22
The Spaces Between Us: Setting and Maintaining Boundaries in Wireless Spectrum Access Spectrum Access MobiCom 10 MobiCom 10 Lei Yang, Ben Y. Zhao, Haitao Zheng

The Spaces Between Us: Setting and in Spectrum Access

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Spaces Between Us: Setting and in Spectrum Access

The Spaces Between Us: Setting and Maintaining Boundaries in Wireless 

Spectrum AccessSpectrum AccessMobiCom ‘10MobiCom 10

Lei Yang, Ben Y. Zhao, Haitao Zheng

Page 2: The Spaces Between Us: Setting and in Spectrum Access

OutlineOutline

• Background• MotivationMotivation• Proposed Solution‐ Ganache• Model Estimation, Verification and Calibration• Interference DetectionInterference Detection• Evaluation• Conclusion

Page 3: The Spaces Between Us: Setting and in Spectrum Access

Trends in 802 11aTrends in 802.11a

• OFDM scheme:‐Orthogonal wireless channelsOrthogonal wireless channels‐Crossband Interference

• Fixed Size Guardband:‐20 MHz channel bandwidth20 MHz channel bandwidth‐3.4 MHz guardband between channels‐17% Overhead

Page 4: The Spaces Between Us: Setting and in Spectrum Access

Crossband Interference in 802 11aCrossband Interference in 802.11a

3 4 MH 20% f li k A 75% f li k B•3.4 MHz: 20% for link A; 75% for link B•Carrier Sensing Off: from 80% to 65%•Significant Impact from “Guardband Size”

Page 5: The Spaces Between Us: Setting and in Spectrum Access

USRP GNU RadioUSRP GNU Radio

• Software‐define  radio• Flexible to design desired frequency usageFlexible to design desired frequency usage with OFDM scheme

Page 6: The Spaces Between Us: Setting and in Spectrum Access

Crossband Interference in Different Topology

1 2

Page 7: The Spaces Between Us: Setting and in Spectrum Access

Brief SummaryBrief Summary

• Cross‐band Interference is Harmful• Fixed‐sized Guardband Placement isFixed sized Guardband Placement is IneffectiveWh i h b fi db d• What is the best way to configure guardbandfor today’s high density networks?

Page 8: The Spaces Between Us: Setting and in Spectrum Access

Most Common SolutionsMost Common Solutions

i k d i• Link Adaptation‐significant reduction in power efficiencyg p y

• Carrier Sensingdelay transmissions waste spectrum‐delay transmissions waste spectrum

• Power Control‐lower power link becomes vulnerable

• Interference CancellationInterference Cancellation‐complexity, tight synchronization

Page 9: The Spaces Between Us: Setting and in Spectrum Access

GanacheGanache

• Centralized Frequency Planning• Local Guardband AdaptationLocal Guardband Adaptation

Page 10: The Spaces Between Us: Setting and in Spectrum Access

The Relationship Between Network Condition and Guardband Size

Page 11: The Spaces Between Us: Setting and in Spectrum Access

Model Verification and CalibrationModel Verification and Calibration

• Find the minimum guardband size to suppress the impact of interferencep

Page 12: The Spaces Between Us: Setting and in Spectrum Access

Key ObservationsKey Observations

• Local Information Is Not Enough

• A Case for Reducing Power Heterogeneity

Page 13: The Spaces Between Us: Setting and in Spectrum Access

Centralized Frequency PlanningCentralized Frequency Planning

• Phase 1. Signal Measurements‐compute directly from physical layer symbolscompute directly from physical layer symbols

• Phase 2. Frequency Planning‐NP‐complete: Traveling Salesman Problem

Page 14: The Spaces Between Us: Setting and in Spectrum Access

Adapting Guardband UsageAdapting Guardband Usage

i b d f• Detecting Cross‐band Interference

• Local Adjustments‐increase one additional subcarrier ifincrease one additional subcarrier if crossband interference detected

Page 15: The Spaces Between Us: Setting and in Spectrum Access

A Ganache PrototypeA Ganache Prototype

h i l• Physical Layer‐decentralized OFDM‐500KHz is divided into 64 subcarriers with at most 52 subcarriers for data transmission

• Access Layer‐server to GNU radios: Ethernet‐server to GNU radios: Ethernet‐sender/receiver handshaking for sync

b d i‐crossband assertion: edge distortion > 3 * average distortion

Page 16: The Spaces Between Us: Setting and in Spectrum Access

EvaluationEvaluation

f i li d• Performance Metrics: Normalized Impact‐ 1 – (the ratio of per‐link throughput to ideal ( p g pthroughput)

• Five SchemesFive Schemes‐Uni‐Cons: 22 subcarriers for each guardband

b f h b‐Uni‐Aggr: 2 subcarriers for each guardband‐Model: compute guardband valuep g‐C‐Planning: centralized planningGanache‐Ganache

Page 17: The Spaces Between Us: Setting and in Spectrum Access

Ganache vs Fixed size ConfigurationGanache vs. Fixed‐size Configuration

• Topology 1 (Heterogeneous trans. power)

• Topology 2 (Heterogeneous link attenuation)Topology 2 (Heterogeneous link attenuation)

Page 18: The Spaces Between Us: Setting and in Spectrum Access

Impact of Individual ComponentsImpact of Individual Components

• Model‐based Guardband Estimations‐50+% improvement for both topologies50+% improvement for both topologies

• Frequency Planning• Local Adaption

Page 19: The Spaces Between Us: Setting and in Spectrum Access

Cross band Interference DetectionCross‐band Interference Detection

• False Positives: detecting normal impairments as cross‐band interference

• False Negative: failing to detect cross‐band interferenceinterference

Page 20: The Spaces Between Us: Setting and in Spectrum Access

Overall EfficiencyOverall Efficiency

• Heterogeneity in transmit power settings• 20 randomly generated 4‐link topologies20 randomly generated 4 link topologies

Page 21: The Spaces Between Us: Setting and in Spectrum Access

Related WorkRelated Work

• Spectrum Sharing Systems• Cross‐band Interference in WiFiCross band Interference in WiFi• Adaptive Guard Interval• Using Physical Layer Hints

Page 22: The Spaces Between Us: Setting and in Spectrum Access

ConclusionConclusion

• The impact of cross‐band interference on high density networksy

• Ineffective using fixed‐size guardbandsP G h• Prototype Ganache

• 150% throughput improvementg p p• Limitation‐mobility