56
The University of Reading A singular vector perspective of 4D-Var: The spatial structure and evolution of baroclinic weather systems C. Johnson National Center for Atmospheric Research, Boulder CO, USA B.J. Hoskins, N.K.Nichols School of Mathematics, Meteorology and Physics, The University of Reading, Whiteknights, Reading UK and S.P. Ballard Met Office, JCMM, Earley Gate, Reading UK NUMERICAL ANALYSIS REPORT 4/05 Department of Mathematics

The University of Reading · paper Johnson et al. (2005a), hereafter JHN, we use the singular value decomposition (SVD) of the observability matrix to examine the spatial and temporal

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • The University of Reading

    A singular vector perspective of 4D-Var:The spatial structure and evolution of

    baroclinic weather systems

    C. JohnsonNational Center for Atmospheric Research, Boulder CO, USA

    B.J. Hoskins, N.K.NicholsSchool of Mathematics, Meteorology and Physics, The University of

    Reading, Whiteknights, Reading UK

    and

    S.P. BallardMet Office, JCMM, Earley Gate, Reading UK

    NUMERICAL ANALYSIS REPORT 4/05

    Department of Mathematics

  • Abstract

    Theextentto whichFour-DimensionalVariationaldataassimilation(4D-Var) is able

    to useinformationaboutthetime-evolutionof theatmosphereto infer theverticalspatial

    structureof baroclinicweathersystemsis investigated.Generalresultsarederivedusing

    the singularvaluedecompositionof the 4D-Var observability matricesin an idealized

    Eadymodelsetting.Theseresultsareconfirmedwith 4D-Varanalyses.

    Theresultsshow that4D-Varperformswell atcorrectingtheerrorsthatwouldother-

    wiserapidlycorruptaforecast.However, in afew cases,4D-Varmayaddarapidlygrow-

    ing errorinsteadof correctingadecayingerror. Theability to extractthetime-evolution

    informationcanbe maximizedby placing the observationsas far apartaspossiblein

    time, andthe specificationof thecase-dependentbackgrounderror variancesis crucial

    in beingableto projecttheobservationalinformationontoanalysisincrementsthatlead

    to theappropriategrowth rate.

    2

  • 1. Intr oduction

    Thedynamicalinstability of theatmospheremeansthatsmallperturbationsthatareintroducedinto

    theflow maygrow rapidly. For example,theflow at mid-latitudesis baroclinicallyunstabledueto

    the vertical shearassociatedwith the meridionaltemperaturegradient. This wave-instabilitypro-

    vides the dominantmechanismfor disturbancesto develop into mid-latitudeweathersystems.In

    suchdevelopment,theverticalspatialstructureof thedisturbanceplaysa fundamentalrole in gov-

    erningthedevelopment.For example,thenormal-modeanalysisof simplelinearmodels(Charney,

    1947;Eady,1949)showedthat the fastestgrowing structureexhibits a westward tilt with heightin

    the pressurefield. This vertical tilt leadsto a processknown asself-developmentwherethe upper

    andlower level wavesact to intensifyeachother, leadingto exponentialmodalgrowth. In contrast,

    thefastestdecayingstructureexhibits aneastwardtilt with heightsothatthecirculationsassociated

    with theupperandlower level wavesact to weakeneachother. More recentstudies(Farrell, 1982,

    1984)showedthatit is possiblefor thegrowth rateof adisturbanceto exceedtheexponentialgrowth

    of thefastestgrowing normalmodeover a limited periodof time. Suchdisturbancesmaybefound

    by computingthesingularvectorsof thelinearmodel(Farrell,1989;BuizzaandPalmer,1995).The

    spatialstructuresof thesedisturbancesarecharacterizedby localizedtilted interior potentialvortic-

    ity (PV) structureswhich separateanduntilt undertheactionof the shear, leadingto amplification

    (BadgerandHoskins,2001).Again, theverticalstructureof thedisturbanceis fundamentalfor this

    rapidnon-modalgrowth.

    The rapid growth of small disturbancesin a baroclinicallyunstableflow hastwo consequences

    for dataassimilation.The first consequenceis that dataassimilationalgorithmsneedto be ableto

    generateanalyseswith theverticalstructuresthatarenecessaryfor bothmodalgrowth anddecayand

    alsofor non-modalgrowth. Thesecondconsequenceis thatsmallerrorsin the initial conditionsof

    anumericalweatherforecastmayrapidlydevelopinto largeforecasterrors.It is thereforeimportant

    thatthedataassimilationalgorithmis ableto correctsuchrapidlygrowing errors.

    Algorithms suchasThree-DimensionalVariationaldataassimilation(3D-Var) (Courtieret al.,

    1998),usingspecifiederrorcovariancematrices,generateananalysisby blendingtogetherobserva-

    tionsneartheanalysistime with a backgroundstate.AlgorithmssuchasFour-DimensionalVaria-

    3

  • tional dataassimilation(4D-Var) (Rabieret al., 2000)andEnsembleFilters(Evensen,1994;Tippett

    etal.,2003;Lorenc,2003a,b)extendthismethodby usinga forecastmodelto link togetherobserva-

    tionsthataredistributedin time andalsoto evolve thebackgrounderrorcovariancematrix (Lorenc,

    1986). This meansthat observationsarecombinedwith dynamicallyevolved covariancesso that

    4D-Var is ableto generatetheverticalstructuresthatareneededfor baroclinicgrowth. For example,

    singleobservationexperimentsby Thépautet al. (1996)showedthat3D-Var analysisincrementsdo

    notexhibit any tilt with height,whereas4D-Varanalysisincrementsareanisotropicandalsoexhibit a

    westwardtilt with height.Idealizedexperimentsby RabierandCourtier(1992)showedthat4D-Var

    is ableto combinethe informationprovidedby the modeldynamicswith observationsof only the

    eddypartof theflow to reconstructabaroclinicwave.

    Thépautet al. (1996)demonstrateda stronglink betweenthe dominantsingularvectorsof the

    tangentlinear model and 4D-Var analysisincrements. Theoreticalstudiesby Pireset al. (1996)

    and Rabieret al. (1996) also showed that the 4D-Var cost function is most sensitive to analysis

    incrementsgivenby the dominantsingularvectors. Hence4D-Var shouldprovide accuracy of the

    unstablecomponentsof the flow by correctingthe componentsin the initial errorsthat arerapidly

    growing.

    Many of theprevious4D-Var studieshave consideredobservationsgivenat only theendof the

    window. However, oneof themajoradvantagesof 4D-Var is thatit is ableto usethemodeldynamics

    to link togethera time-sequenceof observations.Thisextra informationcanbeusedto build abetter

    pictureof boththespatialandtemporalstructureof theatmosphereby ensuringconsistency between

    the observationsandthe predictedevolution of the atmosphericstate. Hereandin the companion

    paperJohnsonet al. (2005a),hereafterJHN, we usethesingularvaluedecomposition(SVD) of the

    observability matrix to examinethespatialandtemporalinterpolationin 4D-Var thatresultsfrom the

    interactionof a time-sequenceof observationswith themodeldynamics.Thetechniquewasusedin

    JHNto investigatetheextentto which4D-Varcouldusethetimeevolutioninformationto reconstruct

    thestatein anunobservedregion, whilst filtering theobservationalnoise. The techniqueis usedin

    this paperto investigatethe extent to which 4D-Var is able to usethe information from a time-

    sequenceof observationsto generatethe vertical spatialstructuresthat arenecessaryfor accurate

    4

  • forecastsof baroclinicweathersystemsandalsoto correcterrorsin the initial conditionsthat result

    in rapid growth. For a completeassessmentof whether4D-Var is ableto generatethe appropriate

    vertical structures,we investigatewhether4D-Var is ableto generatetheappropriatestructuresfor

    bothbaroclinicgrowth anddecay.

    The2D Eadymodelis usedthroughoutthis paper. This linearmodelis oneof themostsimple

    modelsof baroclinicinstability, andallows a clearunderstandingof the operationof 4D-Var. The

    4D-Var algorithm,singularvectortechniqueandEadymodelaredescribedin section2. In section

    3, we comparecaseswith growing anddecayingmodesandinvestigatethe impactof theaccuracy

    of the observations,the temporalpositionof the observationsin the assimilationwindow and the

    positionof theobservationsin thespatialdomain.Theexperimentsin section3 only considererrors

    thatresultin modalgrowth or decaybut theexperimentsin section4 alsoconsidercaseswith errors

    that result in non-modalgrowth. Thesefinal experimentsareusedto investigatethe impactof the

    specifiederrorvariancesonthegrowth rateof thefollowing forecast.Themainconclusionsaregiven

    in section5, andthepaperthenendswith adiscussion.Furtherstudiesassociatedwith thiswork may

    befoundin Johnson(2003)andJohnsonet al. (2005b).

    2. Description of the Eady modelexperiments

    a. 4D-Var algorithm

    4D-Var findstheoptimalstatetrajectorythat is closeto theobservedvaluesover a specifiedassim-

    ilation time window andis closeto the backgroundstateat the beginningof the window. It is too

    expensive to computethe optimal stateat every time level. Therefore,with the reductionof the

    controlvariable(Le Dimet andTalagrand,1986),only theinitial conditionsareadjustedandthetra-

    jectory is requiredto satisfythemodelequationsexactly. In thefollowing, we only considerlinear

    models,but it is possibleto apply4D-Var to nonlinearmodelsby usingthenonlinearmodelin anon-

    incrementalformulation,or usinga linearizedmodelin an incrementalformulation(Courtieret al.,

    1994).

    Mathematically, theanalysisat time���

    , ��� , is givenby theinitial state,� � , which minimizesthe

    5

  • costfunction,

    � � �������� � ��� ��� ��������� � ��� ��� �! "#%$ �%& # �(' # � # ����)*���# %& # �+' # � # �-, (1a)

    subjectto thelinearmodelconstraint,

    � #%. � 0/ � #%. � ,1� # � � # for 2 435,7686768,79:�

  • observations, C& & �� , & � � ,767676=, & �"�

    , to theinitial statevector, � � , andis denotedby

    C'F ' �� ' � / � � ,>�����>� � 67676 ' "/ �

    ",>���8�G� � � 6 (2)

    Thentheobservability matrix'

    andits associatedsingularvaluedecompositionis givenby

    'F C)*���ED�� C'*���ED��B HIG$ �J I-K�IGL �I 6 (3)

    The singularvalues,left singularvectors(LSVs), right singularvectors(RSVs) and rank of the

    observability matrixaredenotedbyJ I , KMI , L�I andN .

    TheRSVsform anorthonormalbasisin theuncorrelatedstatespace,which meansthat the4D-

    Varanalysisincrementscanbewrittenas:

    � � � ��� HI-$ �O IQP1I ���ED�� L�I , (4a)

    where

    O I J � I� � J � I , (4b)

    P1I K �I C) ���ED�� CR

    J I 6 (4c)

    andwhere CR C& � C' � � is the generalizedinnovation vector. The RSVsare independentof theobservedvaluesandthebackgroundstate.They give thepossiblespatialstructuresthatcanbeanal-

    ysedby 4D-Var for the specifiedlinear modeldynamics,linearizationtrajectory, error covariances

    andobservationlocationsin bothspaceandtime.

    Theparticularcombinationof RSVsthatareincludedin theanalysisincrementis determinedby

    thecoefficients, P>I . If thevector C) ���ED�� CR hasalargeprojectionontotheLSV K�I , thenthecorrespond-ing RSV is givena largeweight. Theobservationalnoisecanhave a largeprojectionontotheLSVs

    with small singularvaluesso that thecorrespondingRSVswould dominatetheanalysisincrement.

    However, thesearefilteredby thefilter factors,O I , whichdamptheRSVswith smallsingularvalues,

    7

  • J � I ASA � � . Hencethealgorithmselectively filters unrealisticstructuresandtheanalysisincrementisdominatedby theRSVswith largesingularvalues.

    c. Eady model

    Thenon-dimensionalequationsfor the2D Eadymodel(Eady,1949)arenow described.Thebasic

    stateis given by a linear zonalwind shearwith height in a domainbetweentwo rigid horizontal

    boundaries. The domain is infinite in the meridionaldirection and the only dependenceon this

    directionis theuniform meridionaltemperaturegradientwhich is in thermalwind balancewith the

    zonalwind shear. Thedensity, staticstabilityandCoriolis parametersareall takento beconstants.

    Theperturbationto thebasicstateis describedby thenon-dimensionalbuoyancy, T , on theupperandlowerboundariesandby thenon-dimensionalquasi-geostrophicpotentialvorticity (QGPV), U , intheinterior. Equivalently, theperturbationmayalsobedescribedby thenon-dimensionalgeostrophic

    streamfunction,V , whichsatisfies:W � VWYX �

    W � VW�Z � U , in Z@[ �;\ ,;\ , X][_^ 35,>`ba8, (5a)

    W VW�Z T , on Z 4c;\ , X][_^ 35,>`ba8, (5b)

    whereX

    is thenon-dimensionaldistancein thezonaldirection,andZ

    is thenon-dimensionalheight.

    Thenon-dimensionaltimewill bedenotedby�. Theperturbationto thebasicstateis advectedzonally

    by thebasicshearflow asdescribedby thenon-dimensionalQGthermodynamicequationandQGPV

    equation:

    WW � Z

    WWYX T

    W VWYX , on Z dc;\ , Xe[_^ 35,>`ba8, (6a)

    WW � Z

    WWYX U 435, in Z@[ �

    ;\ ,;\ , Xe[_^ 35,>`ba86 (6b)

    Theperturbationis periodicin thehorizontalsothatthelateralboundaryconditionsare: T 35, Z ,1�f��T `e, Z ,1�f� and U 3Y, Z ,>�f�g U `e, Z ,1�f� . The model is discretizedusing11 vertical levels for QGPVwith 40 grid points in oneperiodic interval in

    X. The advectionequationsarediscretizedusinga

    8

  • leap-frogadvectionscheme.Thecomputationaldetailsto computethe4D-VaranalysisandtheSVD

    areidenticalto thosein JHN.

    DimensionalvaluesforX , Z

    and�

    will beusedto discusstheresults.Thesearebasedonadomain

    heightof;=35hji

    , buoyancy frequency9kl;=3 �m��no���

    , CoriolisparameterO l;=3 �mp�no���

    . Thedifference

    in thebasicstatezonalwind shearovera heightof 10kmis q 38i no��� . Theimplied wavelengthof themostrapidly growing andmostrapidly decayingnormalmodesis aboutq 3Y3Y35hoi .

    3. Resultsconsideringmodal growth and decay

    In this section,we use the Eady model to investigatethe extent to which 4D-Var is able to use

    the temporalevolution informationcontainedin the observationsto correctthe errorsin the initial

    conditionsthatresultin eithermodalgrowth or decay.

    a. Experiment Description

    Thetruestateis givenby eitherthemostrapidlygrowing or themostrapidlydecayingnormalmode,

    theequationsfor which aregiven in AppendixA. Thegrowing modeexhibits a westward tilt with

    heightof thestreamfunctionfield, V , andaneastwardtilt with heightof thebuoyancy field, W Vsr W�Z .This vertical tilt is associatedwith the growth in amplitudeof the modewith time. In contrast,

    the decayingmodeexhibits an eastward tilt in the streamfunctionfield anda westward tilt in the

    buoyancy field.

    Thebackgroundstateis givenby thetruestatebut with eitheranamplitudeor a phaseerror. For

    the amplitudeerror, � � t3Y6vu ��w ; for the phaseerror, the true stateis shiftedwestward by 500km.Thus,in all theexperiments,thebackgroundstateerroris alsogivenby eitheragrowing or decaying

    normalmode. Theseexperimentscanbe usedto comparecasesin which the errorsin the initial

    conditionsareeithergrowing or decaying.

    The interior QGPVis zerofor all the trueandbackgroundstates.Thecontrolvariablesusedin

    the4D-Var algorithmaregivenby only theupperandlowerboundarybuoyancy at thebeginningof

    thewindow. Thismeansthatanalysisincrementsmayonly beaddedto thebuoyancy field andnot to

    9

  • theQGPVfield. It is assumedthatthereareno observationerrorcorrelations,)xdy

    . Thespecified

    backgrounderror correlations,�

    , have a horizontalcorrelationlengthscale z {;=3Y3Y35hoi , andaredefinedin AppendixA.

    Perfectsyntheticobservationsof only thelowerboundarybuoyancy aregivenattwo timesduring

    a12hassimilationwindow. Theassumptionof perfectobservationsis not crucialhere.In anequiva-

    lentexperimentwith noisyobservations,theRSVsthatcorrespondto noisewouldbedampedby the

    filter factorsandhenceasimilaranalysiswouldbeobtained.Thus,in theseexperiments,varyingthe

    sizeof theerrorvariance,� �

    , hasthesameeffectasvaryingthesizeof theobservationalnoise.This

    assumesthat in theassimilationof noisy observationstheappropriatevaluefor� �

    is used.This is

    describedin furtherdetail in AppendixB.

    b. Preliminary Examples

    Beforewediscussthemainresults,weshow someexample4D-Varanalysesfrom theseexperiments.

    Theanalysesareshown at themiddleof the12hassimilationwindow. In Fig. 1a-b,thetruestateis

    givenby agrowing normalmode,thebackgroundstatehasanamplitudeerrorandthespecifiederror

    varianceratio is� � |;

    . Observationsof the lower level buoyancy aregivenat the beginningand

    the endof the 12h assimilationwindow. The 4D-Var algorithmdraws closeto the observationsso

    that the analysisis closeto the true stateon the lower boundary. The algorithmalsoincreasesthe

    amplitudeof theupperboundarysomewhatso that thegrowth rateof theanalysisthroughthe time

    window is moreconsistentwith theobservations.Theequivalentanalysisfor thedecayingmodeis

    shown in Fig. 1c-d. Thealgorithmagaindraws closeto theobservationson thelower boundary, but

    theupperboundarywave is not adjustedasmuchasfor thegrowing mode. In particular, theupper

    boundarywave is shiftedeastwardwith only aslight increasein theamplitude.

    Figure2 shows similar experimentsbut with phaseerrorsinsteadof amplitudeerrors.Theanal-

    ysis for thetruestategivenby a growing modeis shown in Fig. 2a-b. Theupperboundarywave is

    movedeastward so that it is closerto the true state,but thereis alsoa reductionin the amplitude.

    Theequivalentanalysisfor thetruestategivenby thedecayingmodeis shown in Fig. 2c-d. Again

    the upperboundarywave hasbeenshiftedslightly but lessinformationaboutthe upperboundary

    10

  • wave is inferredthanfor thegrowing mode.In boththeamplitudeandphaseerrorcases,4D-Var is

    muchbetterableto correctthe unobservedupperboundarywave for the casewherethe true state,

    andhencethebackgroundstateerrorresultsin growth ratherthandecay.

    Theseexperimentsillustratethat4D-Var is ableto usethetime-evolution informationto correct

    theupperlevel wave. However, it is not clearwhy 4D-Var is betterat correctingthegrowing errors

    thanthedecayingerrors,andhow theanalysescanbeimproved.

    In thefollowing experimentstheSVD framework is first employedto considerfurthertheextent

    to which 4D-Var is able to correctthe upperlevel wave andproducean analysiswith the correct

    growth rate. Theconceptsthatarelearnedfrom theSVD framework arethenconfirmedby 4D-Var

    analyses.Theanalysesareverifiedby comparingthebehaviour, includingthemagnitudeandphase

    error, over the following forecastinterval. The magnitudeis evaluatedusing the non-dimensional

    kineticenergy (KE) norm:}e~ � X Z

    (7)

    where W Vsr W5X is the perturbationmeridionalwind. The phaseerror is evaluatedusing the

    correlationbetweenthestreamfunctionfieldsof theanalysisandthetruestate.Theerror-correlation

    takesavalueof onewhentheanalysisis completelyin phasewith thetruestateandtakesavalueof

    minusonewhenthey arecompletelyoutof phase.

    We first considerthe impactof theaccuracy of theobservationsby varyingthevalueof� �

    ; we

    thenexaminetheimpactof thetemporalpositionof theobservationsby varyingthetime of thefirst

    setof observations;andwe finally examinetheimpactof thespatialpositionof theobservationsby

    observinghorizontallinesof thebuoyancy field at differentheights.

    c. Accuracy of the observations

    Theability of 4D-Var to reconstructtheupperlevel wave for differentvaluesof� �

    is now examined.

    Theobservationsareagainof thelower level buoyancy at thebeginningandtheendof thewindow,

    but thevalueof� �

    is varied.It is assumedthatin theappropriatevalueof� �

    isusedin theassimilation

    of realdata. A largevalueof� �

    implies that relatively inaccurateobservationsareassimilatedand

    sotheanalysisis closeto thebackgroundstate.A smallvalueof� �

    impliesthatrelatively accurate

    11

  • observationsareassimilatedandsotheanalysisis closeto the truestate.Hencevaryingthesizeof� �

    allowsusto investigatetheimpactof theaccuracy of theobservations.

    1). SVD RESULTS

    We first examinetheRSVsof theobservability matrix anddiscussthegeneralconclusionsthatare

    implied from these. Section2 shows that the uncorrelatedanalysisincrementcanbe written asa

    linear combinationof the RSVsof the observability matrix. For our purposes,only the RSVsthat

    contributeto theanalysisincrementareof interest;thesearetheRSVsthathave non-zerovaluesof

    P1I (4c). Thevaluesof P1I arelargewhenthegeneralizedinnovationvector CR is in thesamedirectionasthe correspondingLSVs. In thesecarefully constructedexperiments(with perfectobservations,

    a truestategivenby a growing or decayingnormalmode,anda backgroundstatethathaseitheran

    amplitudeor phaseerror) the innovations CR arealsoeithergivenby a growing or decayingnormalmode.Thismeansthatthereareonly four valuesof P1I thatarenon-zero,to machineprecision.Theseare for \ ,85,=5, and7. Further, the RSVsoccur in pairsso that RSVs2 and3 have the samesingularvalue(

    J \ 6Y) andan identicalstructureexceptfor a phaseshift of

    ;=3Y3Y35hoi. Similarly

    RSVs6 and7 bothhaveJ 356 q . Thus,it is only necessaryto examinethespatialstructureof the

    secondandsixthRSVs.Theseareshown in Figs.3and4. NotethattheRSVs,definedin uncorrelated

    statespace,arepremultipliedby thesquareroot of the backgrounderror correlationmatrix so that

    they arein correlatedstatespaceandto beconsistentwith (4). Thestructureof thesamefieldsafter

    they have beenevolvedby thelinearmodel/

    arealsoshown. Thesegive theassociatedstructures

    at theendof theassimilationwindow. It shouldbenotedthattheevolvedRSVat thefinal time is not

    thesameastheLSV, astheseRSVsarethesingularvectorsof theobservability matrix'

    andnotof

    themodel/

    .

    RSV 2, from the first pair of RSVs, is shown in Fig. 3. It hasa large amplitudeon the lower

    boundary, whichis theobservedregion. Thebuoyancy field tilts eastwardwith heightandthestream-

    functionfield tilts westwardwith height. This tilt is characteristicof a growing solutionbut it does

    not tilt asmuchasfor anormalmode.WhenthisRSVis evolvedby themodelto givethestructureat

    thefinal timewefind thatthelowerboundarywaveincreasesslightly in amplitudeandthereis alarge

    12

  • increasein theamplitudeof thewaveontheupperboundarywavesuchthatit is similar to thatonthe

    lower boundary. Also theupperboundarybuoyancy wave moveswestwardandthelower boundary

    wavemoveseastwardsothatthestreamfunctionfield exhibits a greatertilt with height,closeto that

    of theunstablenormalmode.Thus,thestructureof theRSVat thefinal timemorecloselyresembles

    thestructureof anormalmode.

    RSV 6, from the secondpair of RSVs, is shown in Fig. 4. At the initial time, it hasa large

    amplitudeon theunobservedupperboundary. Thebuoyancy field tilts westwardwith heightandthe

    streamfunctionfield tilts eastwardwith height,characteristicof a decayingmode,but againit does

    not tilt asmuchas for a normalmode. When the RSV is evolved to the endof the window, the

    circulationassociatedwith the upperboundarywave actsto the weaken the lower boundarywave

    until it becomeszeroandthenbeginsto grow againwith theoppositesignsothatat thefinal timethe

    buoyancy field tilts eastwardwith heightandthestreamfunctionfield tilts westwardwith height. Its

    structureat thefinal time is moresimilar to thatof agrowing wave thanadecayingwave.

    The coefficients P1I have a large valuewhenthe generalizedinnovationvector CR is in the samedirectionasthecorrespondingLSVs. Thus,thestructureof theLSVs show how the observational

    informationis projectedonto the RSVs. The LSVs exist in observation space,which is the lower

    boundarybuoyancy at the initial andfinal time. The LSVs correspondingto the first pair of RSVs

    have a similar structureto the lower boundarybuoyancy fields of the first pair of RSVs and are

    thereforenot shown. Thereis very little changein the shapeandamplitudeof the wave with time

    which impliesthatthefirst pair of RSVsgive thestructurecorrespondingto thegeneralshapeof the

    observedwave. Thepairof LSVs correspondingto thesecondpairor RSVs(alsonotshown) havea

    similar structureto thelowerboundarybuoyancy fieldsof thesecondpair of RSVs.Thewaveat the

    final time hastheoppositesignto thatat the initial time. This impliesthat thesecondpair of RSVs

    correspondto extractingthegrowth ratefrom theobservedwave.

    FromtheTikhonov filter factors,O I (4b), thealgorithmdampstheRSVswith J � I � � so that

    as the varianceratio,� �

    , is increasedthe algorithmdampsmoreof the RSVswith small singular

    values.In this case,thefirst pair of RSVswithJ \ 6Y

    containthe informationthat is neededto

    reconstructthestatein observedregionsandalsoto give a growing analysisincrement.In contrast,

    13

  • thesecondpair of RSVs,withJ 356 q , containthe informationneededto reconstructthestatein

    the unobserved regionsandalso to give a decayinganalysisincrement. In particular, theseRSVs

    correspondto the informationdetectingthegrowth or decayof theobservedwave. This growth is

    harderto detectthanthegeneralspatialstructureof thelowerboundarywaveandhencetheseRSVs

    have a smallersingularvalue than the first pair of RSVsandaredampedby the algorithm if the

    observationalnoiseis relatively largei.e� ? 356 q .

    FromtheSVD results,we expectthatwhentheobservationsareextremelyaccurate,andhence�+l3

    , thealgorithmis ableto addbothpairsof RSVsto thebackgroundstate.Whentheobserva-

    tionalnoiseis largersothat�4356v q , thealgorithmwill filter out muchof thesecondpair of RSVs.

    Theseare the vectorsthat are neededto reconstructthe upperlevel wave and to give a decaying

    analysisincrement.Whentheobservationalnoiseis increasedfurther, so that�_ \ 6Y

    , bothpairs

    of RSVsarestronglyfiltered,andso thereis little differencebetweenthebackgroundstateandthe

    analysis.This is now confirmedwith the4D-Var analysesandforecasts.

    2). 4D-VAR ANALYSES

    4D-Varanalysesusingobservationsof thelowerlevel buoyancy atthebeginningandtheendof a12h

    assimilationwindow, but with differentspecifiedvarianceratiosarenow compared.Wefirst consider

    thecaseswherethebackgroundstatehasanamplitudeerror. TheKE valuesfor the12hwindow and

    following 36hforecastfor thegrowing modecaseareshown in Fig. 5a. Theanalysisis closeto the

    true statewhen� �

    is small (� � t356;

    ) but as� �

    increases,the RSVsarefiltered moreso that the

    analysisis closeto the backgroundstate. The equivalentdiagramfor the decayingmode(Fig. 5b)

    is moreinteresting.When� � x356;

    , theanalysisis closeto the true state.When� � ;

    , thefirst

    RSVscontributeto theanalysisincrement,but thesecondpair of RSVsarefiltered. It is thesecond

    pair thatarerequiredto form a decayingincrement.Hence,theKE decaysthroughtheassimilation

    window, but thenbegins to grow so that the 36h forecastis worsethanthat from the background

    state.When� � ;Q3Y3

    , theobservationsareassumedto besoinaccuratethatbothpairsof RSVsare

    filtered,andtheanalysisremainscloseto thebackgroundstate.It shouldbenotedthat thediagram

    for thedecayingmodehasadifferentscale,andsotheimpacton the36hforecastis smallcompared

    14

  • with thegrowing mode.

    Therearesimilar resultsfor the caseswherethe backgroundstatehasa phaseerror. For both

    thegrowing anddecayingmodes,theKE valuesfor thebackgroundstateareidenticalto thosefor

    the true state(Fig. 6). The error canonly be seenin the error correlationvalues(Fig. 7). For the

    growing mode,when� � k356;

    , both pairsof RSVscontribute to the analysisincrement,andboth

    thephaseandKE arecloseto thetruestate.When� � ;

    , only thefirst pair of RSVscontributeto

    theanalysisincrement.This actsto correctthe lower level wave, but not theupperlevel wave and

    hencethe growth rate is reducedbut the phaseerror is improved. When� � ;=3Y3

    , both pairsof

    RSVsarefilteredsothattheanalysisis closeto thebackgroundstate.For thedecayingmode,when� � d356;

    , theanalysishasalmostthecorrectrateof decayandno phaseerrorfor themajority of the

    forecast.When� � l;

    , it is mostlyonly thefirst pairof RSVsthatareaddedto thebackgroundstate.

    This meansthat thegrowing incrementeventuallydominatestheanalysisso that theKE grows and

    theerror correlationeventuallyhasthewrongsign. This is becausethestreamfunctionfield of the

    analysisbeginsto tilt westwardinsteadof eastward. When� � ;=3Y3

    , bothRSVsarefilteredandso

    theanalysisis closeto thebackgroundstate.Again, for thedecayingmode,the36hforecastwhen

    observationsareassimilatedcanin factbeworsethantheforecastwithoutassimilatingobservations.

    d. Temporal position of the observations

    For the investigationof the impactof the temporalpositionof the observationsin the assimilation

    window, observationsof the lower boundarybuoyancy areagaingiven at two timesduring a 12h

    assimilationwindow. The first (initial) setof observationsaregivenat eitherthe beginning (T+0),

    middle (T+6) or end(T+12) of thewindow whilst thesecond(final) setof observationsarealways

    givenat theendof thewindow. Note that theexperimentswith the initial setof observationsat the

    endof thewindow areequivalentto experimentswith a singlesetof observationsat only theendof

    thewindow andwith thevarianceratio,� �

    , halved.

    15

  • 1). SVD RESULTS

    Singularvaluedecompositionsof thecorrespondingobservability matricesarefirst considered.For

    a fixed assimilationwindow length,the temporalpositionof the initial observationshasvery little

    impacton thespatialstructureof theRSVsandsotheir structuresarenot shown. Thereis, however,

    a changein the singularvalues. Fig. 8 shows the singularvaluesof the first andsecondpairsof

    RSVsthatcontributeto theanalysisincrementasselectedby thevaluesof P1I (notnecessarilyalwaysnumbers

    \Y and

    ). Whenthe initial observationsareat T+0, thesingularvaluesare

    J \ 6Yand

    356 q . Thesecorrespondto theRSVsshown in Figs.3 and4. Whenthe initial observationsaremovedtowardstheendof thewindow, thesingularvalueof thefirst pair of RSVsincreaseswhilst

    that of the secondpair decreases.For initial observationsat T+6, the singularvaluesare3.17and

    0.34.Whentheinitial observationsareatT+12,thesingularvalueof thesecondpairof RSVsis zero;

    whentheobservationsareonly theendof thewindow, only thefirst pair of RSVscancontributeto

    theanalysisincrementasthereis noobservationalinformationaboutthegrowth of thewave.

    The secondpair of RSVscorrespondto the informationaboutthe growth rateof thewave. In-

    tuitively, we know thatmoreinformationaboutthegrowth ratecanbeextractedif thetime between

    the initial andfinal time observationsis longer. Whenthe observationsarefar apartin time, there

    is a large differencein theamplitudeof theobservedwave at the initial andfinal times. Whenthe

    observationsaremoved closertogetherin time, thereis a small differencein the amplitudeat the

    initial andfinal timesandthereforeit is muchmoredifficult to infer thegrowth rateaccuratelywhen

    assimilatingrelatively noisyobservations. It is for this reasonthat thesingularvalueof thesecond

    pair of RSVsincreasesastheobservationsaremovedfurtherapartin time.

    To beableto includethesecondpair of RSVsin theanalysisincrement,we needa valueof� �

    that is smallerthanabout0.5. Further, the singularvaluesshow that the secondpair of RSVswill

    have a larger contribution to the incrementif the initial observationsarecloserto the beginningof

    thewindow. This is now confirmedby the4D-Varanalyses.

    16

  • 2). 4D-VAR ANALYSES

    4D-Var analysesusingobservationsof thelower level buoyancy but at differenttimesarenow com-

    pared.Thefirst setof observationsaregivenat thebeginning,middleor endof thewindow andthe

    secondsetof observationsarealwaysgivenat the endof the window. For all the cases,we select

    a varianceratio of� � 356;

    . This is closeto thesingularvalueof thesecondpair of RSVsandso

    allows theeffectof thepositionof theobservationsto beillustratedclearly.

    The resultsfor the caseswith an amplitudeerror areshown in Fig. 9. For the growing mode,

    thereis little differencein the KE valuesfor the differentcases,andall arecloseto the truth. For

    thedecayingmode,wherethesecondpairof RSVsaremoreimportant,theanalysisis indeedcloser

    to the true statewhenthe initial observationsareat thebeginningof thewindow. Whenthe initial

    observationsareat theendof thewindow, theanalysisincrementleadsto growth ratherthandecay

    becausethesecondpair of RSVsarefilteredcompletely.

    The resultsfor the caseswith a phaseerror (Figs. 10 and 11) are somewhat similar. For the

    growing mode, the phaseerrorsare significantly improved for all threecasesas the lower level

    wavehasbeenshiftedto thecorrectpositionandtheKE valuesareslightly worseastheupperlevel

    wave is not shiftedcompletely. Further, both the phaseerrorandKE valuesfor thegrowing mode

    areworsewhenthe initial observationsareat the endof the window ratherthanat the beginning.

    For the decayingmode,the differencesareagainmorepronounced.With observationsat the end

    of the window, only the first pair of RSVs are includedand the KE valuesbegin to grow whilst

    thestreamfunctionfield eventuallytilts westwardinsteadof eastward,giving a negativecorrelation.

    With observationsat thebeginningof thewindow, theRSVsneededto give decayarefiltered less,

    improving boththeKE valuesandthephaseerror.

    Fromtheequivalencebetween4D-Var andtheKalmanFilter, 4D-Var implicitly propagatesthe

    backgrounderror covariancematrix throughtime. This meansthat the error covarianceat the end

    of the interval is more sensitive to the flow regime (more flow-dependent)than at the beginning

    (Thépautet al., 1996),which suggeststhat you would expectobservationsto bemoreusefulat the

    endof thewindow. However, theseexperimentsshow that the4D-Var analysesareimprovedwhen

    the initial andfinal observationsarefurtherapartin time. Thus,in thesecases,theobservationsat

    17

  • thebeginningof thewindow arealsoimportant.

    e. Spatial position of the observations

    The impactof thespatialpositionof the observationsis consideredby repeatingthe SVD analysis

    and4D-Var experimentswith the horizontalline of observationsgivenat differentheights.This is

    achievedby observingtheinterior non-dimensionalbuoyancy, which is theverticalderivativeof the

    non-dimensionalstreamfunction.The observationsin eachcasearegivenat the beginningandthe

    endof a 12hassimilationwindow.

    1). SVD RESULTS

    Thesingularvaluesof thefirst andsecondpairsof RSVs,asa functionof theheightof thebuoyancy

    observations,areshown in Fig. 12. Dueto thesymmetryof theof theEadymodel,theexperiments

    usingobservationson the lower boundaryareequivalentto thoseusingobservationson the upper

    boundary. Hence,the curvesaresymmetricalabout5km. As the heightof the observationsis in-

    creasedfrom 0 to 4.5km,thesingularvaluesof boththefirst andsecondRSVsdecrease.Theformer

    decreasesfrom 2.99to 1.64andthelatterfrom 0.74to 0.57.

    The SVD shows that we expectthe 4D-Var analysesto be closestto the truth whenthe obser-

    vationsarenearestto the upperor lower boundaries,asthesegive the largestsingularvalues.The

    normalmodesaredrivenfrom theboundariesandtheirbuoyancy fieldshavetheir largestamplitudes

    at theboundaries.Henceobservingtheboundarybuoyancy couldbeexpectedto beoptimumandthe

    differencebetweentheobservationsandthebackgroundstateis largestat theboundaries.Therefore,

    moreaccurateinformationcanbeextractedin thepresenceof relatively noisyobservationswhenthe

    observationsareclosestto therelevantboundary, herethelowerone.This is now confirmedwith the

    actual4D-Varanalyses.

    2). 4D-VAR ANALYSES

    Whenthetruestateis givenby thegrowing mode,thevarianceratio is specifiedas� � ;=3

    . With

    this value,the positionof the observationshasthe most impacton the filtering of the first pair of

    18

  • RSVs. Whenthe heightof the observationsis increased,the first pair of RSVsarefiltered more.

    TheKE values(Fig. 13a)show that theanalysisis indeedclosestto thebackgroundstatewhenthe

    observationsarenearto thecentreof thedomainandcloseto thetruestatewhentheobservationsare

    on thelowerboundary.

    Whenthe true stateis givenby the decayingmode,thevarianceratio is specifiedas� � x356;

    .

    With this value,thepositionof the observationshasthe mostimpacton the filtering of the second

    pair of RSVs.Whentheheightof theobservationsis increased,thesecondpair of RSVsarefiltered

    moresothat thefirst pair dominatethesolution,leadingto growth insteadof decay. TheKE values

    (Fig. 13b) show that the bestanalysisis indeedobtainedwhen the observationsare on the lower

    boundary.

    f. Summary

    Caseswherethetruestateis givenby eitheragrowing or decayingnormalmode,andwheretheback-

    groundstatehaseitheranamplitudeor phaseerrorhavebeenconsidered.Theright singularvectors

    (RSVs)of the4D-Var observability matrix provide a usefultool to examinehow the observational

    informationis projectedinto theanalysisincrement.In thesecases,thereareonly two pairsof RSVs

    thatareneededto form theanalysisincrement.Thefirst pairof RSVsbothhavelargesingularvalues,

    andleadto a growing analysisincrement.Thesecondpair of RSVshave smallsingularvaluesand

    areneededto reconstructtheupperlevel waveandto giveadecayinganalysisincrement.

    The4D-Var algorithmfilters theRSVswith relatively smallsingularvalues,comparedwith the

    sizeof the observationalnoise. This implies that4D-Var preferentiallyaddsan analysisincrement

    that resultsin growth. Suchbehaviour meansthat 4D-Var is extremelyefficient in correctingthe

    errorsin the initial conditionsthat would otherwiselead to large forecasterrors. However, if the

    errorsin the backgroundstateleadto decay, addingan analysisincrementthat leadsto growth is

    detrimentalto theforecast.

    4D-Var is ableto extract the informationaboutthe growth rateof the true statefrom the time-

    sequenceof observations. This informationis containedin thesecondpair of RSVsandis filtered

    lesswheneither� �

    decreasesor whentheir singularvalueincreases.We have examinedthreeways

    19

  • in whichthiscanoccur. First,astheaccuracy of theobservationsincreases,thevalueof� �

    decreases.

    Second,asthetime betweentheinitial andfinal setsof observationsincreases,thesingularvalueof

    the secondpair of RSVsincreases.Third, asthe line of buoyancy observationsis movedfrom the

    centreof thedomainto eithertheupperor lower boundary, thesingularvaluesof boththefirst and

    secondpairsof RSVsincreases.

    4. Resultsconsideringmodal and non-modal growth

    Theexperimentsin section3 arebasedon backgroundstateerrorsthataregivenby eithera grow-

    ing or decayingnormalmode.Suchexperimentsareusefulfor understandingthedifferencesin the

    behaviour of 4D-Var in thepresenceof growing anddecayingerrors.However it is possiblefor an

    error in the initial conditions,typically associatedwith interior QGPVanomalies,to exceedtheex-

    ponentialgrowth of themostrapidlygrowing normalmode.In thisfinal sectionof results,theextent

    to which4D-Var is capableof correctingsuchanerroris investigatedby comparingthebehaviour of

    4D-Var in caseswherethe truestateis givenby eitherthemostrapidly growing normalmodeor a

    PV-dipoleperturbationthatexhibitsnon-modalrapidgrowth.

    a. Experiment Description

    Theexperimentsin section3 only allowedtheanalysisincrementsto beaddedto theboundarybuoy-

    ancy. Theexperimentsin thissectionallow theanalysisincrementsto beaddedto boththeboundary

    buoyancy andthe interior QGPV. The backgrounderror variancefor buoyancy andQGPV canbe

    expectedto be different,andthis is allowed for. The ratio betweenthe observed andbackground

    buoyancy errorvarianceis denotedby� �� and

    � � is theratiobetweenthebuoyancy observationerror

    varianceand the backgroundQGPV error variance. Horizontalbackgrounderror correlationsare

    specifiedby thematrices��%� and

    � , both with lengthscalesz xuY3m35hji . � �%� is block diagonal,

    with two horizontalcorrelationmatriceson thediagonal,which correspondto thebuoyancy on the

    upperandlower levels.� �

    is alsoblockdiagonal,but with 11horizontalcorrelationmatricesonthe

    diagonalthatcorrespondto the11 verticallevelsfor QGPV. Thedetailsof thehorizontalcorrelation

    20

  • matricesaregivenin AppendixA. To simplify theexperiments,we considerthecasewhereall the

    backgroundstatevaluesarezero, � � 3 . Thecostfunctionis thengivenby:

    � � �7� � ��� ����%�

    33 � � � �

    �� C& � C' � ��C& � C' � � (8)

    The true stateis given by either the most rapidly growing normal modeor a PV-dipole that

    exhibitsnon-modalgrowth, theequationsfor whicharegivenin AppendixA. Thehorizontaldomain

    is increasedto 8000km,with 80grid pointsin thehorizontal.Horizontallinesof perfectobservations

    of thenon-dimensionalbuoyancy aregivenat thebeginningandtheendof a 6h window at a height

    of 4.5km. Providing observationsin the middle of the spatialdomainallows an interior buoyancy

    anomalyto bewell observed.

    Theratio� � r � � � givesthevarianceof thenon-dimensionalboundarybuoyancy errorsdividedby

    thevarianceof thenon-dimensionalinterior QGPVerrorsin thebackgroundstate. In practice,the

    sizeof this ratio will dependon the forecastmodelusedto generatethebackgroundstate,previous

    analysiserrorsandtheparticularflow situation. The following experimentscomparethe resultsof

    the SVD of the observability matricesand4D-Var analyseswith differentspecificationsfor the a

    priori errorvarianceratios.

    Extremevaluesarechosento illustrateclearly thebehaviour of 4D-Var. Thesearesummarized

    in Table1. Specification1 usesa large valueof� � r � � � (

    ;=38). This assumesthat we think that the

    backgroundstateerrorsin the boundarybuoyancy field aremuch larger than thosein the interior

    QGPV field. Specification3 usesa small valueof� � r � � � (

    ;=3 � ). This assumesthat we think that

    the backgroundstateerrorsin the buoyancy field aremuchsmallerthanthosein the QGPV field.

    Specification2 usesvaluesthatareacompromiseof thetwo extremes(� � r � � �

    u�;=3 �m�).

    21

  • b. SVD results

    Theobservability matrix correspondingto thecostfunctiongivenby (8) canbewrittenas:

    'F ' � �� �ED���%�

    33 � � �ED��� (9)

    We now examinethe RSVs of the observability matricesfor different specificationsof the error

    varianceratios. We only examinetheRSVsthathave largevaluesof P1I whenthebackgroundstateerrorsaregivenby a growing modeandtheobservationsareperfect.It shouldbenotedthat for the

    non-modalcase,therearemany valuesof P1I thatarenon-zeroandhencetherearemany RSVswitha varietyof spatialscalesthat contribute to the analysisincrements.However, for our purposes,it

    sufficesto examinethestructuresof only a few of theseRSVs.

    TheRSVsfor thecasewith specification1 (� � r � � �

    ;Q37) areshown in Fig. 14a-b. Theinterior

    QGPVhasa relatively smallmagnitudewhilst thebuoyancy field hasa relatively largemagnitude.

    The buoyancy field for RSV4 exhibits an eastward tilt with heightand that for RSV10exhibits a

    westwardtilt, similar to theRSVsin section3. Suchstructuresleadto modalgrowth andarethere-

    fore likely to beappropriatefor correctingsucherrors. TheRSVsfor thecasewith specification3

    (� � r � � �

    l;=3 � ) areshown in Fig. 14c-d.TheinteriorQGPVnow hasarelatively largemagnitudein

    comparisonto thebuoyancy field. Suchstructuresleadto non-modalgrowth throughPV-unshielding

    andarethereforelikely to beappropriatefor correctingsucherrors.

    c. 4D-var analyses

    We now considerthe impactof differenterror variancespecificationson analyseswherethe back-

    groundstateerrorsareeithergivenby modalgrowth or non-modalgrowth. Theanalysesareverified

    by comparingthespatialstructureat thebeginningof thewindow, andalsotheexponentialgrowth

    rate,which is definedas:

    5� �f� ;\Y � z¡ }e~

    w .m¢ w}e~w � ¢ w

    (10)

    where �

    is thetimestep.

    22

  • Thespatialstructuresof theanalysesareshown at thebeginningof thewindow. Wefirst consider

    caseswherethe truestateis givenby thegrowing normalmode.The truestate,shown in Fig. 15a,

    is given by buoyancy waves and zero interior QGPV. This givesan exponentialKE growth rate,

    shown in Fig. 16a, that is constantthroughoutthe forecastperiod. The analysesusing the three

    different varianceratio specificationsare shown in Fig. 15. For specification1, a large analysis

    increment(amplitude56vu

    ) is addedto thebuoyancy fieldsandasmallanalysisincrement(amplitude;Q3 �mp

    ) is addedto theinterior QGPV. This givesananalysisthat lookssimilar to thetruestateat the

    initial time, andthe KE growth ratevalues(shown in Fig. 16a)arealsosimilar. For specification

    2, a smalleranalysisincrement(amplitude\ 6 q ) is addedto thebuoyancy field anda largeranalysis

    increment(amplitudeq 6; ) is addedto theQGPV. As theanalysishasa largeamplitudein theinterior,the incrementgrows by thePV-unshieldingmechanism,leadingto a largergrowth ratethanthatof

    thetruestate.For specification3, thestructureof theRSVsaresuchthat4D-Varaddsanevenlarger

    analysisincrement(amplitude£ 6u ) to theinterior QGPV, leadingto anevenlargergrowth rate.Finally, we considercaseswherethetruestateis givenby a PV-dipoleperturbationthatexhibits

    rapid finite-time non-modalgrowth. The true state,shown in Fig. 17a,correspondsto a positive

    temperatureanomalywhich mayhave resultedfrom, for example,diabaticheating.As discussedby

    BadgerandHoskins(2001), the anomalyevolvesby the PV-unshieldingmechanismto give rapid

    finite time growth which peaksat 6h, asshown in Fig. 16b. The analysesusingthe threedifferent

    varianceratio specificationsareshown in Fig. 17. For specification1, a large analysisincrement

    (amplitude56

    ) is addedto thebuoyancy fieldsandasmallanalysisincrement(amplitude¤;=3 �mp

    )

    is addedto theQGPVfields. This resultsin bothanextremelyunrealisticanalysisandgrowth rate.

    Although the time-evolution information is containedin the observations,it is projectedonto the

    inappropriateRSV structures. For specification2, a larger analysisincrement(amplitude\ 6v

    ) is

    addedto the interior QGPV field, giving an analysisthat hasa similar structureto the true state.

    The growth ratealsohasa similar behaviour to that of the true state,but never exceedsthat of the

    most unstablenormal mode. For specification3, the observational information can be projected

    onto the appropriateRSV structures.A larger analysisincrement(amplitudeuY6v

    ) is addedto the

    interior QGPV anda smalleranalysisincrementis addedto the boundariesso that in the analysis,

    23

  • thebuoyancy anomalyhasa small verticalscale,similar to the trueanomaly. Thegrowth ratenow

    achievesa valuethat exceedsthat of the fastestgrowing normalmode. However, it still doesnot

    reachthemaximumvalueof thetruestateandit is likely thatmany moreaccurateobservationsare

    requiredto produceagrowth ratethatis closeto thatof thetruestate.

    d. Summary

    Wehavecomparedcaseswherethebackgroundstateerrorsexhibit eithermodalor non-modalgrowth

    andwheretherearedifferentspecificationsfor thebackgrounderrorvariancesfor theinteriorQGPV

    andtheboundarybuoyancy.

    The RSVs of the 4D-Var observability matrix illustratedthat the possibleanalysisincrement

    structuresarepre-determinedby themodel,observation locations,andthecovariances,without the

    knowledgeof the observed values. When the specifiedboundarybuoyancy varianceis relatively

    large,theRSVshave maximaon theboundaries.Suchstructuresresultin modalgrowth. Whenthe

    specifiedinterior QGPV varianceis relatively large, the RSVshave maximain the interior. Such

    structuresresultin non-modalgrowth.

    With an inappropriatespecificationof theerrorvarianceratios,theobservationalinformationis

    projectedontotheinappropriatestructures.Althoughtheobservationsmaycontaininformationthat

    canbeusedto infer thatthetruestateis for examplea PV-dipole,this maybemistakenlyfilteredby

    the4D-Var algorithmif theerror covariancesarespecifiedinappropriately. Thegrowth ratesshow

    clearly that this canleadto poor forecasts,especiallyfor thecasewherethetruestateexhibits non-

    modalgrowth. Hencethe specificationof the backgrounderror covarianceis crucial to enablethe

    benefitsof 4D-Var to bemaximized.

    5. Conclusions

    In this paperwe have usedthe singularvalue decomposition(SVD) of the 4D-Var observability

    matrix to investigatethe extent to which 4D-Var is ableto usethe informationaboutthe temporal

    developmentof idealizedbaroclinicweathersystemsto infer the vertical spatialstructure.Simple

    24

  • casesusingthe2D Eadymodelwith a singlehorizontalline of buoyancy observationsat two times

    during the assimilationperiod have beeninvestigated. The SVD provides a generalframework,

    withouttheneedfor repeatingnumerous4D-Var identicaltwin experiments.However, to confirmthe

    anticipatedresultsfrom theSVD, we have alsoexaminedmany 4D-Var analysesandcomparedthe

    evolutionof theKE valuesandthecorrelationof thestreamfunctionfield throughouttheassimilation

    window andfollowing forecasts.

    Threemainconclusionsfrom thiswork canbedrawn. First,wehaveshown that4D-Varpreferen-

    tially generatesananalysisincrementthatleadsto growth, but adecayinganalysisincrementcanbe

    generatedprovidedthat theinformationabouttheevolution canbeextractedfrom theobservations.

    Second,theability of 4D-Var to extract thevaluabletime-evolution informationcanbemaximized

    by adjustingthe locationsof theobservationsin spaceandtime. Third, thespecificationof theap-

    propriatebackgrounderrorcovariancesis crucial in beingableto generateanalysisincrementsthat

    leadto theappropriategrowth rate.

    6. Discussion

    The fact that 4D-Var is efficient in correctingrapidly growing errorsis not a new result. Previous

    studiesby Thépautet al. (1996);Pireset al. (1996)andRabieret al. (1996)demonstratedthata 4D-

    Varalgorithmwith nobackgroundtermis ableto useobservationsgivenattheendof theassimilation

    window to correctsucherrors.However, thispaperhasextendedthisconclusionto show that4D-Var

    is moreefficient in correctingsucherrorswheninformationaboutthetime-evolutionof theobserved

    systemcanbeinferred.Further, we haveshown thatin thecasewheretheactualerrorsaredecaying

    with time, it is possiblefor theobservationsto beprojectedontoanalysisincrementstructuresthat

    leadto growth insteadof decay;suchincrementsaredetrimentalto theforecast.An incrementthat

    leadsto decaycanbegeneratedprovidedthereis accurateinformationaboutthegrowth rateof the

    system,but otherwise4D-Var generatesan incrementthat leadsto growth. So not only is 4D-Var

    efficient in correctinggrowing errors,it is alsoefficient in addinggrowing errors.Thecaseswhere

    4D-Varcorrectssucherrorsmostlikelyoutweighthecaseswhere4D-Varaddstheseerrors.However,

    therearelikely to bea few occasionswhere4D-Var addsrapidly growing errorsto thebackground

    25

  • state,resultingin aworseforecastthanif observationshadnot beenassimilated.

    The benefitsof 4D-Var canbe maximizedby placingthe observationsin the optimal locations

    in spaceandtime. Suchadaptive observation strategieshave previously beenconsidered(Snyder,

    1996),andincludeplacingtheobservationsin regionsthataresensitive to errorgrowth (Buizzaand

    Montani, 1999)or wherethe observationshave a large impacton a measureof the forecasterror

    (BishopandToth,1999).Thispapersuggeststhatanalternativestrategy couldbebasedonoptimiz-

    ing theinformationthatcanbeextractedby the4D-Varalgorithm.Further, the4D-Varobservability

    matrix enablesus to considertheoptimal locationfor observationsin both time andspace(Daescu

    andNavon,2004),andtakesinto accountboththemodeldynamicsanderrorcovariances.

    This work hasalsohighlightedthe importanceof usingcase-dependentbackgrounderror vari-

    ances,sothatthemaximumamountof informationcanbeextractedfrom theobservationsandsothat

    thealgorithmcangeneratethemodalandnon-modalgrowth structures.Inappropriateerrorvariances

    canleadto usefulinformationbeingmistakenlyfilteredfrom thesolution,or informationcanbepro-

    jectedontotheinappropriatestructures.Case-dependentcovariancesmaybeachievedusingmethods

    suchaserror-breeding(TothandKalnay,1997),or alternatively by computingtheappropriatevalues

    from thedata(Dee,1995;Gonget al., 1998;DesroziersandIvanov, 2001).

    Acknowledgements

    The authorsthank A. Lawless from the University of Readingfor the many fruitful discussions

    throughoutthis project. The authorsalso thank A. Hollingsworth from the EuropeanCentrefor

    MediumRangeWeatherForecastsfor stimulatingoneof us(BJH) into trying to understand4D-Var

    andfor hismany usefulcommentsandinterpretationof thiswork. Theresearchof CJwassupported

    by a NERCCASEstudentshipat theUniversityof Readingwith theMet Office asthecooperating

    organization.Revisionswerecompletedwhile CJwassupportedby a post-doctoralfellowshipfrom

    theAdvancedStudyProgramat theNationalCenterfor AtmosphericResearch.TheNationalCenter

    for AtmosphericResearchis supportedby theNationalScienceFoundation.

    26

  • APPENDIX A

    Definitions of the true stateinitial conditions and background error

    correlation matrices

    Thenormalmodesaredefined(e.g.HoskinsandBretherton,1972)as:

    V X , Z ��0¥8¦Y§>¨ h Z ��¥8¦Y§ h X �!�_©§>ª¬«¨ h Z ��§>ª¬« h X �-, Growing Mode (A.1a)V X , Z ��0¥8¦Y§>¨ h Z ��¥8¦Y§ h X �� _©§>ª¬«®¨ h Z ��§>ª¬« h X �-, DecayingMode (A.1b)

    wherehb¯;=6v

    ,©0 \ 6uY

    andthe interior QGPV is zero. The interior QGPV-dipole perturbation

    consistsof two spatiallyconfinedvorticesby defining U X , Z �� O X �±° Z � , where

    O X ���² p �d³� 4´¬µ·¶�¸ ��¹ ³ºp�¹ �² � A X A �g² p� ² » �¼¾½ ´�¸ ¹ ³º¹ � ² p A X A ² p�² p 4³� � ´¬µ·¶�¸ ��¹ ³ºp�¹ ² p A X A ² �

    (A.2a)

    ° Z ��4¥8¦Y§� i Z ��§>ª¬« i Z � \ A Z A £ hji (A.2b)

    with ¿ £ 3Y35hji , h( \8À rY¿ , i À r 356 £ andboth O X � and ° Z � arezerooutsidethe specifiedranges.

    Thebackgrounderrorcorrelationmatricesaredefinedby assumingthatthebackgroundstateer-

    rors arecorrelatedin the horizontal,but that thereareno correlationsbetweenvertical levels. The

    matrix�

    is block-diagonalwith matricesÁ on the diagonal,which definethe horizontalcorrela-tion betweenvariableson onevertical level. The correlationsarespecifiedby definingthe inverse

    correlationmatrix,asin JHN:

    Á ���ày zp\ %Ä ³Å³ �� 6 (A.3)

    Ä ³Å³ is a finite differencesecondderivative matrix in the X direction which incorporatesperiodicboundaryconditions,z is thehorizontalcorrelationlength-scale,and  is a scalarparameterthat isspecifiedsothatdiagonalelementsof Á haveavalueof one.

    27

  • APPENDIX B

    On the useof perfect observations

    Theexperimentsin this paperuseperfectobservationsratherthanobservationswith errors,but

    still includethe effect of filtering provided by the backgroundterm in the cost function. We now

    describe,first theoreticallyandthenwith experiments,why theseresultsarerelevantto assimilation

    with real data. The effectsof observationalnoiseandfiltering by 4D-Var aredescribedin further

    detail in JHN.

    Following from (4), whenimperfectobservations C&ÇÆ C' ��w _È areassimilated,the analysisincrementscanbe written in termsof componentsfrom the true signal C' ��w andthe observationalnoise

    È.

    � ���ED�� � � � � � �� IO IfP wI L�I I

    O IQP ÆI L�I (B.1a)

    where

    P wI K �I )*��� C' � w � C' ��� � r J I (B.1b)P ÆI K �I )*���È r J I (B.1c)

    Typically, the observationalnoisehasa large projection, P ÆI , onto the RSVswith small spatialscalesandassociatedwith smallsingularvalues,whilst thetruesignal, P wI , hasa largeprojectionontothe RSVswith large spatialscalesandassociatedwith large singularvalues. This is illustratedin

    Fig.B.1.Theroleof thefilter factor,O I , is to filter thecontributionfrom thenoisewhilst retainingthe

    contribution from thetruesignal. Whentheappropriatevaluefor thevarianceratio is specified,the

    contribution from thenoise, I O IfP ÆI L�I (thesecondterm in equationB.1a),shouldbecloseto zeroso that the equationsfor perfectand imperfectobservationsarealmostidentical. This meansthat

    the analysiswith perfectobservationsshouldbe closeto the analysiswith imperfectobservations.

    Thusthe relevanceof perfectobservationsrelieson the assumptionthat the observationalnoiseis

    projectedonto theRSVswith small singularvaluesandthereforethat thenoiseis filtered from the

    28

  • solution.It is only with this sameassumptionthatvariationalassimilationmethodscanbeof use.

    The analysiswith perfectobservationsdoesaccountfor the fact that the observationalnoiseis

    filtered, becausethe appropriateamountof filtering is alsoappliedto the true signal. This is very

    differentto a similar analysiswith perfectobservationsbut with no backgroundtermandhenceno

    filtering.

    Theremaybesomesmalldifferencesbetweentheanalysesfor perfectandimperfectobservations

    as it is possiblefor the observational noiseto project onto the RSVs with large singularvalues.

    Thesesmall differenceswill dependon the actualobservational errorsand are likely to become

    importantfor a seriesof assimilationwindows in which theforecastsbecomethebackgroundstates

    for thenext analysis.However, for a singleassimilationwindow it is unlikely that thesedifferences

    have a significantimpacton theresults.Further, asthesedifferencesdependon thestructureof the

    observationalnoise,anensembleof experiments,with differentvaluesfor therandomnoise,would

    beneededto deduceconcreteconclusions.Theuseof perfectobservationseliminatesthis need.

    To finally confirm that the resultswith perfectobservationsarealmostequivalentto thosewith

    imperfectobservations,we compareananalysisthatusesperfectobservationswith ananalysisthat

    usesnoisyobservations.The truestateis givenby a growing modeandthebackgroundstatehasa

    phaseerror. The casewith noisy observationshasrandomnoiseaddedto the perfectobservations

    thathasa Gaussiandistribution with standarddeviation 1.5. Theappropriatevalueof� �

    , andhence

    the appropriateamountof filtering, is found by repeatingthe analyseswith differentvaluesof� �

    andselectingthe casewherethe valueof the costfunction at theminimum is equalto the number

    of observations(Talagrand,1998). This gives an appropriatevalue of� � 56u

    . The analysed

    wave, shown at the beginningof the window in Fig. B.2a-b,is closeto the true stateon the lower

    boundaryandmid-waybetweenthebackgroundstateandtruestateon theupperboundary. Thecase

    for perfectobservationsagainuses� � x56u

    . The analysis(Fig. B.2c-d) is almostidenticalto that

    for theperfectobservations,with theanalysedwavecloseto thetruestateon thelowerboundaryand

    mid-way on theupperboundary. Therearesomeslight differences,which dependon thevaluesof

    theobservationalnoise.

    29

  • References

    Badger, J. andB. J. Hoskins,2001: Simple initial valueproblemsandmechanismsfor baroclinic

    growth. J. Atmos. Sci., 58, 38–49.

    Bishop,C. H. andZ. Toth,1999:Ensembletransformationandadaptiveobservations.J. Atmos. Sci.,

    56, 1748–1765.

    Buizza,R. andA. Montani,1999: Targetingobsevationsusingsingularvectors.J. Atmos. Sci., 56,

    2965–2985.

    Buizza,R. andT. N. Palmer, 1995: Thesingular-vectorstructureof theatmosphericglobalcircula-

    tion. J. Atmos. Sci., 52, 1434–1456.

    Charney, J.G., 1947:Thedynamicsof longwavesin abaroclinicwesterlycurrent.Journal of Mete-

    orology, 4, 135–162.

    Courtier, P., E. Andersson,W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud,A. Hollingsworth,

    F. Rabier, andM. Fisher, 1998: The ECMWF implementationof three-dimensionalvariational

    assimilation(3D-Var). I: Formulation.Q. J. R. Meteorol. Soc., 124, 1783–1807.

    Courtier, P., J.-N.Thépaut,andA. Hollingsworth,1994: A strategy for operationalimplementation

    of 4D-Var,usinganincrementalapproach.Q. J. R. Meteorol. Soc., 120, 1367–1387.

    Daescu,D. N. andI. M. Navon,2004:Adaptiveobservationsin thecontext of 4d-var dataassimila-

    tion. Meteorol. Atmos. Phys., 85, 205–226.

    Dee,D. P., 1995: On-lineestimationof errorcovarianceparametersfor atmosphericdataassimila-

    tion. Mon. Weather Rev., 123, 1128–1145.

    Desroziers,G. andS. Ivanov, 2001: Diagnosisandadaptive tuningof observation-errorparameters

    in avariationalassimilation.Q. J. R. Meteorol. Soc., 127, 1433–1452.

    Eady, E. T., 1949:Longwavesandcyclonewaves.Tellus, 1, 33–52.

    30

  • Evensen,G., 1994: Sequentialdataassimilationwith a nonlinearquasi-geostrophicmodel using

    montecarlomethodsto forecasterrorstatistics.J. Geophys. Res.-Oceans, 99, 10143–10162.

    Farrell,B. F., 1982:Theinitial growth of disturbancesin abaroclinicflow. J. Atmos. Sci., 39, 1663–

    1686.

    — 1984:Modalandnon-modalbaroclinicwaves.J. Atmos. Sci., 41, 668–673.

    — 1989:Optimalexcitationof baroclinicwaves.J. Atmos. Sci., 46, 1193–1206.

    Gong,J. J., G. Wahba,D. R. Johnson,andJ. Tribbia, 1998: Adaptive tuningof numericalweather

    predictionmodels: simultaneousestimationof weighting, smoothingand physicalparameters.

    Mon. Weather Rev., 126, 210–231.

    Hoskins,B. J.andF. P. Bretherton,1972:Atmosphericfrontogenesismodels:Mathematicalformu-

    lationandsolution.J. Atmos. Sci., 29, 11–37.

    Johnson,C., 2003: Information Content of Observations in Variational Data Assimilation. Ph.D.

    thesis,Universityof Reading.

    Johnson,C., B. J. Hoskins,and N. K. Nichols, 2005a: A singularvector perspective of 4d-var:

    Filteringandinterpolation.Q. J. R. Meteorol. Soc., 131, 1–20.

    Johnson,C., N. K. Nichols, andB. J. Hoskins,2005b: Very large inverseproblemsin atmosphere

    andoceanmodelling.Int. J. Numer. Meth. Fluids, 47, 759–771.

    Le Dimet,F. andO. Talagrand,1986:Variationalalgorithmsfor analysisandassimilationof meteo-

    rologicalobservations:Theoreticalaspects.Tellus, 38A, 97–110.

    Lorenc,A. C., 1986: Analysismethodsfor numericalweatherprediction.Q. J. R. Meteorol. Soc.,

    112, 1177–1194.

    — 2003a:Modelling of errorcovariancesby 4d-var dataassimilation.Q. J. R. Meteorol. Soc., 129,

    3167–3182.

    31

  • — 2003b:Thepotentialof theensembleKalmanfilter for NWP-acomparisonwith 4d-var. Q. J. R.

    Meteorol. Soc., 129, 3183–3203.

    Pires,C., R. Vautard,andO. Talagrand,1996:On extendingthelimits of variationalassimilationin

    nonlinearchaoticsystems.Tellus, 48A, 96–121.

    Rabier, F. andP. Courtier, 1992: Four-dimensionalassimilationin thepresenceof baroclinicinsta-

    bility. Q. J. R. Meteorol. Soc., 118, 649–672.

    Rabier, F., H. Järvinen,E. Klinker, J. F. Mahfouf, and A. Simmons,2000: The ECMWF opera-

    tional implementationof four-dimensionalvariationalassimilation.I: Experimentalresultswith

    simplifiedphysics.Q. J. R. Meteorol. Soc., 126, 1143–1170.

    Rabier, F., E. Klinker, P. Courtier, andA. Hollingsworth,1996:Sensitivity of forecasterrorsto initial

    conditions.Q. J. R. Meteorol. Soc., 122, 121–150.

    Snyder, C., 1996: Summaryof an informal workshopon adaptive observationsandFASTEX. Bull.

    Amer. Meteor. Soc., 77, 953–961.

    Talagrand,O.,1998:A posteriorievaluationandverificationof analysisandassimilationalgorithms.

    Diagnosis of data assimilation systems, ECMWF,Reading,UK, WorkshopProceedings,17–28.

    Thépaut,J.-N.,P. Courtier, G. Belaud,andG. Lemâıtre,1996:Dynamicalstructurefunctionsin 4D

    variationalassimilation:A casestudy. Q. J. R. Meteorol. Soc., 122, 535–561.

    Tippett, M. K., J. L. Anderson,C. H. Bishop,T. M. Hamill, andJ. S. Whitaker, 2003: Ensemble

    squareroot filters.Mon. Weather Rev., 131, 1485–1490.

    Toth,Z. andE.Kalnay, 1997:EnsembleforecastingatNCEPandthebreedingmethod.Mon. Weather

    Rev., 125, 3297–3319.

    32

  • List of Tables

    1 Threedifferentspecificationsof thevarianceratiosfor theinteriorQGPV,� �

    , andfor

    thebuoyancy on theboundaries,� �� , for usein 4D-Varexperiments. . . . . . . . . . 34

    33

  • Specification� � � �

    �� � r � � �

    1 1;Q3 � ;=37

    2u�;=3 �mp ;Q3 �m� u¤;=3 �m�

    3;=3 �

    1;=3 �

    Table 1: Threedifferentspecificationsof thevarianceratiosfor the interior QGPV,� �

    , andfor the

    buoyancy on theboundaries,� �� , for usein 4D-Varexperiments.

    34

  • List of Figures

    1 4D-Varanalysesfor thecaseswherethebackgroundstatehasanamplitudeerrorand

    thetruestateis givenby themostrapidly (a)-(b)growing and(c)-(d)decayingmode.

    The analysis( � � , solid), backgroundstate( � � , dashed)and true state( ��w , dotted)fieldsareall shown at themiddleof thetime window. Theupperpanels(a) and(c)

    show thebuoyancy on theupperboundaryandthelowerpanels(b) and(d) show the

    buoyancy on thelowerboundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2 4D-Var analysesfor thecaseswherethebackgroundstatehasa phaseerrorandthe

    true stateis given by the most rapidly (a)-(b) growing and(c)-(d) decayingmode.

    Thedetailsareasfor Fig. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3 Thetop panelsshow thesecondRSV, L � , of theobservability matrix, premultipliedby thesquarerootof thebackgrounderrorcorrelationmatrix,

    � �ED��. Thelowerpanels

    show theresultof integratingthesefieldsby theEadymodelovera12hinterval. The

    numbersatthetopleft of eachplot indicatesthemaximummagnitudeof eachplotted

    field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4 Thestructureof thesixth RSV, (� �ED�� L�É ). Thedetailsareasfor Fig. 3. . . . . . . . . 41

    5 The evolution of the kinetic energy (KE) for the caseswherethe backgroundstate

    hasanamplitudeerrorandthetruestateis givenby themostrapidly (a)growing and

    (b) decayingmode. The true stateKE is shown by the thick solid line (T) andthe

    backgroundstateKE is shown by thethin solid line (B). Theanalyseshavespecified

    errorvarianceratios� �

    of356;

    (dash),;

    (dot-dash),;Q3

    (dot-dot-dash)and;=3m3

    (dot). . 42

    6 Theevolution of theKE for thecaseswherethebackgroundstatehasa phaseerror

    andthe true stateis givenby the mostrapidly (a) growing and(b) decayingmode.

    Thedetailsareasfor Fig. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    35

  • 7 The evolution of the error correlationfor thecaseswherethe backgroundstatehas

    a phaseerror and the true stateis given by the most rapidly (a) growing and (b)

    decayingmode. The backgroundstatecorrelationis shown by the solid line (B).

    The analyseshave specifiederror varianceratios� �

    of356;

    (dash),;

    (dot-dash),;Q3

    (dot-dot-dash)and;=3Y3

    (dot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    8 The singularvaluesof the observability matrix that correspondto the first (solid)

    andsecond(dashed)pairsof RSVsthatcontributeto theanalysisincrement,plotted

    againstthetime of theinitial observations.In all cases,thefinal setof observations

    aregivenat T+12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9 Theevolution of theKE for thecaseswherethebackgroundstatehasanamplitude

    error andthe true stateis given by the most rapidly (a) growing and(b) decaying

    mode.Thefirst setof observationsareeitherat thebeginning(T+0,dash),themiddle

    (T+6,dot-dash)or theend(T+12,dot)andthesecondsetarealwaysat theendof the

    window. ThetruestateKE is shown by thethick solid line (T) andthebackground

    stateKE is shown by thethin solid line (B). . . . . . . . . . . . . . . . . . . . . . . 46

    10 Theevolution of theKE for thecaseswherethebackgroundstatehasa phaseerror

    andthe true stateis givenby the mostrapidly (a) growing and(b) decayingmode.

    Thedetailsareasfor Fig. 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    11 The evolution of the error correlationfor thecaseswherethe backgroundstatehas

    a phaseerror and the true stateis given by the most rapidly (a) growing and (b)

    decayingmode.Thefirst setof observationsareeitherat thebeginning(T+0, dash),

    themiddle (T+6, dot-dash)or theend(T+12, dot) andthesecondsetarealwaysat

    theendof thewindow. Thebackgroundstateerrorcorrelationis shown by thesolid

    line (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    12 The singularvaluesof the observability matrix that correspondto the first (solid)

    andsecond(dashed)pairsof RSVsthatcontributeto theanalysisincrement,plotted

    againsttheheightof thehorizontalline of observations. . . . . . . . . . . . . . . . 49

    36

  • 13 Theevolution of theKE for thecaseswherethebackgroundstatehasanamplitude

    errorand(a) thetruestateis givenby thegrowing modeandthespecifiederrorvari-

    ance� �

    is;=3

    , and(b) thetruestateis givenby thedecayingmodeandthespecified

    error variance� �

    is356;

    . The horizontalline of observationsis given at heightsof3km (dash),

    ;86ukm (dot-dash)and

    56ukm (dot). . . . . . . . . . . . . . . . . . . . . 50

    14 The structureof the non-dimensionalQGPV (upperpanels)and buoyancy (lower

    panels)for selectedRSVs� �ED�� L of theobservability matriceswherethevariancera-

    tiosare(a)-(b)Specification1, and(c)-(d)Specification3. Thesehavecorresponding

    singularvalues,(a)J p £ 3 \ , (b) J � �Ê \ ;= , (c)J p Ë;= q and(d)J �Ì� kuY . The

    valuesat thetop left of eachpaneldenotethemaximummagnitudeof thefield. . . . 51

    15 4D-Varanalysesnon-dimensionalQGPV(upper)andbuoyancy (lower) for thecases

    wherethetruestateis givenby themostrapidly growing mode(shown in (a)). The

    specifiederrorvarianceratiosare:(b) Specification1, (c) Specification2 (d) Specifi-

    cation3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    16 Theevolutionof theKE growth ratesfor thecaseswherethebackgroundstatevalues

    areall zeroandthetruestateis givenby (a) themostrapidly growing modeand(b)

    aPV-dipoleperturbation.Thetruestateis shown by thesolid line andtheotherlines

    show theanalysesusingthedifferentspecificationsfor thevarianceratios. . . . . . . 53

    17 4D-Varanalysesnon-dimensionalQGPV(upper)andbuoyancy (lower) for thecases

    wherethetruestateis givenby aninterior QGPVdipoleperturbation(shown in (a))

    thatexhibits rapidfinite-timenon-modalgrowth. Thedetailsareasfor Fig. 15. . . . 54

    B.1 Illustration of typical Picardratios, z¾Í °�Î P>I Î , for the true signaland the noise. ThePicardratio for the true signal, z¾Í °ÏÎ P wI Î , decreaseswith increasingsingularvectorindex, j. ThePicardratio for theerror, z¾Í °ÏÎ P ÆI Î , increaseswith j. . . . . . . . . . . . . 55

    B.2 4D-Var analysescreatedusingobservationswith (a-b)noisewith standarddeviation

    1.5and(c)-(d) no noise.Both experimentsuse� � d56u

    andtheanalysesareshown

    at thebeginningof a12hourassimilationwindow. . . . . . . . . . . . . . . . . . . 56

    37

  • 1000 10002000 20003000 30004000 4000-5-5

    00

    55

    Lower Buoyancy

    zonal direction (km)zonal direction (km)

    -5 -5

    00

    5 5

    (d)(b)

    Growing Mode(c)(a)

    Decaying Mode

    Upper Buoyancy

    tbx

    x

    xa

    Figure 1: 4D-Var analysesfor thecaseswherethebackgroundstatehasanamplitudeerrorandthe

    truestateis givenby themostrapidly (a)-(b)growing and(c)-(d) decayingmode.Theanalysis( � � ,solid), backgroundstate( � � , dashed)andtruestate( � w , dotted)fieldsareall shown at themiddleofthe time window. The upperpanels(a) and(c) show the buoyancy on the upperboundaryandthe

    lowerpanels(b) and(d) show thebuoyancy on thelowerboundary.

    38

  • 1000 10002000 2000 30003000 40004000-5-5

    00

    55

    Lower Buoyancy

    zonal direction (km) zonal direction (km)

    -5-5

    00

    5 5(a)

    (d)

    (c)Decaying ModeGrowing Mode

    (b)

    Upper Buoyancy

    tbx

    x

    xa

    Figure 2: 4D-Var analysesfor thecaseswherethebackgroundstatehasa phaseerrorandthe true

    stateis givenby themostrapidly (a)-(b)growing and(c)-(d) decayingmode.Thedetailsareasfor

    Fig. 1.

    39

  • 100010001000 200020002000 30003000 300040004000 4000

    0

    0

    2

    2

    4

    4

    6

    6

    8

    8

    10

    10

    heig

    ht (k

    m)

    0.354

    zonal direction (km) zonal direction (km) zonal direction (km)

    heig

    ht (k

    m)

    0.468-1

    -0.5

    -1

    -0.5

    0

    0

    0.5

    1

    0.5

    1

    0.194

    0.603-1

    -0.5

    -1

    -0.5

    0

    0.5

    0

    0.5

    1

    1

    0.532

    0.780

    Initial

    Final

    Streamfunction Upper Buoyancy Lower Buoyancy

    Figure3: Thetoppanelsshow thesecondRSV, L � , of theobservability matrix,premultipliedby thesquareroot of the backgrounderror correlationmatrix,

    � �ED��. The lower panelsshow the resultof

    integratingthesefieldsby theEadymodelover a 12h interval. Thenumbersat the top left of each

    plot indicatesthemaximummagnitudeof eachplottedfield.

    40

  • 1000 1000 100020002000 2000 30003000 30004000 40004000

    0

    0

    2

    2

    4

    4

    6

    6

    8

    8

    10

    10

    0.317

    0.325 0.532 0.194

    0.1320.513

    heig

    ht (k

    m)

    zonal direction (km)zonal direction (km)zonal direction (km)

    heig

    ht (k

    m)

    -1

    -1

    -0.5

    0

    -0.5

    0.5

    0

    1

    0.5

    1

    -1

    -1

    -0.5

    0

    -0.5

    0

    0.5

    1

    0.5

    1

    Final

    Streamfunction Upper Buoyancy Lower Buoyancy

    Initial

    Figure4: The structure of the sixth RSV, (� �ED�� L�É ). The details are as for Fig. 3.

    41

  • 00 1212 24 24 3636 48 4800

    0.22

    40.4

    6

    0.6

    0.8

    8 1

    10

    12

    1.2

    14

    1.4

    16

    1.6

    1.8

    2

    KE

    Time (hours) Time (hours)

    Decaying Mode

    Ð Ñ Ñ Ò Ó Ò Ô Õ Ö Ò × ØÙ Ò Ø Ú × Û(b)

    T

    Growing Mode

    1

    0.1

    Ù Ò Ø Ú × Û(a)

    Ð Ñ Ñ Ò Ó Ò Ô Õ Ö Ò × Ø

    1000.1

    10

    1

    B

    10

    T

    1

    0.1

    10

    100B

    Figure 5: Theevolution of thekinetic energy (KE) for thecaseswherethebackgroundstatehasan

    amplitudeerrorandthe truestateis givenby themostrapidly (a) growing and(b) decayingmode.

    ThetruestateKE is shown by thethick solid line (T) andthebackgroundstateKE is shown by the

    thin solid line (B). Theanalyseshavespecifiederrorvarianceratios� �

    of356;

    (dash),;

    (dot-dash),;=3

    (dot-dot-dash)and;=3Y3

    (dot).

    42

  • 00 1212 24 24 3636 484800

    20.2

    40.4

    0.6

    6

    8

    0.8

    10

    1

    12

    1.2

    14

    1.4

    16

    1.6

    1.8

    2

    KE

    Time (hours) Time (hours)

    Decaying Mode

    (b)(a)

    Growing Mode

    0.1

    Ü Ý Þ ß à áâ ã ã Ý ä Ý å æ ç Ý à Þ â ã ã Ý ä Ý å æ ç Ý à ÞÜ Ý Þ ß à á0.1,100

    1,10

    T,B

    100

    1

    10

    T,B

    Figure 6: Theevolution of theKE for thecaseswherethebackgroundstatehasa phaseerrorand

    thetruestateis givenby themostrapidly (a) growing and(b) decayingmode.Thedetailsareasfor

    Fig. 5.

    43

  • 00 1212

    Assimilation

    Correlation

    Window WindowAssimilation

    (b)

    Decaying ModeGrowing Mode

    Time (Hours)

    (a)

    Time (hours)2424 3636 4848

    -1 -1

    -0.5-0.5

    0 0

    0.5 0.5

    1 110

    B

    0.1

    1001

    B

    1 10 0.1

    100

    Figure 7: The evolution of the error correlationfor the caseswherethe backgroundstatehasa

    phaseerrorandthetruestateis givenby themostrapidly (a) growing and(b) decayingmode.The

    backgroundstatecorrelationis shownby thesolidline (B). Theanalyseshavespecifiederrorvariance

    ratios� �

    of356;

    (dash),;

    (dot-dash),;=3

    (dot-dot-dash)and;=3Y3

    (dot).

    44

  • 120 60

    1

    2

    3

    4

    Time of the Initial Set Of Observations

    SingularValue

    Second Pair of RSVs

    First Pair of RSVs

    Figure 8: The singularvaluesof the observability matrix that correspondto the first (solid) and

    second(dashed)pairsof RSVsthatcontributeto theanalysisincrement,plottedagainstthetime of

    theinitial observations.In all cases,thefinal setof observationsaregivenat T+12.

    45

  • 00 1212 2424 36 36 484800

    20.2

    40.4

    6

    0.6

    8

    0.8

    10

    1

    12

    1.2

    14

    1.4

    1.6

    16

    1.8

    2

    KE

    Time (hours) Time (hours)

    Decaying ModeGrowing Mode

    (a) (b)

    è é é ê ë ê ì í î ê ï ðñ ê ð ò ï óè é é ê ë ê ì í î ê ï ðñ ê ð ò ï ó

    T+12

    T+12

    T

    B

    T+6T+0

    B

    T+12

    T+6

    T+0

    T

    T+0

    T+6

    Figure 9: Theevolution of theKE for thecaseswherethebackgroundstatehasanamplitudeerror

    andthe true stateis givenby the mostrapidly (a) growing and(b) decayingmode. Thefirst setof

    observationsareeitherat thebeginning (T+0, dash),the middle (T+6, dot-dash)or the end(T+12,

    dot)andthesecondsetarealwaysat theendof thewindow. ThetruestateKE is shown by thethick

    solid line (T) andthebackgroundstateKE is shown by thethin solid line (B).

    46

  • 00 12 1224 2436 36 48480 0

    2 0.2

    0.44

    6

    0.6

    0.8

    8 1

    10 1.2

    12

    14

    1.4

    16

    1.6

    1.8

    2

    KE

    Time (hours) Time (hours)

    T+0

    T,B

    T+6

    T+12

    (b)(a)

    Growing Mode Decaying Mode

    T,B

    T+12

    T+6

    T+0

    T+0

    T+6

    T+12

    ô õ õ ö ÷ ö ø ù ú ö û üý ö ü þ û ÿô õ õ ö ÷ ö ø ù ú ö û üý ö ü þ û ÿ

    Figure 10: Theevolution of theKE for thecaseswherethebackgroundstatehasa phaseerrorand

    thetruestateis givenby themostrapidly (a) growing and(b) decayingmode.Thedetailsareasfor

    Fig. 9.

    47

  • 0 0

    Correlation

    Time (hours)12

    Time (hours)

    Decaying ModeGrowing Mode

    (a)

    12

    (b)

    2424 3636 48 48

    -1-1

    -0.5 -0.5

    0 0

    0.50.5

    1 1

    BT+0

    T+12T+12 T+6

    B

    T+6T+0

    Figure 11: The evolution of the error correlationfor the caseswherethe backgroundstatehasa

    phaseerrorandthetruestateis givenby themostrapidly (a) growing and(b) decayingmode.The

    first setof observationsareeitherat the beginning (T+0, dash),the middle (T+6, dot-dash)or the

    end(T+12,dot) andthesecondsetarealwaysat theendof thewindow. Thebackgroundstateerror

    correlationis shown by thesolid line (B).

    48

  • 0 2 4 6 8 100

    1

    2

    3

    Height of the Observations

    Singular Value

    First pair of RSVs

    Second pair of RSVs

    Figure 12: The singularvaluesof the observability matrix that correspondto the first (solid) and

    second(dashed)pairsof RSVsthatcontributeto theanalysisincrement,plottedagainsttheheightof

    thehorizontalline of observations.

    49

  • 00 1212 24 2436 36 48480 0

    2 0.2

    0.44

    0.6

    6 0.8

    8 1

    10 1.2

    12

    14

    1.4

    16

    1.6

    1.8

    2(a) (b)

    KE

    Time (hours) Time (hours)

    µ Decaying Mode, =0.12Growing Mode, =10

    T

    µ2

    � � � � � �

    0

    3.5

    1.51.5

    0

    3.5

    � � � � � � � � � �� � � � � �0

    � � � � � � � � � �1.5

    3.5

    T

    B

    B

    Figure13: Theevolutionof theKE for thecaseswherethebackgroundstatehasanamplitudeerror

    and(a) thetruestateis givenby thegrowing modeandthespecifiederrorvariance�� is ��� , and(b)thetruestateis givenby thedecayingmodeandthespecifiederrorvariance� is ����� . Thehorizontalline of observationsis givenatheightsof � km (dash),����� km (dot-dash)and ����� km (dot).

    50

  • 0

    2

    4

    6

    8

    100.0001495

    4000 8000

    0.5

    2.5

    4.5

    6.5

    8.5

    10123.1

    0.0001898

    4000 8000

    122.9

    0

    2

    4

    6

    8

    1061.21

    4000 8000

    0.5

    2.5

    4.5

    6.5

    8.5

    1018.91

    63.49

    4000 8000

    6.938

    (a)RSV 4 (b)RSV 10 (c)RSV 4 (d)RSV 12

    µq2=1 µ

    b2=10−5 µ

    q2=10−5 µ

    b2=1Specification 1 Specification 3

    Figure14: Thestructureof thenon-dimensionalQGPV(upperpanels)andbuoyancy (lowerpanels)

    for selectedRSVs ����� ��! of the observability matriceswherethe varianceratiosare(a)-(b) Spec-ification 1, and(c)-(d) Specification3. Thesehave correspondingsingularvalues,(a) "$#&%('�)+* ,(b) " �-, %.*0/�1 , (c)"$#2%(/�3�4 and(d)" �-� %65�7 . The valuesat the top left of eachpaneldenotethemaximummagnitudeof thefield.

    51

  • 0

    2

    4

    6

    8

    100.0000

    4000 8000

    0.5

    2.5

    4.5

    6.5

    8.5

    103.53

    0.0001199

    4000 8000

    3.53

    4.128

    4000 8000

    2.422

    8.489

    4000 8000

    2.424

    (a) Truth (b) µq2=1 µ

    b2=10−5 (c) µ

    q2=5×10−4 µ

    b2=10−2 (d) µ

    q2=10−5 µ

    b2=1

    Buoyancy

    QGPV

    Specification 1 Specification 2 Specification 3

    Figure 15: 4D-Var analysesnon-dimensionalQGPV (upper)andbuoyancy (lower) for the cases

    wherethe truestateis givenby themostrapidly growing mode(shown in (a)). Thespecifiederror

    varianceratiosare:(b) Specification1, (c) Specification2 (d) Specification3.

    52

  • 6 12 18 24 30 36 42 48−0.5

    0

    1

    2

    3

    4x 10

    −5

    Time (hours)

    Growth Rateσ

    KE (s−1)

    6 12 18 24 30 36 42 48−0.5

    0

    1

    2

    3

    4x 10

    −5

    Time (hours)

    (a)Truth(b)(c)(d)

    (a) (b)

    Specification 1Truth

    Specification 2Specification 3

    Figure 16: The evolution of the KE growth ratesfor the caseswherethe backgroundstatevalues

    areall zeroandthe true stateis given by (a) the most rapidly growing modeand(b) a PV-dipole

    perturbation.Thetruestateis shown by thesolid line andtheotherlinesshow theanalysesusingthe

    differentspecificationsfor thevarianceratios.

    53

  • 0

    2

    4

    6

    8

    107.89

    4000 8000

    0.5

    2.5

    4.5

    6.5

    8.5

    100.9932

    0.0007027

    4000 8000

    3.65

    2.935

    4000 8000

    0.8651

    5.94

    4000 8000

    0.9837

    (a) Truth (b) µq2=1 µ

    b2=10−5 (c) µ

    q2=5×10−4 µ

    b2=10−2 (d) µ

    q2=10−5 µ

    b2=1

    Buoyancy

    QGPV

    Specification 1 Specification 2 Specification 3

    Figure 17: 4D-Var analysesnon-dimensionalQGPV (upper)andbuoyancy (lower) for the cases

    wherethe true stateis given by an interior QGPV dipole perturbation(shown in (a)) that exhibits

    rapidfinite-timenon-modalgrowth. Thedetailsareasfor Fig. 15.

    54

  • noiseperfect

    εc

    ct

    singular vector index, j

    clog

    FigureB.1: Illustrationof typicalPicardratios, 8:9=@?BAC= , for thetruesignalandthenoise.ThePicardratio for thetruesignal, 8:9=E?GIA = , increaseswith j.

    55

  • 1000 1000 20002000 30003000 40004000−5−5

    00

    55−5

    0

    5

    −5

    0

    5

    y

    x

    (c)

    zonal direction (km)

    bx

    Buoyancy

    a

    Upper

    (d)(b)

    xt

    (a)

    zonal direction (km)

    BuoyancyLower

    FigureB.2: 4D-Varanalysescreatedusingobservationswith (a-b)noisewith standarddeviation1.5

    and(c)-(d) no noise.Both experimentsuseJ�KMLON�PRQ andtheanalysesareshown at thebeginningofa12hourassimilationwindow.

    56