15
Energy gained during melting . . . . . . . . . . . . . . . . 80 calories/gram Energy released during freezing . . . . . . . . . . . . 80 calories/gram Energy gained during vaporization . . . . . . . . 540 calories/gram Energy released during condensation . . . . . 540 calories/gram Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 gram/milliliter 16 17 18 19 20 21 22 23 24 25 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cm RADIOACTIVE ISOTOPE DISINTEGRATION HALF-LIFE (years) Carbon-14 Potassium-40 Uranium-238 Rubidium-87 C 14 K 40 U 238 Rb 87 N 14 Pb 206 Sr 87 5.7 × 10 3 1.3 × 10 9 4.5 × 10 9 4.9 × 10 10 Ar 40 Ca 40 MATERIAL SPECIFIC HEAT (calories/gram C°) Water Dry air Basalt Granite Iron Copper Lead solid liquid gas { 0.5 1.0 0.5 0.24 0.20 0.19 0.11 0.09 0.03 2001 EDITION This edition of the Earth Science Reference Tables should be used in the classroom beginning in the 2000–2001 school year. The first examination for which these tables will be used is the January 2001 Regents Examination in Earth Science. Specific Heats of Common Materials Radioactive Decay Data Percent deviation from accepted value Eccentricity of an ellipse Gradient Density of a substance deviation (%) = × 100 eccentricity = distance between foci length of major axis difference from accepted value accepted value gradient = change in field value distance density = mass volume Rate of change rate of change = change in field value time EQUATIONS PHYSICAL CONSTANTS The University of the State of New York • THE STATE EDUCATION DEPARTMENT • Albany, New York 12234 • www.nysed.gov Earth Science Reference Tables EURYPTERUS Properties of Water New York State Fossil (Revised November 2006)

The University of the State of New York • THE STATE ... Translated/assets/esrt 2001.pdf · DISINTEGRATION HALF-LIFE (years) Carbon-14 Potassium-40 Uranium-238 Rubidium-87 C14 K40

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Energy gained during melting . . . . . . . . . . . . . . . . 80 calories/gram

Energy released during freezing . . . . . . . . . . . . 80 calories/gram

Energy gained during vaporization . . . . . . . . 540 calories/gram

Energy released during condensation . . . . . 540 calories/gram

Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 gram/milliliter

1617

1819

2021

2223

2425

151

23

45

67

89

1011

1213

14cm

RADIOACTIVEISOTOPE DISINTEGRATION HALF-LIFE

(years)

Carbon-14

Potassium-40

Uranium-238

Rubidium-87

C14

K40

U238

Rb87

N14

Pb206

Sr87

5.7 ! 103

1.3 ! 109

4.5 ! 109

4.9 ! 1010

Ar40

Ca40

MATERIAL SPECIFIC HEAT(calories/gram • C°)

Water

Dry airBasaltGraniteIronCopperLead

solidliquidgas{ 0.5

1.00.50.240.200.190.110.090.03

2001 EDITIONThis edition of the Earth Science Reference Tables should be used in theclassroom beginning in the 2000–2001 school year. The first examinationfor which these tables will be used is the January 2001 RegentsExamination in Earth Science.

Specific Heats of Common MaterialsRadioactive Decay Data

Percent deviationfrom accepted value

Eccentricity of an ellipse

Gradient

Density of a substance

deviation (%) = ! 100

eccentricity = distance between focilength of major axis

difference from accepted valueaccepted value

gradient =change in field value

distance

density = massvolume

Rate of change rate of change = change in field valuetime

EQUATIONS

PHYSICAL CONSTANTS

The University of the State of New York • THE STATE EDUCATION DEPARTMENT • Albany, New York 12234 • www.nysed.gov

Earth Science Reference Tables

EURYPTERUS

Properties of Water

New York State Fossil

(Revised November 2006)

2 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

TUG

HIL

LP

LATE

AU

THE

CAT

SK

ILLS

ALL

EG

HE

NY

PLA

TEAU

LAK

EE

RIE

LAK

E O

NTA

RIO

AD

IRO

ND

AC

K

MO

UN

TAIN

S

ST.L

AWRE

NCE

LOW

LAND

S

ER

IE–O

NTA

RIO

LO

WLA

ND

S(P

LAIN

S)

GR

EN

VIL

LE P

RO

VIN

CE

(HIG

HLA

ND

S)

NEWENGLAND P

ROVINCE

(HIG

HLANDS)

INTE

RIO

R L

OW

LAN

DS

TACONIC MOUNTAINS

NEWARK

LOWLANDS

HU

DS

ON

HIG

HLA

ND

S

MA

NH

ATTA

N P

RO

NG

CHAMPLAINLOWLANDS

Gen

eral

ized

Lan

dsca

pe R

egio

ns o

f N

ew Y

ork

Stat

e

APPALACHIAN

PLATE

AU(U

PLAN

DS)

ATLA

NTIC

CO

AS

TAL

PLA

IN

HUDSON–MOHAWKLOWLANDS

KEY

Maj

or G

eogr

aphi

c P

rovi

nce

Bou

ndar

y

Land

scap

e R

egio

n B

ound

ary

Sta

te B

ound

ary

Inte

rnat

iona

l Bou

ndar

y

N

N

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 3

Gen

eral

ized

Bed

rock

Geo

logy

of

New

Yor

k St

ate

mod

ified

from

GEO

LOG

ICA

LSU

RVEY

NEW

YO

RK

STA

TEM

USE

UM

1989

NiagaraRiver

GE

OLO

GIC

AL

PE

RIO

DS

AN

D E

RA

S IN

NE

WYO

RK

CRET

ACEO

US, T

ERTI

ARY,

PLE

ISTO

CENE

(Epo

ch) w

eakly

con

solid

ated

to u

ncon

solid

ated

gra

vels,

san

ds, a

nd c

lays

LATE

TRI

ASSI

Can

dEA

RLY

JURA

SSIC

con

glom

erat

es, r

ed s

ands

tone

s, re

d sh

ales

, and

dia

base

(in

Palis

ades

Sill)

PENN

SYLV

ANIA

Nan

d M

ISSI

SSIP

PIAN

con

glom

erat

es, s

ands

tone

s, a

nd s

hale

sDE

VONI

ANlim

esto

nes,

sha

les,

san

dsto

nes,

and

con

glom

erat

esSI

LURI

ANSi

luria

n al

so c

onta

ins

salt,

gyp

sum

, and

hem

atite

.

ORD

OVIC

IAN

limes

tone

s, s

hale

s, s

ands

tone

s, a

nd d

olos

tone

sCA

MBR

IAN

CAM

BRIA

N an

d EA

RLY

ORD

OVIC

IAN

sand

ston

es a

nd d

olos

tone

s M

oder

atel

y to

inte

nsel

y m

etam

orph

osed

eas

t of t

he H

udso

n Ri

ver.

CAM

BRIA

N an

dO

RDOV

ICIA

N (u

ndiff

eren

tiate

d) q

uartz

ites,

dol

osto

nes,

mar

bles

, and

sch

ists

Inte

nsel

y m

etam

orph

osed

;inc

lude

s po

rtion

s of

the

Taco

nic

Sequ

ence

and

Cor

tland

t Com

plex

.TA

CONI

CSE

QUE

NCE

sand

ston

es, s

hale

s, a

nd s

late

sSl

ight

ly to

inte

nsel

y m

etam

orph

osed

rock

s of

CAM

BRIA

N th

roug

hM

IDDL

EO

RDOV

ICIA

N ag

es.

MID

DLE

PROT

ERO

ZOIC

gne

isses

, qua

rtzite

s, a

nd m

arbl

esLi

nes

are

gene

raliz

ed s

truct

ure

trend

s.In

tens

ely

Met

amor

phos

ed R

ocks

MID

DLE

PROT

ERO

ZOIC

ano

rthos

itic ro

cks

(regi

onal

met

amor

phism

abo

ut 1

,000

m.y.

a.)

} }

}

} }Dom

inan

tlySe

dim

enta

ryO

rigin

Dom

inan

tlyM

etam

orph

osed

Rock

s

LONG

ISLA

ND

SO

UN

D

4 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

Surf

ace

Oce

an C

urre

nts

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 5

Tect

onic

Pla

tes

Phil

ippi

nePl

ate

Fiji

Plat

e

Mid-Atlantic Ridge

Sand

wic

hPl

ate

KE

Y:

Div

erge

nt P

late

Bou

ndar

y (u

sual

ly b

roke

n by

tran

sfor

mfa

ults

alo

ng m

id-o

cean

rid

ges)

Con

verg

ent P

late

Bou

ndar

y(S

ubdu

ctio

n Zo

ne)

Tran

sfor

m P

late

Bou

ndar

y(T

rans

form

Fau

lt)C

ompl

ex o

r U

ncer

tain

P

late

Bou

ndar

yR

elat

ive

Mot

ion

at P

late

Bou

ndar

y

NO

TE:N

ot a

ll pl

ates

and

bou

ndar

ies

are

show

n.

Man

tleH

ot S

pot

Mid

-Oce

an R

idge

over

ridin

gpl

ate

subd

uctin

gpl

ate

6 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

Cementation

BurialDeposition

Compaction

Wea

ther

ing

&E

rosi

on

Metam

orphism

SEDIMENTARYROCK

Weathering & Erosion

Weathering & Erosion

Melting

METAMORPHICROCK

IGNEOUSROCK

Melting

(Upl

ift)

Solidific

ation

Heat and/or Pressure

(Uplift)

Melting

(Uplift)

Heatand/or P

ressure

Metamorphism

Erosion

MAGMA

SEDIMENTS

0 100 200 300 400 500 600 700 800

100.0

10.0

1.0

0.1

0.01

0.001

0.0001

0.00001

STREAM VELOCITY (cm/sec)

PAR

TIC

LE D

IAM

ET

ER

(cm

)

*This generalized graph shows the water velocity needed tomaintain, but not start, movement. Variations occur due todifferences in particle density and shape.

BOULDERSCOBBLES

PEBBLES

SAND

SILT

CLAY

25.6 cm6.4 cm

0.2 cm

0.006 cm

0.0004 cm

Rock Cycle in Earth’s Crust

Scheme for Igneous Rock Identification

Relationship of TransportedParticle Size to Water Velocity

Pyroxene(green)

Amphibole(black)

Biotite(black)

Potassiumfeldspar

(pink to white)

(Rel

ativ

e by

Vol

ume)

MIN

ER

AL

CO

MP

OS

ITIO

N

Quartz(clear towhite)

CH

AR

AC

TE

RIS

TIC

S

MAFIC (Fe, Mg)

HIGH

DARK

FELSIC (Al)

LOW

LIGHT

GRAINSIZE

TEXTURE

Pumice

INT

RU

SIV

E(P

luto

nic)

EX

TR

US

IVE

(Vol

cani

c)

EN

VIR

ON

ME

NT

OF

FO

RM

ATIO

N

Plagioclase feldspar(white to gray)

Olivine(green)

COMPOSITION

DENSITY

COLOR

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

IGN

EO

US

RO

CK

S

Non

-cr

ysta

lline

GlassyBasaltic GlassObsidian

(usually appears black)

less

than

1 m

m FineBasaltAndesiteRhyolite

1 m

mto

10

mm

CoarsePeri-dotiteGabbroDioriteGranite

Pegmatite

10 m

mor

larg

er VeryCoarse

Scoria

Vesicular(gas

pockets)D

unite

Non-vesicular

Non-vesicular

Vesicular Basaltic GlassVesicular BasaltVesicular Rhyolite Vesicular

Andesite

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 7

INORGANIC LAND-DERIVED SEDIMENTARY ROCKSCOMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Rounded fragments

Angular fragmentsMostlyquartz,feldspar, andclay minerals;may containfragments ofother rocksand minerals

Pebbles, cobbles,and/or bouldersembedded in sand,silt, and/or clay

Clastic(fragmental)

Very fine grain

Compact; may spliteasily

Conglomerate

Breccia

CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS

Crystalline

Halite

Gypsum

Dolomite

Calcite

Carbon

Crystals fromchemicalprecipitatesand evaporites

Rock Salt

Rock Gypsum

Dolostone

Limestone

Coal

. . . . .. . . .

Sand(0.2 to 0.006 cm)

Silt(0.006 to 0.0004 cm)

Clay(less than 0.0004 cm)

Sandstone

Siltstone

Shale

Fine to coarse

COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Varied

Varied

Varied

Microscopic to coarse

Varied

Cemented shellfragments or precipitates

of biologic origin

From plant remains

. . . . .. . . .

Bioclastic

FO

LIAT

ED

NO

NF

OLI

ATE

D

Fine

Fineto

medium

Mediumto

coarse

Regional Low-grademetamorphism of shale

Platy mica crystals visible frommetamorphism of clay orfeldspars

High-grade metamorphism;some mica changed to feldspar;segregated by mineral typeinto bands

Slate

Schist

Gneiss

Metamorphism of quartzsandstone

Metamorphism oflimestone or dolostone

Pebbles may be distortedor stretched

MIC

AQ

UA

RTZ

FELD

SPA

RA

MP

HIB

OLE

GA

RN

ET

PY

RO

XE

NE

COMPOSITIONTEXTUREGRAINSIZE COMMENTS ROCK NAME

TYPE OFMETAMORPHISM

Metaconglomerate

Quartzite

Marble

Coarse

Fineto

coarse

Quartz

Calcite and/ordolomite

Various mineralsin particlesand matrix

(Heat andpressureincreasewith depth)M

INE

RA

L A

LIG

NM

EN

TB

AN

D-

ING

Contact(Heat)

Various rocks changed byheat from nearbymagma/lava

HornfelsVariableFine

Regional

or

Contact

MAP SYMBOL

Foliation surfaces shiny frommicroscopic mica crystals Phyllite

Scheme for Metamorphic Rock Identification

Scheme for Sedimentary Rock Identification

GEOLOGIC HISTORY OF NEW YORK STATE

Advance and retreat of last continental iceUplift of Adirondack region

Sands and shales underlying Long Island and StatenIsland deposited on margin of Atlantic Ocean

Development of passive continental margin

Initial opening of Atlantic OceanNorth America and Africa separate

Intrusion of Palisades sillPangea begins to break up

Extensive erosion

Appalachian (Alleghanian) Orogenycaused by collision of North Americaand Africa along transform margin,forming Pangea

Catskill Delta formsErosion of Acadian Mountains

Acadian Orogeny caused by collision ofNorth America and Avalon and closingof remaining part of Iapetus Ocean

Salt and gypsum deposited in evaporite basins

Erosion of Taconic Mountains; Queenston Delta forms

Taconian Orogeny caused by closing ofwestern part of Iapetus Ocean and collision between North America andvolcanic island arc

Iapetus passive margin forms

Rifting and initial opening of Iapetus OceanErosion of Grenville Mountains

Grenville Orogeny: Ancestral AdirondackMtns. and Hudson Highlands formed

EraEon

PH

AN

ER

O-

ZOIC

PR

EC

AM

BR

IA

NA

RC

HE

AN

PR

OT

ER

OZ

OI

C

LATE

LATE

MIDDLE

MIDDLE

EARLY

EARLY

0

500

1000

2000

3000

4000

4600

Millions of years ago

CENOZOIC

MESOZOIC

PALEOZOIC

Oldest multi-cellularlife

QUATERNARY

NEOGENE

PALEOGENET

ER

TIA

RY

CRETACEOUS

JURASSIC

TRIASSIC

PERMIAN

CA

RB

ON

IF-

ER

OU

S

DEVONIAN

Period Epoch Life on Earth

SILURIAN

ORDOVICIAN

CAMBRIAN

PLEISTOCENEPLIOCENEMIOCENE

OLIGOCENEEOCENE

PALEOCENE

LATE

EARLY

LATE

MIDDLE

EARLY

LATEMIDDLEEARLY

LATE

EARLY

LATE

MIDDLE

EARLY

LATE

EARLY

LATE

MIDDLE

EARLY

LATE

MIDDLE

EARLY

24

33.754.8

544

580

490

443

418

362

323

290

206

142

1300

Millions of years ago

RockRecord

inNYS

Time Distribution of Fossils(Including Important Fossils of New York)

TectonicEvents

AffectingNortheast

NorthAmerica

Rif

ting

Rif

ting

Pass

ive

Mar

gin Su

bduc

tion

Con

tine

ntal

Col

lisio

n

Tra

nsfo

rm C

ollis

ion

Pass

ive

Mar

gin

Important GeologicEvents in New York

Inferred Position ofEarth’s Landmasses

TERTIARY 59 millionyears

ago

CRETACEOUS 119 millionyears

ago

TRIASSIC 232 millionyears

ago

ORDOVICIAN 458 millionyears

ago

96-001TN (rev) 11/2006

PENNSYLVANIAN

MISSISSIPPIAN

First appearanceof sexually

8 Earth Science Reference Tables— 2001 Edition (Revised November 2006) Earth Science Reference Tables— 2001 Edition (Revised November 2006) 9

LATE

EARLY

LATE

EARLY

BR

AC

HIO

PO

DS

GA

STR

OP

OD

S

CO

RA

LS

CR

INO

IDS

Earth’s first forest

AM

MO

NO

IDS

VA

SCU

LA

RP

LA

NT

S

EU

RY

PT

ER

IDS

GR

AP

TO

LIT

ES

TR

ILO

BIT

ES

PL

AC

OD

ER

MF

ISH

BIR

DS

MA

MM

AL

S

DIN

OSA

UR

S

NA

UT

ILO

IDS

A

I

H

B

C F G

L

A B C D E F G

O S

E

D

J

K

N

P

T

U

VX Z

W

Y

Q R

M

Elliptocephala

(Fossils not drawn to scale)

CryptolithusPhacops

ValcourocerasHexameroceras Manticoceras

Centroceras

H I J

EucalyptocrinusCtenocrinus

Tetragraptus

K

Dicellograptus EurypterusStylonurus

Mastodont

O

BelugaWhale

P

Cooksonia

R

Bothriolepis

S

Maclurites EospiriferMucrospiriferPlatyceras

Q

Aneurophyton

T

CondorNaples Tree

Cystiphyllum

U

Lichenaria

V W Y ZX

Pleurodictyum

L

Coelophysis

NM

HOLOCENE

65

251

1.6

5.3

0.010

Earth’s firstcoral reef

Lettered circles indicate the approximate time of existence of a specificindex fossil (e.g. Fossil lived at the end of the Early Cambrian).

DEVONIAN/MISSISSIPPIAN 362 millionyears

ago

A

Oldest known rocks

Geochemical evidencefor oldest biologicalfixing of carbon

Oldest microfossils

Transition toatmospherecontainingoxygen

reproducingorganisms

Estimated time of originof Earth and solar system

Humans, mastodonts, mammothsLarge carnivoresAbundant grazing mammalsEarliest grassesLarge running mammalsMany modern groups of mammals

Extinction of dinosaurs and ammonoidsEarliest placental mammals

Climax of dinosaurs and ammonoids

Earliest flowering plantsDecline of brachiopodsDiverse bony fishes

Earliest birds Abundant dinosaurs and ammonoids

Modern coral groups appearEarliest dinosaurs and mammals with

abundant cycads and conifersExtinction of many kinds of marine

animals, including trilobitesFirst mammal-like reptiles

Earliest reptilesExtensive coal-forming forests

Abundant sharks and amphibiansLarge and numerous scale trees

and seed ferns

Earliest amphibians, ammonoids, sharksExtinction of armored fish, other

fish abundant

Earliest insectsEarliest land plants and animalsPeak development of eurypterids

Invertebrates dominant– mollusks become abundant

Diverse coral and echinoderms

Graptolites abundantEarliest fishAlgal reefsBurgess shale fauna

Earliest chordates, diverse trilobitesEarliest trilobitesEarliest marine animals with shells

Ediacaran fauna

Soft-bodied organisms

Stromatolites

10 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

4

3

2

1

0

PR

ES

SU

RE

(mill

ions

of a

tmos

pher

es)

MID-ATLANTIC

RIDGE

LITHOSPHERE

CR

UST

RIGID

MAN

TLE

C A S C A D E S

T R E N C H

12.7–13.0

9.9–12.1

3.3–5.5

3.0 oceanic crust2.7 continental crust

DENSITY (g/cm3)

0 2000 4000 6000

5000

4000

3000

2000

1000

0

DEPTH (km)

TE

MP

ER

ATU

RE

(°C

)

1000 3000 5000

6000MANTLE

ATLANTIC OCEAN

NO

RTH

AMER

ICA

MOHO

INN

ER

CORE

IRO

N&

NICKELO

UTE

RCORE

(IRON?)

AST

HEN

OSP

HERE(P

LASTICMANTLE)

EARTH’S CENTER

STI

FFER

MANTLE

MELTIN

G POIN

T

??

?

?????

?

PARTIAL MELTING OFULTRAMAFIC MANTLE

ME

LTIN

G P

OIN

T

ACTUAL TEMPERATURE

OC

EA

NPA

CIF

IC

Inferred Properties of Earth’s Interior

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8EPICENTER DISTANCE (!103 km)

TR

AVE

L T

IME

(m

inut

es)

P

9 10

S

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 11

Average Chemical Compositionof Earth’s Crust, Hydrosphere, and Troposphere

ELEMENT(symbol)

CRUST HYDROSPHERE TROPOSPHERE

Oxygen (O)Silicon (Si)Aluminum (Al)Iron (Fe)Calcium (Ca)Sodium (Na)Magnesium (Mg)Potassium (K)Nitrogen (N)Hydrogen (H)Other

46.4028.15

8.235.634.152.362.332.09

0.66

Percent byMass

Percent byVolume

Percent byVolume

Percent byVolume

94.040.880.480.491.181.110.331.42

0.07

33.0

66.01.0

21.0

78.0

1.0

Earthquake P-wave and S-wave Travel Time

1– 33– 28– 24– 21–18–14–12–10– 7– 5– 3–11468

10121416192123252729

2

– 36– 28– 22–18–14–12– 8– 6– 3–11368

111315171921232527

0– 20–18–16–14–12–10– 8– 6– 4– 2

02468

1012141618202224262830

– 20–18–16–14–12–10– 8– 6– 4– 202468

1012141618202224262830

3

– 29– 22–17–13– 9– 6– 4–11469

1113151720222426

4

– 29– 20–15–11– 7– 4– 2

1469

11141618202224

5

– 24–17–11– 7– 5– 2

1479

121416182123

6

–19–13– 9– 5– 2

147

101214171921

7

– 21–14– 9– 5– 2

147

1012151719

8

–14– 9– 5–1248

10131618

9

– 28–16–10– 6– 2

258

111416

10

–17–10– 5–2369

1114

11

–17–10– 5–1269

12

12

–19–10– 5–137

10

13

–19–10– 5

048

14

–19–10– 4

15

15

–18– 9– 3

1

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)Dry-BulbTempera-ture (°C)

12840485561667173777981838586878888899091919292929393

2

1123334148545863677072747678798081828384858686

0100100100100100100100100100100100100100100100100100100100100100100100100100100

– 20–18–16–14–12–10– 8– 6– 4– 2024681012141618202224262830

3

1320323745515659626567697172747576777879

4

112028364246515457606264666869707172

5

111202735394348505456586062646566

6

61422283338414548515355575961

7

10172428333740444649515355

8

61319252933364042454749

9

410162126303336394244

10

28

1419232730343639

11

17

12172125283134

12

16

111520232629

13

51014182125

14

49

131720

15

49

1216

Dry-BulbTempera-ture (°C)

12 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

Dewpoint Temperatures (°C)

Relative Humidity (%)

Weather Map Symbols

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 13

110

100

90

80

70

60

50

40

30

20

10

0

–10

–20

–30

–40

–50

220

200

180

160

140

120

100

80

60

40

20

0

–20

–40

–60

380

370

360

350

340

330

320

310

300

290

280

270

260

250

240

230

220

Fahrenheit Celsius Kelvin

Water boils

Human bodytemperature

Roomtemperature

Ice melts

Temperature

196+19/

.25

28

27

!

Amount of cloud cover(approximately 75% covered)

Barometric pressure(1019.6 mb)

Barometric trend(a steady 1.9-mb rise the past 3 hours)

Precipitation(inches past 6 hours)

Wind direction(from the southwest)

Temperature (°F)

Present weather

Visibility (mi)

Dewpoint (°F)

Wind speed

(1 knot = 1.15 mi/hr)

12

whole feather = 10 knotshalf feather = 5 knots

total = 15 knots

Station Model

FreezingRain

Haze

Rain

FogSnow!

Hail RainShowers

Thunder-storms

Drizzle

Sleet!

Smog

SnowShowers

!

Air Masses

cA

cP

cT

mT

mP

continental arctic

continental polar

continental tropical

maritime tropical

maritime polar

Cold

Warm

Stationary

Occluded

Present Weather Front Symbols Hurricane

30.70

30.60

30.50

30.40

30.30

30.20

30.10

30.00

29.90

29.80

29.70

29.60

29.50

29.40

29.30

29.20

29.10

29.00

28.90

28.80

28.70

28.60

28.50

1040.0

1036.0

1032.0

1028.0

1024.0

1020.0

1016.0

1012.0

1008.0

1004.0

1000.0

996.0

992.0

988.0

984.0

980.0

976.0

972.0

968.0

oneatmosphere1013.2 mb

Pressure

millibars inches

14 Earth Science Reference Tables — 2001 Edition (Revised November 2006)

30° N

60° N

60° S

30° S

S.W.WINDS

DRY

DRY

WETN.E.

N.E. WINDS

S.E.WINDS

WET

DRY

WET

DRYS.E.

N.W.WINDS

Polar Front

SubtropicalJet Streams

Tropopause

Polar Front Jet Stream

Polar Front Jet Stream

Planetary Wind and Moisture Belts in the Troposphere

km 150

100

50

0

75

50

25

0

mi

Sea Level

Altitude

Temperature Zones

Thermosphere

Mesopause

Mesosphere

Stratopause

Stratosphere

TropopauseTroposphere

Temperature (°C)

–100° 0° 100°–90° –55° 15° 10

–4

10–3

10–2

10–1

10 0

Pressure (atm)

Atmospheric Pressure

0 20 40

Concentration(g/m3)

WaterVapor

Decreasing Wavelength

10010–10

4.0

! 10

–5

10–9 10–8 10–7 10–6 10–5 10–4 10–3 10–2 10–1 101 102 103

0.00

0,00

0,00

0,1

0.00

0,00

0,00

1

0.00

0,00

0,01

0.00

0,00

0,1

0.00

0,00

1

0.00

0,01

0.00

0,1

0.00

1

0.01

0.1

1.0

10 100

1,00

0

cm

cm

Increasing Wavelength

Gamma rays x rays

Ultraviolet Infrared

Vis

ible

Radio waves

Microwaves

Violet Blue Green Yellow Orange Red

Visible Light

4.3

! 10

–5

4.9

! 10

–5

5.3

! 10

–5

5.8

! 10

–5

6.3

! 10

–5

7.0

! 10

–5

Electromagnetic Spectrum

The drawing to the left showsthe locations of the belts nearthe time of an equinox. Thelocations shift somewhat withthe changing latitude of theSun’s vertical ray. In theNorthern Hemisphere, the beltsshift northward in summer andsouthward in winter.

Selected Properties of Earth’s Atmosphere

SUN — — 27 days — 1,392,000 333,000.00 1.4 –

MERCURY 57.9 88 days 59 days 0.206 4,880 0.553 5.4 0

VENUS 108.2 224.7 days 243 days 0.007 12,104 0.815 5.2 0

EARTH 149.6 365.26 days 23 hr 0.017 12,756 1.00 5.5 156 min4 sec

MARS 227.9 687 days 24 hr 0.093 6,787 0.1074 3.9 237 min23 sec

JUPITER 778.3 11.86 years 9 hr 0.048 142,800 317.896 1.3 1650 min30 sec

SATURN 1,427 29.46 years 10 hr 0.056 120,000 95.185 0.7 1814 min

URANUS 2,869 84.0 years 17 hr 0.047 51,800 14.537 1.2 2114 min

NEPTUNE 4,496 164.8 years 16 hr 0.009 49,500 17.151 1.7 8

EARTH’S 149.6 27.3 days 27 days 0.055 3,476 0.0123 3.3 —MOON (0.386 from Earth) 8 hr

Earth Science Reference Tables — 2001 Edition (Revised November 2006) 15

Object Mean Distance from Sun

(millions of km)

Periodof

Revolution

EquatorialDiameter

(km)

Mass(Earth = 1)

Eccentricityof

Orbit

Periodof

Rotation

Density

(g/cm3)

Numberof

Moons

Solar System Data

RedDwarfs

1,000,000

10,000

100

1

0.01

0.000120,000 10,000 5,000 2,500

Red StarsYellow StarsWhite StarsBlue Stars

Temperature (°C)

Lum

inos

ity (R

elat

ive

to th

e S

un)

SmallStars

MassiveStars

BlueSupergiants

Rigel

Supergiants

Betelgeuse

Aldebaran

Red GiantsMain Sequence

Alpha CentauriSun

White Dwarfs

Sirius

Color

+

+

Procyon B+

Barnard’sStar

++

Polaris ++

+

+

Luminosity and Temperature of Stars(Name in italics refers to star shown by a + )

Luminosity is thebrightness of starscompared to thebrightness of ourSun as seen fromthe same distancefrom the observer.

Properties of Common Minerals

HARD- COMMON DISTINGUISHINGLUSTER NESS COLORS CHARACTERISTICS USE(S) MINERAL NAME COMPOSITION*

black streak,greasy feel

very dense (7.6 g/cm3),gray-black streak

attracted by magnet,black streak

green-black streak,cubic crystals

red-brown streak

greasy feel

easily melted,may smell

easily scratchedby fingernail

flexible inthin sheets

cubic cleavage, salty taste

flexible in thin sheets

bubbleswith acid

bubbles with acidwhen powdered

cleaves in4 directions

cleaves in2 directions at 90°

cleaves at56° and 124°

cleaves in2 directions at 90°

cleaves in 2 directions,striations visible

commonly light greenand granular

glassy luster, may formhexagonal crystals

glassy luster, often seen as redgrains in NYS metamorphic rocks

Graphite

Galena

Magnetite

Pyrite

Hematite

Talc

Sulfur

Gypsum

Muscovite Mica

Halite

Biotite Mica

Calcite

Dolomite

Fluorite

Pyroxene(commonly Augite)

Amphiboles(commonly Hornblende)

Potassium Feldspar(Orthoclase)

Plagioclase Feldspar(Na-Ca Feldspar)

Olivine

Quartz

Garnet(commonly Almandine)

silver togray

metallicsilver

black tosilver

brassyyellow

metallic silver orearthy red

white togreen

yellow toamber

white to pink or gray

colorless toyellow

colorless towhite

black todark brown

colorlessor variable

colorlessor variable

colorless orvariable

black todark green

black to dark green

white topink

white to gray

green togray or brown

colorless orvariable

dark redto green

pencil lead,lubricants

ore oflead

ore ofiron

ore ofsulfur

oreof iron

talcum powder,soapstone

vulcanize rubber,sulfuric acid

plaster of parisand drywall

electricalinsulator

food additive,melts ice

electricalinsulator

cement,polarizing prisms

source ofmagnesium

hydrofluoricacid

mineralcollections

mineralcollections

ceramicsand glass

ceramicsand glass

furnace bricksand jewelry

glass, jewelry,and electronics

jewelry andabrasives

16 Earth Science Reference Tables — 2001 Edition (Revised November 2006)DET 633TN

Nonm

etal

lic L

uste

r

*Chemical Symbols: Al = aluminum Cl = chlorine H = hydrogen Na = sodium S = sulfur C = carbon F = fluorine K = potassium O = oxygen Si = siliconCa = calcium Fe = iron Mg = magnesium Pb = lead Ti = titanium

! = dominant form of breakage

C

PbS

Fe3O4

FeS2

Fe2O3

Mg3Si4O10(OH)2

S

CaSO4•2H2O

KAl3Si3O10(OH)2

NaCl

K(Mg,Fe)3AlSi3O10(OH)2

CaCO3

CaMg(CO3)2

CaF2

(Ca,Na) (Mg,Fe,Al)(Si,Al)2O6

CaNa(Mg,Fe)4 (Al,Fe,Ti)3Si6O22(O,OH)2

KAlSi3O8

(Na,Ca)AlSi3O8

(Fe,Mg)2SiO4

SiO2

Fe3Al2Si3O12

1–2

2.5

5.5–6.5

6.5

1–6.5

1

2

2

2–2.5

2.5

2.5–3

3

3.5

4

5–6

5.5

6

6

6.5

7

7

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Met

allic

Lus

ter

Eith

er

CLEA

VAG

EFR

ACTU

RE

(Selenite)