  Press,  Princeton,  NJ.  [3]  R.  W.  Ferrero,  J.  F.  Rivera,  and  S.  M.  Shahidehpour,  "Applica8on  of  games  with  incomplete  informa8on  for  pricing  electricity  in  deregulated  power  pools,"  Power  Systems,  IEEE  Transac&ons  on,  vol.  13,  pp.  184-‐189,  1998.  [4]  J.P.  Aubin,  “Mathema&cal  Methods  of  Game  and  Economic  Theory,”  Amsterdam:  North-‐Holland  Publishing  Company,  1982.  [5]  J  .  Harsanyi,  “Games  with  Incomplete  Informa8on,”  The  American  Economic  Review,  Vol.  85,  No.  3,  June  1995,  pp.  291-‐303.