45
Digital Integrated Circuits © Prentice Hall 1995 Inverter Inverter THE INVERTERS

THE INVERTERS

Embed Size (px)

DESCRIPTION

THE INVERTERS. DIGITAL GATES Fundamental Parameters. Functionality Reliability, Robustness Area Performance Speed (delay) Power Consumption Energy. Noise in Digital Integrated Circuits. DC Operation: Voltage Transfer Characteristic. Mapping between analog and digital signals. - PowerPoint PPT Presentation

Citation preview

Page 1: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

THE INVERTERS

Page 2: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DIGITAL GATES Fundamental Parameters

Functionality Reliability, Robustness Area Performance

» Speed (delay)» Power Consumption» Energy

Page 3: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Noise in Digital Integrated Circuits

VDDv(t)

i(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground

noise

Page 4: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DC Operation: Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

V(y)V(x)

Page 5: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Mapping between analog and digital signals

"1"

"0"

VOH

VIH

VIL

VOL

UndefinedRegion

V(x)

V(y)

VOH

VOL

VIH

VIL

Slope = -1

Slope = -1

Page 6: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Definition of Noise Margins

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Noise Margin High

Noise Margin Low

Page 7: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...

Page 8: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Fan-in and Fan-out

N

M

(a) Fan-out N

(b) Fan-in M

Page 9: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Ideal Gate

Vin

Vout

g=

Ri =

Ro = 0

Page 10: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vo

ut (V

)

VMNMH

NML

Page 11: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Page 12: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Ring Oscillator

v0 v1 v2 v3 v4 v5

v0 v1 v5

T = 2 tp N

Page 13: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Power Dissipation

Page 14: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS INVERTER

Page 15: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The CMOS Inverter: A First Glance

VDD

Vin Vout

CL

Page 16: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 17: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Switch Model of CMOS Transistor

Ron

|VGS| < |VT||VGS| > |VT|

|VGS|

Page 18: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Page 19: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 20: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Properties

Full rail-to-rail swing Symmetrical VTC Propagation delay function of load

capacitance and resistance of transistors No static power dissipation Direct path current during switching

Page 21: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Voltage TransferCharacteristic

Page 22: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter VTC

Vout

Vin1 2 3 4 5

12

34

5

NMOS linPMOS off

NMOS satPMOS sat

NMOS offPMOS lin

NMOS satPMOS lin

NMOS linPMOS sat

Page 23: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

0.0

2.0

4.0

Vo

ut (V

)

Page 24: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Gate Switching Threshold

0.1 0.3 1.0 3.2 10.01.0

2.0

3.0

4.0

kp/kn

VM

Page 25: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

MOS Transistor Small Signal Model

rogmvgsvgs

+

-

S

DG

Page 26: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Determining VIH and VIL

Page 27: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay

Page 28: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 29: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Propagation Delay

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~

Page 30: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CL

SimplifiedModel

Page 31: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 32: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Miller Effect

Vin

M1

Cgd1Vout

V

V

Vin

M1

Vout V

V

2Cgd1

“A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.”

Page 33: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

Page 34: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact of Rise Time on Delayt p

HL(n

sec

)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Page 35: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

Page 36: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Page 37: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Dynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd , and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Page 38: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact ofTechnology

Scaling

Page 39: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Evolution

Page 40: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (1)

Minimum Feature Size

Page 41: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (2)

Number of components per chip

Page 42: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay Scaling

Page 43: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Page 44: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Relationships for Long Channel

Devices

Page 45: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling of Short Channel

Devices