4
The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy M. Bonora 1 , M. Corti 1 , F. Borsa 1 , S. Bortolussi 2 , D. Santoro 2 , M.A. Gadan 2 , S. Altieri 2 , C. Zonta 3 , A.M. Clerici 3 , L. Cansolino 3 , C. Ferrari 3 , A. Marchetti 4 , G. Zanoni 4 , G. Vidari 4 . Department “A. Volta”, University of Pavia, Via Bassi 6, 27100 Pavia, Italy. ical and Nuclear Physics Department, University of Pavia, INFN, Section of Pavia, Via Bassi 6, 27100 Pavia, Italy. tory of Experimental Surgery, University of Pavia, Piazza Botta 10, 27100 Pavia, Italy. Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy. Introducti on The expertise of four different groups of the University of Pavia, involving physics, chemistry, biology and medicine, is combined to the determination of a standard protocol for the BNCT therapy of widespread tumors that affect a whole vital organ and that are not surgically removable. Optimisation of BNCT requires that the concentration and the spatial distribution of the 10 B nuclide in tumoral and healthy tissues is precisely known. An spectroscopy method has been introduced to evaluate the boron concentration in tissue samples. On the other hand, one of the main goals is the synthesis of molecular nanomagnets , that is, molecules that would contain both the BNCT essential chemical moieities and an ion carrying a magnetic moment. Such magnetic moment act as a contrast agent in order to detect both concentration and distribution of boron in the tissue under exam via proton MRI, a well- established and non-invasive technique. The synthesis of molecular nanomagnets and the use of them in NMR/MRI are thus essential for the improvement of the BNCT therapy of inoperable tumors. E.Mail: [email protected]

The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy

  • Upload
    jered

  • View
    32

  • Download
    0

Embed Size (px)

DESCRIPTION

The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy. - PowerPoint PPT Presentation

Citation preview

Page 1: The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy

The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture

TherapyM. Bonora1, M. Corti1, F. Borsa1, S. Bortolussi2, D. Santoro2, M.A. Gadan2, S. Altieri2, C. Zonta3, A.M. Clerici3, L. Cansolino3, C. Ferrari3, A. Marchetti4, G. Zanoni4, G. Vidari4.

1)Physics Department “A. Volta”, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.2)Theoretical and Nuclear Physics Department, University of Pavia, INFN, Section of Pavia, Via Bassi 6, 27100 Pavia, Italy.3) Laboratory of Experimental Surgery, University of Pavia, Piazza Botta 10, 27100 Pavia, Italy.4)Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy.

IntroductionThe expertise of four different groups of the University of Pavia, involving physics, chemistry, biology and medicine, is combined to the

determination of a standard protocol for the BNCT therapy of widespread tumors that affect a whole vital organ and that are not surgically removable. Optimisation of BNCT requires that the concentration and the spatial distribution of the 10B nuclide in tumoral and healthy tissues is precisely known. An spectroscopy method has been introduced to evaluate the boron concentration in tissue samples. On the other hand, one of the main goals is the synthesis of molecular nanomagnets, that is, molecules that would contain both the BNCT essential chemical moieities and an ion carrying a magnetic moment. Such magnetic moment act as a contrast agent in order to detect both concentration and distribution of boron in the tissue under exam via proton MRI, a well-established and non-invasive technique. The synthesis of molecular nanomagnets and the use of them in NMR/MRI are thus essential for the improvement of the BNCT therapy of inoperable tumors.

E.Mail: [email protected]

Page 2: The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy

Boron Neutron Capture Therapy (BNCT)

10B Concentration and Distribution

Fig.1. BNCT: General scheme.

The concept of Boron Neutron capture Therapy has beenintroduced by G.L. Locher in 1936 [1]. The 10B nucleus(natural abundance 19.8%) has a very large nuclear crosssection of thermal neutrons capture. After the neutron absorption, a 7Li nucleus, an particle and (with a probability of 94%) a ray are produced. Hence, a large quantity of energy is released in a little spherical volume (typical diameter of 12 m).If the 10B nucleus is contained in a tumoral cell, the diseased cell is severely damaged and inactivated in the process.This means that a precise knowledge of the 10B distributionbetween the healthy and the tumoral tissues should be attained for a correct determination of the BNCT therapy plan (neutron irradiation time and total absorbed dose).

Sidetector

collimator

collimator

neutrons

absorbedabsorbed spectrumspectrum

Liver sample

Sidetector

Sidetector

collimator

collimator

collimator

collimator

neutrons

absorbedabsorbed spectrumspectrum absorbedabsorbed spectrumspectrum

Liver sampleLiver sample

neutron radiography imagehistological image

Normal hepatocytes

necrotic areas

tumor cells

neutron radiography imagehistological image

Normal hepatocytes

necrotic areas

tumor cells

Fig.2. The average concentration of 10B in a tissue is determined through observation of number and energy of particles. Fig.3. Comparison between histological and neutron

radiography exams[3]: 10B is much more concentratedin tumoral areas.

Thin slices of tissue are analysed by spectroscopy (fig.2) [2] and subjected to neutron radiography andhistological exams (fig.3) to determine the 10Bconcentration and its spatial distribution.10B is then shown to be preferentially absorbed in tumoraltissues and this makes BNCT feasible as a therapy.

NMR-MRI on 10B in Boron Compounds

Fig.4. Cartoon of the BPAmolecule. BPA is absorbed much more easily in tumoral cells than in healthy ones.

The molecule that has been used to carry the boron inside tumoral cells Is 10B-enriched [(L)]-4-dihydroxy-borylphenylalanine, also known as BPA [4].10B has nuclear spin 1 and can be studied by Nuclear Magnetic Resonance-Magnetic Resonance Imaging (NMR-MRI). NMR-MRI is a powerful, non-invasive technique [5] that can quickly establish 10B concentration, and, potentially, its spatial distribution in living tissue.

0 500 1000 15000,1

1

Data: Data7_CModel: ExpDec1 Chi^2 = 0.00228R^2 = 0.98119 y0 0 ±0A1 0.97632 ±0.03154t1 792.17942 ±58.91748

Inte

grat

ed F

ID S

igna

l(log

)

Time/s

T1 (10B) = 800 s

0 500 1000 15000,1

1

Data: Data7_CModel: ExpDec1 Chi^2 = 0.00228R^2 = 0.98119 y0 0 ±0A1 0.97632 ±0.03154t1 792.17942 ±58.91748

Inte

grat

ed F

ID S

igna

l(log

)

Time/s

T1 (10B) = 800 s

Fig.5. Determination of 10B Relaxation Time T1 in a tumoral rat liver with a 10B averageconcentration of 12 ppm. We can detect 10B NMR signal with a sensitivity down to 1 ppm.

Fig.6. 10B MRI of a rat section. Whiter zones of the image denote a higher uptake of boron [6].

General Outline: a Multidisciplinary Project

Synthesis of the material

Magnetic Characterization andRelaxometry of the synthesized material

MRI Monitoring of the Distribution of Nuclides

Thermal Neutron Irradiation

Post Treatment Tests and Assessment of Results

Preparation of Test Animalswith Tumors and InfusedSubstance

Measurements of BoronConcentration and Imaging by Thermal Neutrons

Page 3: The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy

Nanomagnets as Contrast Agents in 1H-MRI

Fig.7. Effect of the CA Gd3+ ion. Left: normal brain MRI.Right: Brain MRI in presence of Gd3+ as CA; resolution ishighly improved and the tumoral zone is much more evident.

The introduction of a so-called contrast agent (CA) altersthe 1H relaxation times and can greatly improve the resolution of the MRI image. A popular CA is the complexed Gd3+ ion, its effect in MRI can be seen in the figure 7 example. A molecule that can introduce in tissues both Gd3+ CA and10B- enriched BPA is the BPA-Conjugated Gd-DTPA shownin figure 8. A slightly modified version (fig. 9) of this molecular nanomagnet is currently synthesised by the Prof. Vidari group.

Fig.8. Cartoon of BPA-Conjugated Gd-DTPA asit was proposed in [7].The CA Gd3+ ion and the 10B-carrying BPA are linked together. BNCT-feasibility and high MRIresolution are thus provided in a single molecularunit.

NCS

N

COOHCOOH

N

NCOOH

HOOC

COOH

Gd(III)

NCS

B

HN

O

OMe

OH

OH

ONH

S

NH

B

NH2

O

HO

HO

OHB

NH2

O

MeO

HO

OHB

NH

O

MeO

HO

OH

O

NHBOC

BOC =O

O

B

NH

O

MeO

HO

OH

O

NH2

Syntetic Steps 5 !!!

NCS

N

COOHCOOH

N

NCOOH

HOOC

COOH

Gd(III)

NCS

B

HN

O

OMe

OH

OH

ONH

S

NH

B

NH2

O

HO

HO

OHB

NH2

O

MeO

HO

OHB

NH

O

MeO

HO

OH

O

NHBOC

BOC =O

O

B

NH

O

MeO

HO

OH

O

NH2

Syntetic Steps 5 !!!

Fig.9. A new synthetic path for the BPA-Gd ensemble.The production of this molecular nanomagnet has beenrecently optimized and it only requires five synthetic steps.

In Vivo Models

Livercoloncarcinoma

metastases

Lungcoloncarcinoma

metastases

DHDK12TRb ratcoloncarcinoma

cell line

I ntrasplenicI njection

in BDI X rats

I ntracavalI njectionin BDI X

rats

A. I n vitro

B. I n vivo

Livercoloncarcinoma

metastases

Lungcoloncarcinoma

metastases

DHDK12TRb ratcoloncarcinoma

cell line

I ntrasplenicI njection

in BDI X rats

I ntracavalI njectionin BDI X

rats

A. I n vitro

B. I n vivo

Fig.10. Cells are grown in vitro and are then injected in ratsto induce widespread metastases in the liver (left) and in thelung (right).

Page 4: The Use of Magnetic Nanoparticles to Tag Boron Compounds in Boron Neutron Capture Therapy

References [1] G.L. Locher, Biological Effects and Therapeutical Possibilities of Neutrons, Am. J.

Roentgenol. Radium Ther. 36, 1-13 (1936).

[2] A. Wittig, J. Michel, R.L. Moss, F. Stecher-Rasmussen, H.F.Arlinghaus, P. Bendel, P.L. Mauri, S. Altieri, R. Hilger, P.A. Salvadori, L. Menichetti, R. Zamenhof, W.A.G. Sauerwein, Boron Analysis and Boron Imaging in Biological Materials for Boron Neutron Capture Therapy (BNCT), Critical Reviews in Oncology/Hematology 68, 66-90 (2008).

[3] S. Altieri, S. Bortolussi, P. Bruschi, P. Chiari, F. Fossati, S. Stella, U. Prati, L. Roveda, A. Zonta, C. Zonta, C. Ferrari, A. Clerici, R. Nano, T. Pinelli, Neutron Autoradiography Imaging of Selective Boron Uptake in Human Metastatic Tumours, Appl. Rad. And Isotop. 66, 1850-1855 (2008).

[4] R.F. Barth, J.A. Coderre, M.G.H. Vicente, T.E. Blue, Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects, Clin. Cancer Res. 11(11), 3987-4002 (2005).

[5] A. Lascialfari, M. Corti, Basic Concepts of Magnetic Resonance Imaging in NMR-MRI, SR and Mössbauer Spectroscopies in Molecular Magnets, P. Carretta and A. Lascialfari Eds., Springer-Verlag (2007). [6] P. Bendel, Biomedical Applications of 10B and 11B NMR, NMR Biomed. 18, 74-82 (2005).

[7] K. Takahashi, H. Nakamura, S. Furumoto, K. Yamamoto, H. Fukuda, A. Matsumura, Y. Yamamoto, Synthesis and In Vivo Biodistribution of BPA-Gd-DTPA Complex as a Potential MRI Contrast Carrier for Neutron Capture Therapy, Bioorg. Med. Chem. 13, 735-743 (2005).

[8] L. Roveda, U. Prati, J. Bakeine, F. Trotta, P. Marotta, P. Valsecchi, A. Zonta, R. Nano, A. Facoetti, P. Chiari, S. Barni, T. Pinelli, S. Altieri, A. Braghieri, P. Bruschi, F. Fossati, P. Pedroni, How to Study Boron Biodistribution in Liver Metastases from Colorectal Cancer, Journal of Chemotherapy (Florence, Italy), 16 suppl. 5, 15-18 (2004).

Conclusions Cooperation between four different groups of the University of Pavia has been established to optimize the BNCT therapy of unoperable, disseminated tumors.

Preliminary spectroscopy and NMR experiments have been carried on in order to determine the BPA uptake in rat livers. 10B Relaxation times < 1 ms have been determined in the same rat liver samples through NMR.

Central to this project is the synthesis and the use of BPA-Conjugated Gd-DTPA, a molecular nanomagnet that contains both the 10B-carring BPA and a complexed Gd3+ ion. While the first is essential to introduce 10B in the cell and to undergo the BNCT reaction, the paramagnetic ion will act as a CA and it will greatly enhance the resolution in proton MRI experiments.

A new, more efficient and quick synthetic method for a molecular nanomagnet BPA-Gd3+ has been developed.

The 1H-MRI boosted by the presence of the BPA-Gd3+ nanomagnet will allow the accurate measure of the in vivo distribution and local concentration of 10B and will therefore be a decisive factor in planning an adequate neutron irradiation scheme in BNCT-based therapy of tumors.

BPA in Healthy and Tumoral Rat

Liver

Fig.11. Boron concentration in healthy (empty red squares) and tumoral (full red squares) rat liver [8] is reported in function of the lag time from BPA injection to tissue sampling (measured by spectroscopy [2]). The blue points indicate the ratio between the tumoral and the healthy BPA concentration at the studied times. The best ratio values are obtained after 2-4 hours from BPA injection.