29
Determining the origin of methane and its effect on the aquifer.

the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Determining the origin of methane and its effect on the aquifer.

Page 2: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Agenda Geologic history Methane characteristics The ratio of carbon isotopes in methane. The unique ratio of hydrocarbons in the Marcellus F iFormation

Identifying the age of the methane. Th   ff t   th   d d illi  h    th   if   The effects methane and drilling have on the aquifer and trend over time.

Conclusions Conclusions.

Page 3: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

EnvironmentEnvironment of DepositionMiddle Devonian (385 MA)

Page 4: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Osborn S G et al. PNAS 2011;108:8172‐8176

Page 5: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

h h l h d b d dMethane is the principal hydrocarbon detected in all stray natural gas migration incidents

Exposure limit (gas phase): TLV‐TWA: 1,000 ppm (ACGIH, 10/2009) Methane (CH4) is the simplest paraffin hydrocarbon gas Methane is generated by microbial & thermogenic processes Flammable, colorless, odorless. Specific gra it   0  (NTP) air    Specific gravity:  0.555 (NTP) air = 1 Explosive range: 5‐15% in ambient air Solubility in water: 26‐32 mg/l (1 atm.)y 3 g/ ( ) Non toxic, no ingestion hazard Simple asphyxiant, explosion hazardMethane can migrate as free gas or dissolved in the groundwater

Page 6: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Isotopic Balance Researchers have determined that there are common carbon & hydrogen isotopic compositions or signatures for thermogenic gas associated with coal & natural gas, drift gas, 

So by collecting numerous gas samples of known origin a database has been

d l d d fi i ti f g g g g

and other near surface microbial gases .  Natural carbon is nearly all isotope 12, with 1.11 percent being isotope 13  

developed and fingerprinting of gas samples may performed.

isotope 13.  Organic material contains less C‐13, because bacteria /photosynthesis preferentially selects C‐12 over C‐13. p y p y 3

Oil and natural gas typically show a C‐12 to C‐13 ratio similar to that of the biological materials from which they are to have originated  originated. 

Page 7: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Sh l GShale Gas Increasing formation  Increasing formation 

temperature leads to diagnostic methane/ethane and isotopic ratiosThe normal sequence of carbon isotopic compositions is:ratios

Tight gas shales such as the Marcellus often have uniquely diagnostic isotopic reversals 

δ13C methane (C1) < δ13C ethane (C2) < δ13C propane (C3) and < δ13C butane (C4)

δ13C1 < δ13C2 < δ13C3 and < δ13C4diagnostic isotopic reversals (e.g. δ13C‐CH4 heavier than δ13C‐C2H6)

In the Marcellus they are fully reversed ‐ δ13C1  >  δ13C2  >  δ13C3

Also hydrogen isotopic compositions (δ2H) of C1 and C2 are also reversed. Uniquely identifiable when 

paired with additional proxies (e.g. noble gases)

Page 8: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

I t G h i tIsotope GeochemistryEasily Distinguishes:

Molecular: Methane/Ethane

Isotopic: Carbon and 

Biogenic vs. Thermogenic(e.g. Schoell, 1983; Coleman et al, 1991; Baldassare and Laughrey, 1998)

Hydrogen isotopes (δ13C‐CH4, δ2H‐CH4, δ13C‐C2H6)

N bl  G

Distinguishing different thermogenic gases (e.g. Schoell et al, 1983; Jenden et al, 1993; 

Noble Gases Revesz et al, 2010; Tilley et al, 2010)

?What’s best for distinguishing thermally mature gases?y g

Page 9: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

13 C fractionation

2 H fractionation

% argon

2 H fractionation

% argon

‐29 ‐160

% nitrogen

Page 10: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

HW04

HW02zHW05

HW12

HW17HW24

HW02

HW14

HW06

HW08a

HW12

HW01

Page 11: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Sample Quality ‐ degassing?Sample Quality   degassing? 

ideal

Page 12: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane
Page 13: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Three Patterns of Contamination1. Short term (< 1 year) disruption to the aquifer 

caused by drilling.   (     ) di i     i i  2. Long term (> 3‐4 year) disruption or contamination 

of the aquifer caused by drilling/fracking, releases or other situationsother situations.

3. Natural Background Conditions with high levels of metals and anions.

Page 14: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Type 1: Short Term Disruption

Page 15: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

HW04Gas  Well Activity HW04

1000

1200

25000

30000

35000

Baker Wells  ‐ 1,300 ft to SSESpud ‐ Baker 1   11 Aug. 2008

‐ Baker 2  11 Dec. 2009  Methane isotope sample probably plots outside Marcellus Shale age zone. (interestingly the gas appears older, maybe deeper than Marcellus Shale)

400

600

800

5000

10000

15000

20000

0

200

4

‐10000

‐5000

0

5

10‐Aug‐08 26‐Feb‐09 14‐Sep‐09 2‐Apr‐10 19‐Oct‐10 7‐May‐11 23‐Nov‐11g 9 4 p 9 p 9 y 3

Methane_ug_l Eh in Mv

Linear (Methane_ug_l) Linear (Eh in Mv)Normal range of Eh in groundwateris 200 to ‐100 Mv. Freshwaterstreams 300 to 500 Mv.

9 pH

6

7

8

9 p

4

5

12‐May‐08 28‐Nov‐08 16‐Jun‐09 2‐Jan‐10 21‐Jul‐10 6‐Feb‐11 25‐Aug‐11

Analysis_Ph_ph_Units

Page 16: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

80018000 HW‐7

600

700

12000

14000

16000

l

Gas  Well ActivityBaker Wells  ‐ 1,300 ft to SSESpud ‐ Baker 1   11 Aug. 2008

‐ Baker 2  11 Dec. 2009  

400

500

8000

10000

12000

Metha

ne  in ug

/l

100

200

300

2000

4000

6000

00

2000

9‐Sep‐08 28‐Mar‐09 14‐Oct‐09 2‐May‐10 18‐Nov‐10 6‐Jun‐11 23‐Dec‐11

M h l Eh M M   /l Li  (M h l) Li  (Eh M ) Li  (M   /l)Methane_ug_l Eh Mv Manganese ug/l Linear (Methane_ug_l) Linear (Eh Mv) Linear (Manganese ug/l)

8

8.5

pH

7

7.5

12/18/2008 3/28/2009 7/6/2009 10/14/2009 1/22/2010 5/2/2010 8/10/2010 11/18/2010 2/26/2011 6/6/2011 9/14/2011 12/23/2011

Page 17: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

45014000 HW17

350

400

45

12000

4

250

300

8000

10000

g/l & M

nin ug/l

Methane isotope sampling indicate Marcellus Shale age 

100

150

200

4000

6000

Metha

ne in m

g

Eh in M

vMarcellus Shale age gas at this data point 

.

0

50

100

0

2000

M

Eh Mv Mn ug/l Methane ug/l Eh Trend Methane Trend

G   ll   S d  i     Note incomplete data set Gas Well  Date Spud  Distance to HW17Lewis  5/28/2008            670 ft.Ely 4H & 6H      3/27/2008            1,360 ft.Costello 1 7/16/2008             1,350 ft.

Page 18: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

50045

HW1 ‐Hubert

300

400

30

35

40Methane isotope sampling indicate Marcellus Shale age gas at this data point

g/l

200

300

20

25

30

Eh in M

v

Gesford 3 spud July 28, 2008

Metha

ne in m

g

0

100

5

10

15M

‐100016‐Dec‐08 16‐Apr‐09 16‐Aug‐09 16‐Dec‐09 16‐Apr‐10 16‐Aug‐10 16‐Dec‐10 16‐Apr‐11 16‐Aug‐11 16‐Dec‐11

Methane mg/l Eh in Mv Methane Trend Eh Trend

HW1 lacked data for nearly all constituents, particularly for the years  2009‐2010 

Page 19: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Type 2: Long Term Disruption

Page 20: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

45030 Gesford 2 

HW8

Methane isotope sampleMethane and Manganese

300

350

400

20

25

Remediation of well on April  1, 2009 

Methane isotope sampleplots outside MarcellusShale age zone.

Gesford 2 Spud   Sept. 23, 2008Stimu Nov‐ Dec 2008

100

150

200

250

10

15

0

50

0

5

29‐Oct‐08 17‐May‐09 3‐Dec‐09 21‐Jun‐10 7‐Jan‐11 26‐Jul‐11 11‐Feb‐12

Methane in mg/l Mn in ug/l Linear (Methane in mg/l) Linear (Mn in ug/l)Methane in mg/l Mn in ug/l Linear (Methane in mg/l) Linear (Mn in ug/l)

789

605

705pH ‐ Eh

234567

205

305

405

505

01

5

105

29‐Oct‐08 17‐May‐09 3‐Dec‐09 21‐Jun‐10 7‐Jan‐11 26‐Jul‐11 11‐Feb‐12

Eh in Mv Analysis_Ph_ph_Units Linear (Eh in Mv) Linear (Analysis_Ph_ph_Units)

Page 21: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane
Page 22: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Gas is Gas0

500

Interbeddedsandstone,siltstoneGas is Gas

Thermogenic gas is present throughout the upper Devonian 

1,000

Catskill 

&  shale

g ppformations.  Drilling creates pathways, either temporary or permanent, that allows gas to migrate to the shallow aquifer 

1,500

2,000

Sandstone

surface

migrate to the shallow aquifer near surface.

Shallower  (non Marcellus) gas may also include higher amounts 

2,500Gas shows

h beneath s

may also include higher amounts of H2S which can have a greater impact on groundwater.

In some cases  these gases 

3,000

3,500

interbeddedsiltstone and 

shale

Depth

In some cases, these gases disrupts groundwater quality 

4,000

From Gesford 2 Well Record and Completion Report

4,500

5,000Tully Limestone

Gas show

Page 23: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

600

700

18.00

20.00

Maye ‐HW 14 Mn x 10,000

Eh in mV

Mn_mg_l

Methane ‐mg/l

‐Postdrill‐Mn 62 ug/l 

TSS 35.5 mg/l TDS 127 mg/l

Methane isotope sampling indicate Marcellus Shale age 

600

700

18,000.00

20,000.00

‐HW 14 

‐Postdrill‐Mn 62 ug/l 

TSS 35.5 mg/l TDS 127 mg/lFe 3 38 mg/l

Methane isotope sampling indicate 

500

600

14.00

16.00

gFe 3.38 mg/lCl‐ 12.7 mg/l

Major rain event10" 7 9 Sept 2011

gas at this data point .

500

600

14,000.00

16,000.00Mnx 10,000

Fe 3.38 mg/lCl‐ 12.7 mg/l Marcellus Shale age 

gas at this data point .

G   W ll A i i

40012.00

Predrill

10   7‐9 Sept 2011

40012,000.00 Eh trend

h   d

Gas  Well ActivityBaker Wells  1,100 ft. eastSpud ‐ Baker 1   11 Aug. 2008

‐ Baker 2  11 Dec. 2009  

3008.00

10.00 ‐Predrill‐Mn ‐ na

TSS <5 mg/lTDS 149mg/lFe 0.03mg/lCl‐ 7.9mg/l

3008,000.00

10,000.00 methane trend

200

4.00

6.00200

4,000.00

6,000.00

‐Predrill‐Mn ‐ na

TSS <5 mg/l

0

100

0.00

2.00100

2,000.00

TSS <5 mg/lTDS 149mg/lFe 0.03mg/lCl‐ 7.9mg/l

00.00

Page 24: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

12040

HW‐2

80

100

120

30

35

40

l Mn

Methane isotope sampling indicate 

Marcellus Shale age 

40

60

15

20

25

Metha

ne m

g/

Mnug/l

Stimulation30 Sept. 09

Completion 12 Sept. 2008

ggas at this data point 

.

1.80

12.50

3.200

20

0

5

10

Arsenic ug_l

Manganese_ug_l

Methane mg l

Costello  1V 2VSpud Date: 7/26/08 8/19/08C  D / / 8 / / 8 l d Methane_mg_lComp Date 9/12/08 11/11/08Stim Date 9/30 /09 1/10/09

Note incomplete data set 

Page 25: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

70300HW6

Gesford 3 & 9 remediation 

Methane isotope sampling indicate Marcellus Shale age gas at this data point

50

60

150

200

250

v

May 23 & 24, 2010 age gas at this data point

 10x ug/

l

30

40

50

100

150

Eh in M

v

Gesford 3 spud July 28, 2008  m

g/l     As 

10

20

‐50

0

y

Met

han

0‐100

Eh in Mv Methane mg/l Arsenic ug/lEh in Mv Methane mg/l Arsenic ug/l

7

9

11

5

7

9‐Jul‐08 9‐Jan‐09 9‐Jul‐09 9‐Jan‐10 9‐Jul‐10 9‐Jan‐11 9‐Jul‐11 9‐Jan‐12

pH

Page 26: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

70300HW6

50

60

150

200

250

Mv

    As 10

30

40

50

100

150

Eh in M

ane mg/

l   Graph Cautions:

Data was selected on basis of the most representative of well conditions .  Due to incomplete data description, in some cases data may not be representative of the well or  the data was not plotted. Due to this 

10

20

‐50

0

Met

hug/

luncertainty, trend may differ with different data use.

0‐1009‐Jul‐08 9‐Jan‐09 9‐Jul‐09 9‐Jan‐10 9‐Jul‐10 9‐Jan‐11 9‐Jul‐11 9‐Jan‐12

Eh in Mv Methane mg/l Arsenic ug/l Linear (Eh in Mv) Power (Methane mg/l)

7

9

11

5

7

9‐Jul‐08 9‐Jan‐09 9‐Jul‐09 9‐Jan‐10 9‐Jul‐10 9‐Jan‐11 9‐Jul‐11 9‐Jan‐12

pH

Page 27: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Type 3: Naturally Occurring Contamination 

Page 28: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

350

400

16000

18000HW47 ‐

No isotope 

250

300

12000

14000

Mv& 

 in ug/l

l

No isotope sample collected

150

200

8000

10000

Eh in M

Arsen

ic 

Metha

ne in m

g/l

Post 1No    20 0

100

150

4000

6000

Arsenic ug/l

M Nov. 11, 2010

0

50

0

2000Arsenic ug/l

Methane ug/l

Eh in Mv

When no data is plotted, no data was available.

Page 29: the origin of methane and its effect on the aquifer. · Maye ‐HW 14 Mn x 10,000 EhPostdrill in mV Mn_mg_l Methane ‐mg/l ‐ Mn 62 ug/l TSS 35.5 mg/l18,000.00 TDS 127 mg/l Methane

Conclusions Methane is released during the drilling and perhaps during the fracking

process and other gas well work.

Methane is at significantly  higher concentrations in the aquifers after gas  Methane is at significantly  higher concentrations in the aquifers after gas drilling and perhaps as a result of fracking and other gas well work. 

The methane migrating into the aquifer is both from the shallower (   ) f ti   d  ld  M ll  Sh l  ( d  h    (younger age) formations and older Marcellus Shale (and perhaps even older formations).

Methane and other gases released during drilling (including air from the drilling) apparently cause significant damage to the water quality.

In some cases the aquifers recover (under a year) but, in others cases the damage is long term (greater than 3 years).damage is long term (greater than 3 years).