31
r

The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar Balloon:

Alternative Parametrizations and Mathematicar

Vladimir Pulov1

Mariana Hadjilazova,2 Ivailo M. Mladenov2

1Department of Physics, Technical University of Varna

2Institute of Biophysics, Bulgarian Academy of Science

Geometry, Integrability and Quantization

June 6-11, 2014

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 2: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Outline

1. The Mylar

Industrial and Geometrical

Physical Construction

Mathematical Model

2. Alternative Parametrizations

Via the Elliptic Integrals

Via the Weierstrassian Functions

Mylar and Mathematicar

3. Geometrical Characteristics

Radius and Thickness

Surface Area and Volume

Crimping Factor

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 3: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The MylarIndustrial and Geometrical

The Physical Prototype of the Mylar Balloon

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 4: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The MylarIndustrial and Geometrical

Mylar is a Trademark

Mylar is extremely thin polyester �lm.

Mylar is �exible and inelastic material.

Mylar is having a great tensile stress.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 5: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The MylarIndustrial and Geometrical

The Mylar Sheets

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 6: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The MylarIndustrial and Geometrical

Mylar is a Geometrical Figure

Mylar (or Mylar balloon) is the name of a surface of revolution

that resembles a slightly �attened sphere.

The term Mylar was coined by (Paulsen, 1994) who �rst

investigated the shape.

Mylar is a surface that encloses maximum volume for a given

directrice arclength.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 7: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonPhysical Construction

Constructing the Mylar Balloon

Take two circular disks made of Mylar.

Sew the disks together along their boundaries.

In�ate with either air or helium.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 8: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonPhysical Construction

The De�ated Mylar

a

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 9: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

First Geometrical Depiction

(Paulsen, 1994)

What is the shape of the in�ated Mylar balloon?

What is the radius of the in�ated Mylar balloon?

What is the thickness of the in�ated Mylar balloon?

What is the volume of the in�ated Mylar balloon?

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 10: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

Mathematical Problem

Given a circular Mylar balloon what will be the shape of the

balloon when it is fully in�ated?

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 11: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

Preliminary Assumptions

The de�ated balloon lies in the xy -plane.

The de�ated balloon is centered at the origin.

The de�ated balloon has radius a.

Oz is the axis of revolution.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 12: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

The Pro�le Curve

The pro�le curve lies in the �rst quadrant z = z(x), x ≥ 0.

The axis of revolution is the z-axis.

The bottom half of the Mylar is obtained

by re�ection of the upper half in the xy -plane.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 13: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

The Supposed Pro�le of the Mylar

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 14: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

Calculus of Variations Problem

Find the pro�le curve z = z(x), z(r) = 0, x ≥ 0

by maximizing the volume V = 4πr∫0

xz(x)dx

subject to the constraintr∫0

√1 + z ′(x)2dx = a

and the transversality condition limx→r−

z ′(x) = −∞

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 15: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

The Euler-Lagrange Equation

dz

dx= − x2√

r4 − x4, z(r) = 0, 0 ≤ x ≤ r

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 16: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonVia the Elliptic Integrals

The Pro�le of the Mylar in Elliptic Integrals

(Mladenov and Oprea, 2003)

Further simplification of the last integral can be achieved by choosing appropriatelythe value of the elliptic modulus k which in our considerations up to now is a freeparameter. The basic relations among Jacobian functions hints about the possibility of

taking k ≡ 1√2and we make just this choice as this gives the simplest result, namely

r√2

∫ ϕ

0cn2(ϕ,

1√2) dϕ.(11)

Using the definition cos u = cn(ϕ, k) and that of the incomplete elliptic integralsF (u, k), E(u, k) of the first, respectively second kind, it is a trivial matter to concludethat in our case we have

z(u) = r√2

[E(u,

1√2)− 1

2F (u,

1√2)

].(12)

All this means that the profile curve (traced counter-clockwise) is

x(u) = r cos u, z(u) = r√2

[E(u,

1√2)− 1

2F (u,

1√2)

], u ∈ [0 ,

π

2],(13)

while the surface of revolution generated by it, i.e. the mylar balloon surface S can berepresented in the form

x(u, v) = r cos u cos v, y(u, v) = r cosu sin v,

(14)

z(u, v) = r√2 [E(u,

1√2)− 1

2F (u,

1√2)], u ∈ [−π

2,π

2], v ∈ [0 , 2π].

Having the explicit parametrizations of the profile curve (13) and the surface ofthe mylar balloon (14) we now turn to study their geometry. Of principal importanceis the relation between respective radii of deflated and inflated balloon. By (1) and(13) we have

∫ π/2

0

√x′(u)2 + z′(u)2 du =

r√2

∫ π/2

0

du√1− 1

2 sin2(u)

= a.(15)

Fig. 1. The profile of the mylar balloonin XOZ plane

Fig. 2. An open part of the mylar balloonsurface drawn using the parametrization (14)

41

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 17: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMathematical Model

The Euler-Lagrange Equation

dx

du=

√r4 − x4

dz

du= −x2, 0 ≤ x ≤ r

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 18: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonVia the Weierstrassian Functions

The function x(u) is expressed by the Weierstrassian ℘(u)

x(u) = c +f ′(c)

4

(℘(u + C1)− f ′′(c)

24

)−1

where c is an arbitrary root of the polynomial

f (τ) = −τ4 + r4

with the invariants of ℘(u)

g2 = −r4, g3 = 0

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 19: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonVia the Weierstrassian Functions

The function z(u) is expressed by

z(u) = 2c4J1(u + C1)− c6J2(u + C1)− c2u + C2

J1(u) =1

℘′(u)

(2ζ(u)u + ln

σ(u − u)

σ(u + u)

)

J2(u) = − 1

℘′2(u)

(℘′′(u)J1(u) + 2℘(u)u + ζ(u − u) + ζ(u + u)

)

where ℘(u), ζ(u), σ(u) are the Weierstrassian functions

and u denotes the argument of ℘(·) which produces f ′′(c)24

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 20: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonVia the Weierstrassian Functions

Pseudo-Lemniscatic Weierstrassian Functions

(g2 = −1, g3 = 0)

℘′′(u; −r4, 0) = r4℘′′(ru; −1, 0)

℘′(u; −r4, 0) = r3℘′(ru; −1, 0)

℘(u; −r4, 0) = r2℘(ru; −1, 0)

ζ(u; −r4, 0) = rζ(ru; −1, 0)

σ(u; −r4, 0) = r−1σ(ru; −1, 0)

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 21: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonVia the Weierstrassian Functions

The Pro�le of the Mylar

in Pseudo-Lemniscatic Weierstrassian Functions

On taking c = r the solution is transformed to

x(u) =r(2℘(ru; −1, 0)− 1)

2℘(ru; −1, 0) + 1)

z(u) = 2r4J1(u + C1)− r6J2(u + C1)− r2u + C2

where J1(u), J2(u) are expressed through the Pseudo-Lemniscatic

Weierstrassian functions.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 22: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

The Mylar BalloonMylar and Mathematica

r

Mylar via Mathematicar

for u in [0, K (1/√

2)]. Note that the complete integral K (1/√

2) arises becausecn(u, 1/

√2) varies from 1 (where u = 0) to 0 (where u = K (1/

√2)).

Theorem 5.2. The surface of revolution S that models the Mylar balloon is parame-trized by

x = x(u, v) = (x(u, v), y(u, v), z(u, v)

), (20)

where for u in [−K (1/√

2), K (1/√

2)] and v in [0, 2π]

x(u, v) = r cn

(u,

1√2

)cos v, y(u, v) = r cn

(u,

1√2

)sin v,

z(u, v) = r√

2

[E

(sn

(u,

1√2

),

1√2

)− 1

2F

(sn

(u,

1√2

),

1√2

)].

We can now put this parametrization into a computer algebra system such as Mapleand plot. We then see the familiar shape of a Mylar balloon in Figure 3.

Figure 3. Two views of the Mylar balloon.

6. THE GEOMETRY OF THE MYLAR BALLOON. Having the explicit param-etrizations of the profile curve (19) and the surface of the Mylar balloon (20), we nowturn to the study of their geometries. Of principal importance is the relation betweenthe respective radii of the deflated and inflated balloons. From (8) and (19) we obtainthe arclength (where we shorten sn(u, 1/

√2) to sn u, K (1/

√2) to K , etc.):

∫ K

0

√x ′(u)2 + z′(u)2 du =

∫ K

0

√r 2 sn2u dn2u + r 2

2

4cn4u du

=∫ K

0r

√(sn2u)(1 − 1

2sn2u) + 1

2(1 − sn2u)2 du

= r∫ K

0

1√2

du = r√2

K = a.

772 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 23: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Geometrical CharacteristicsRadius and Thickness

Radius r =√2

K(1/√2)a ≈ 0.7627a

Thickness τ = 2√2[E (1/

√2)− 1

2F (1/√2)]a ≈ 0.9139a

Scale Invariance τ2r ≈ 0.599

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 24: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Geometrical CharacteristicsSurface Area and Volume

Surface Area A(S) = π2r2

Volume V = π√2

3 K ( 1√2

)r3

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 25: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Geometrical CharacteristicsCrimping Factor

Decrement of the Surface Area

Sde�Sin�

=2πa2

π2r2≈ 1.0942

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 26: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Geometrical CharacteristicsCrimping Factor

Crimping Factor

C (x) =r2

x

x∫

0

dt√r4 − t4

, 0 ≤ x ≤ r

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 27: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Geometrical CharacteristicsCrimping Factor

The Physical Crimping

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 28: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

References

Paulsen W. (1994) What is the Shape of the Mylar Balloon?,

Amer. Math. Monthly Anal. 101 953-958.

Oprea J. (2000) The Mathematics of Soap Films: Explorations

with Maple, Amer. Math. Society, Providence.

Mladenov I. (2001) On the Geometry of the Mylar Balloon,

Comptes rendus de l'Academie bulgare des Sciences 54 39-44.

Mladenov I. and Oprea J. (2003) The Mylar Balloon Revisited,

Amer. Math. Monthly Anal. 110 761-784.

Mladenov I.(2004) New Geometrical Applications of the

Elliptic Integrals: The Mylar Balloon, J. of Nonlinear Math.

Phys. 11, Supplement 55-65.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 29: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

References

Baginski F. (2005) On the Design and Analysis of In�ated

Membranes: Natural and Pumpkin Shaped Balloons, SIAM J.

Appl. Math. Math. 65 838-857.

Gibbons G. (2006) The Shape of the Mylar Balloon as an

Elastica of Revolution, DAMTP Preprint, Cambridge

University, 7 pp.

Mladenov I. and Oprea J. (2007) The Mylar Balloon: New

Viewpoints and Generalizations, Geometry Integrability &

Quantization. 8 246-263.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 30: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

References

Oprea J. (2003) Di�erential Geometry and Its Applications,

2nd Edition, Amer. Math. Society, Prentice Hall.

Gray A. (1998) Modern Di�erential Geometry of Curves and

Surfaces with Mathematica, 2nd Edition, CRC Press, Roca

Raton.

Abramowitz M. and Stegun I. (1972) Handbook of

Mathematical Functions, New York, Dover.

Janhke E., Emde F. and Losch I. (1960) Tafeln Hoherer

Functionen, Stuttgart, Teubner Verlag.

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar

Page 31: The Mylar Balloon - Bulgarian Academy of Sciencesobzor.bio21.bas.bg/conference/Conference_files/sa14/Pulov 2014.pdf · the mylar balloon (14) we now turn to study their geomet.ry

Thank You!

Vladimir Pulov, Mariana Hadjilazova, Ivailo M. Mladenov The Mylar Balloon:Alternative Parametrizations and Mathematicar