45
The Impact of a Teracom Group Product From a Life Cycle Perspective Jacob Södergren Master of Science Thesis Stockholm 2013

The Impact of a Teracom Group Product From a Life Cycle

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Impact of a Teracom Group Product From a Life Cycle

The Impact of a Teracom Group

Product From a Life Cycle

Perspective

Jacob Södergren

Master of Science Thesis

Stockholm 2013

Page 2: The Impact of a Teracom Group Product From a Life Cycle
Page 3: The Impact of a Teracom Group Product From a Life Cycle

Jacob Södergren

Master of Science Thesis STOCKHOLM 2013

The Impact of a Teracom Group Product

From a Life Cycle Perspective

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY

Supervisor:

Anna Björklund, Environmental Strategies Research, KTH

Sofiia Miliutenko, Environmental Strategies Research, KTH

Stefan Nyberg, Teracom Group

Examiner:

Nils Brandt, Industrial Ecology, KTH

Page 4: The Impact of a Teracom Group Product From a Life Cycle

TRITA-IM 2013:01

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se

Page 5: The Impact of a Teracom Group Product From a Life Cycle

 

i      

Acknowledgements  This   thesis   would   have   been   difficult   to   conduct   without   the   help   and   encouragement   from  many  people  along  the  course  of  the  study.      First  of  all,   I  would   like  to  thank  Teracom  Group  for  making  this  master  thesis  possible,  and   in  particular  my   supervisor   Stefan  Nyberg   and   the   project   team  Maria   Åstrand,   Per   Alksten   and  Cristina  Klasson.  By  listening,  giving  valuable  feedback  and  suggesting  ideas  and  solutions,  they  have  been  a  tremendous  support.      In  addition,  I  would  like  to  thank  the  group  of  very  helpful  co-­‐workers  at  Teracom  Group  who  in  one  way  or  another  have  helped  me  to  obtain  necessary  knowledge  and   information.   I  would  also  like  to  thank  Florian  Tremblay  at  Sagemcom  for  providing  crucial  data.    I  am  also  very  grateful  to  my  supervisors  at  The  Royal   Institute  of  Technology,  Anna  Björklund  and  Sofiia  Miliutenko,  for  their  invaluable  support,  inspirational  discussions  and  patience.  A  final  thank  you  to  my  fellow  students  Gustav  Bramberg,  Anders  Nilsson  and  Viktor  Rasmanis  for  input  and  guidance  during  this  study.      Stockholm,  January  2013    Jacob  Södergren      

Page 6: The Impact of a Teracom Group Product From a Life Cycle

 

ii      

Abstract  All  kinds  of  products  have  economic,   social  and  environmental   impact   throughout   their  entire  life   cycle.   Today’s   growing   need   for   electronic   devices   contributes   to   the   increasing   problem  within  these  fields.    The  aim  of  this  study  is  to  investigate  and  determine  the  impact  of  a  chosen  Teracom   Group   product   from   a   sustainability   perspective   and   to   develop   recommendations  regarding   how   to   proceed,   in   order   to   reduce   the   impact   of   products.   This   study   is   mainly  focusing  on   the  environmental   aspect  of   the   concept  of   sustainability.  A   life   cycle  assessment  (LCA)   of   a   set-­‐top   box   (STB)   is   conducted   based   on   chosen   indicators   by   using   the   software  SimaPro.  The  goal  of  the  assessment   is   to   identify  the  phases  within  the   life  cycle  with   largest  environmental  impact  and  contribute  to  Teracom  Group’s  further  sustainable  work.    18  impact  categories  are  included  to  express  emissions  and  use  of  natural  resources.  The  result  clearly  shows  that  the  production  phase  has  the  largest  environmental  impact  within  categories  such   as   terrestrial   acidification,   human   toxicity,   freshwater   ecotoxicity,   marine   ecotoxicity,  urban   land   occupation   and  metal   resource   depletion.   The   use   phase   affects   the   environment  foremost   within   climate   change,   ozone   depletion,   terrestrial   ecotoxicity,   ionising   radiation,  agricultural   land   use,   natural   land   transformation   and   water   depletion.   Transports   and   the  waste  scenario  only  have  a  small  effect  on  certain  categories.    The  experiences  of  this  study  are  discussed,  demonstrating  the  difficulty  in  making  an  LCA  in  the  position  of  being  at  the  company  purchasing  products,  not  at  the  company  manufacturing  them.  The  company  has  previously  not   focused  enough  on  sustainability   regarding  products.  An  LCA  performed   by   the   supplier   would   be   more   reliable   due   to   a   better   possibility   of   collecting  accurate  data.  Communication  and  cooperation  between  the  company  and  its  suppliers  are  key  solutions.   Higher   requirements   during   procurement   should   be   put   on   the   products,   including  demands  on  performed  LCAs  with  clearly  described  references  and  methods,  critically  review  by  a  third  party.    Key  words:  Sustainability,  life  cycle  assessment,  set-­‐top  box          

Page 7: The Impact of a Teracom Group Product From a Life Cycle

 

iii    

Sammanfattning  Alla  typer  av  produkter  har  under  sin  livscykel  en  inverkan  på  såväl  ekonomi  och  samhälle,  som  på   de   ekologiska   system   som   finns   omkring   oss.   Dagens   växande   behov   av   teknik   och  elektroniska  produkter  leder  till  ökade  problem  såsom  utsläpp  av  växthusgaser,  utnyttjande  av  markområden   och   konsumtion   av   energi.   En   global   förändring   av   TV-­‐teknologi   och   en   ökad  efterfrågan  på  bild-­‐  och  ljudkvalité   i  kombination  med  fler  TV-­‐kanaler,  har   lett  till  ett  behov  av  digitalboxar   världen   över.   Företaget   Teracom   Group   sänder   TV   och   radio   via   marknätet   och  erbjuder  relaterade  tjänster  och  konsumentprodukter.    Målet   med   detta   arbete   är   att   undersöka   och   kartlägga   en   av   Teracom   Groups   produkters  påverkan   ur   ett   hållbarhetsperspektiv,   för   att   utifrån   denna   skapa   rekommendationer   för   hur  företaget   i   framtiden   kan   minska   sina   produkters   påverkan.   Konceptet   hållbarhet   saknar   en  vedertagen   definition   men   beskrivs   ofta   som   “utveckling   som   möter   dagens   behov   utan   att  äventyra  framtida  generationers  förmåga  att  möta  sina  behov”.  Denna  studie  fokuserar  dock  på  att  undersöka  miljöaspekten  av  hållbarhetskonceptets  tre  perspektiv.  Målet  uppnås  genom  att  utföra  en  livscykelanalys  (LCA)  av  en  specifik  produkt,  utifrån  valda  indikatorer,  med  hjälp  av  en  datorbaserad  mjukvara.  Faserna  i  livscykeln  med  störst  miljöpåverkan  identifieras  och  ligger  som  grund  för  diskussion  kring  framtida  hållbarhetsarbete  gällande  företagets  produkter.      LCA:n   genomförs,   enligt   Teracom   Groups   rekommendation,   på   företagets   mest   prioriterade  digitalbox   ur   försäljningssynpunkt.   Målet   med   LCA:n   är   att   titta   på   produktens   totala  miljöpåverkan   för   att   kunna   bidra   till   Teracom  Groups   fortsatta   hållbarhetsarbete.  Mjukvaran  SimaPro  som  används   för  denna  studie  är   framtagen  av  ett   schweiziskt   företag  och   inkluderar  den  omfattande  databasen  Ecoinvent.  Med  denna  metod  skapas  en  modell  av  livscykeln  på  ett  objektivt  och  systematisk  sätt.  Denna  LCA   inkluderar  18  olika  kategorier  av  miljöpåverkan  som  beskriver  utsläpp  och  användning  av  naturresurser.      Resultatet   av   LCA:n   visar   fördelningen   av   miljöpåverkan   mellan   de   olika   faserna   i   livscykeln.  Produktionsfasen   har   störst   miljöpåverkan   inom   kategorier   som   markförsurning,  humantoxicitet,   sötvatten-­‐   och   havstoxicitet,   urban   markanvändning   och   utarmning   av  metallresurser.   Användarfasen   däremot   har   stor   påverkan   på   miljön   inom   kategorier   som  klimatförändring,   ozonuttunning,   marktoxicitet,   joniserande   strålning,  jordbruksmarksanvändning,   förändring  av  naturlig  mark  och  vattenutarmning.  Transporter  och  avfallsscenariot  påverkar  emellertid  minimalt.    Denna   studie   indikerar   att   Teracom   Group   tidigare   inte   har   fokuserat   tillräckligt   på  hållbarhetsfrågor  angående   företagets  produkter.  Brister   i  detta  projekt  visar   svårigheten   i  att  genomföra   en   LCA   på   ett   företag   där   tillverkning   av   produkter   inte   sker.   Resultatet   av   denna  studie  bör  enbart  användas  som   indikation  av  produktens  miljöpåverkan,  men  är  dock  ett  bra  första   steg   för   hur   produkter   i   framtiden   ska   hanteras   inom   Teracom  Group.   Högre   krav   bör  ställas  på   leverantörer,  där  genomförd  LCA,  med   tydligt  beskriven  metod   inklusive   referenser,  samt   granskad   av   extern   part,   ska   ingå.   Teracom   Group   har   dessutom   ett   ansvar   att  sammanställa  den  nödvändiga  information  angående  företagets  egen  verksamhet,  som  krävs  för  att  en  LCA  ska  kunna  genomföras  av  leverantör.        

Page 8: The Impact of a Teracom Group Product From a Life Cycle

 

iv      

Table  of  Contents  1  Introduction  .................................................................................................................................  1  

1.1  Aim  and  objectives  ...............................................................................................................  2  1.2  Scope  ....................................................................................................................................  2  

1.3  Limitations  ............................................................................................................................  2  

2  Theoretical  background  ...............................................................................................................  3  2.1  The  concept  of  sustainability  ................................................................................................  3  

2.1.1  Environmental  system  analysis  tools  .............................................................................  3  

2.1.2  Environmental  product  declaration  ...............................................................................  3  

2.1.3  Social  life  cycle  assessment  ...........................................................................................  4  

2.2  Introduction  of  Teracom  Group  ............................................................................................  5  

2.3  Investigated  supplier:  Sagemcom  .........................................................................................  6  

2.4  Chosen  product  for  the  life  cycle  assessment  ......................................................................  6  3  Methodology  ...............................................................................................................................  8  

3.1  Literature  study  ....................................................................................................................  8  3.2  Interviews  .............................................................................................................................  8  

3.3  The  process  of  a  life  cycle  assessment  .................................................................................  8  

3.4  SimaPro  and  Ecoinvent  .........................................................................................................  9  

3.5  Impact  categories  ...............................................................................................................  10  3.6  Classification  and  characterisation  .....................................................................................  10  

3.7  Normalisation  .....................................................................................................................  10  

3.8  Life  cycle  interpretation  ......................................................................................................  11  4  Life  cycle  assessment  of  the  chosen  product  ............................................................................  12  

4.1  Goal  and  scope  ...................................................................................................................  12  4.1.1  Functional  unit  .............................................................................................................  12  4.1.2  System  boundaries  ......................................................................................................  12  

4.1.3  Data  quality  ..................................................................................................................  13  4.1.4  Assumptions  and  limitations  .......................................................................................  14  

4.2  Life  cycle  inventory  analysis  of  the  chosen  product  ...........................................................  14  4.2.1  Data  collection  .............................................................................................................  14  

4.2.2  Flowchart  of  the  life  cycle  ............................................................................................  16  

4.3  Life  cycle  impact  assessment  of  the  chosen  product  .........................................................  17  4.3.1  Impacts  by  characterisation  .........................................................................................  17  

4.3.2  Impacts  by  normalisation  ............................................................................................  18  

4.3.3  Climate  change  ............................................................................................................  20  

4.3.4  Freshwater  eutrophication  ..........................................................................................  21  

4.3.5  Toxicity  .........................................................................................................................  22  

Page 9: The Impact of a Teracom Group Product From a Life Cycle

 

v      

4.3.6  Metal  depletion  ...........................................................................................................  24  

5  Discussion  ..................................................................................................................................  25  

5.1  Methodology  ......................................................................................................................  25  

5.2  Result  of  the  life  cycle  assessment  .....................................................................................  26  5.3  Lack  of  the  social  perspective  .............................................................................................  27  

5.4  Further  recommendations  ..................................................................................................  27  6  Conclusions  ................................................................................................................................  29  

References  ....................................................................................................................................  30  

Appendix  I  –  Data  regarding  Sagemcom  RTI90  320HD  .....................................................................  i        

Page 10: The Impact of a Teracom Group Product From a Life Cycle

 

vi      

Abbreviations  CBA   Cost-­‐Benefit  Analysis  CFC   Chlorofluorocarbon  CO2  eq   Carbon  dioxide  equivalents  GHG   Greenhouse  gas  GWP   Global  warming  potential  IPCC   Intergovernmental  Panel  on  Climate  Change    ISO   International  Standard  Organisation  EIA   Environmental  Impact  Assessment  EIME     Environmental  Improvement  Made  Easy  EPD   Environmental  Product  Declaration  ERA   Ecological  Risk  Assessment  ESAT   Environmental  System  Analysis  Tools  EU   European  Union  FE  eq   Iron  equivalents  GEDnet   Global  Type  III  Environmental  Product  Declarations  Network  LCA   Life  Cycle  Assessment  LCI   Life  Cycle  Inventory  LCIA   Life  Cycle  Impact  Assessment  MFA   Material  Flow  Analysis  MMS   Mediamätning  i  Skandinavien  P  eq   Phosphorus  equivalents  ROHS   Restriction  of  Hazardous  Substances  SLCA   Social  life  cycle  assessment  STB   Set-­‐top  box  UN   United  Nations

Page 11: The Impact of a Teracom Group Product From a Life Cycle

 

1    

1  Introduction  Today’s   growing   need   for   electronic   devices   contributes   to   the   increasing   problem   of  environmental   impact   due   to   factors   such   as   greenhouse   gas   (GHG)   emission,   use   of   natural  resources  and  a  higher  demand   for  energy,   just   to  mention  a   few.  The   life   cycle  of   a  product  often   consists   of   very   complex   systems   and   the   overall   impact   can   therefore   be   difficult   to  evaluate.  All  kinds  of  products  have  economic,  social  and  environmental  impact  throughout  the  entire   life   cycle,   from  cradle   to  grave.   The   sustainability  of  products   are   therefore  of   greatest  importance.      Sustainability   is  normally  described  as  a  way  to  fulfil  today’s  needs,  without  compromising  the  needs   of   future   generations   (WWF,   2008).   Due   to   the   fact   that   companies   are   some   of   the  largest  consumers  of  the  world’s  resources,  and  competition  between  companies   is  constantly  growing,  efficient  use  of  these  resources  has  become  an  important  driving  force  (WWF,  2012).  Since   the   concept   of   sustainability   was   introduced   and   widely   spread   in   the   late   eighties,  business  strategies  have  developed  towards  not  being  limited  to  only  financial  objectives  (WWF,  2008).    Due   to   global   change   of   TV-­‐technology   such   as   increased   resolution   and   sound   quality,   in  combination  with  public  demand  of  additional  TV-­‐channels,   there  was  a  need   for   the  Swedish  analogue  terrestrial  network  to  be  transformed  into  a  digital  one,  a  process  that  started  in  2005  (SVT,  2006).  To  be  able  to  convert  today’s  digital  signals  and  make  those  understandable  for  a  TV-­‐set,   a   digital   receiver   is   needed   (Boxer,   2012a).   The   countries   within   the   European   Union  (EU)   have   agreed   on   a   completed   transition   to   digital   networks   by   no   later   than   2015.   This  means  that  the  amount  of  digital  receivers  have  strongly   increased  and  will  continue  to  do  so,  adding   to   higher   energy   consumption,   among   other   sustainability   related   consequences  (Energimyndigheten,  2012).      The  business  idea  of  Teracom  Group  is  to  “offer  TV  and  radio  via  terrestrial  networks  along  with  supporting   Telecom   services”.   The   company   broadcasts   TV   and   sells   customer   product  equipment  in  three  markets  in  the  Nordic  region.  The  sustainability  of  the  products  and  services  is  of  great  importance  since  they  symbolise  what  the  company  stands  for.  The  owner  demands  of  the  company  to  “be  at  the  forefront  regarding  financial,  social  and  environmental  impact”.  A  critical   challenge   is   to   understand   how   future   development   of   products   and   services   can  minimize  negative  effects  in  terms  of  sustainability,  and  furthermore  how  to  communicate  this  profile   to   employees,   customers,   suppliers   etc.   in   order   to   achieve   a   “sustainable”   image.  (Åstrand,  2012)        

Page 12: The Impact of a Teracom Group Product From a Life Cycle

 

2    

1.1  Aim  and  objectives  The  aim  of  this  study  is  to  investigate  and  determine  the  potential  effect  of  a  chosen  Teracom  Group   product   from   a   sustainability   perspective   and   to   develop   recommendations   to   the  company   regarding  how   to  proceed   in  order   to   reduce   the   impact  of   the  products  purchased  and  sold.    The  following  objectives  are  created  to  fulfil  the  aim  and  form  the  base  for  the  discussion:  

-­‐ Explain   the   concept   of   sustainability,   including   environmental   system   analysis   tools  (ESAT)  and  a  standardised  product  declaration  

-­‐ Perform  a  life  cycle  assessment  (LCA)  of  a  specific  product  based  on  chosen  indicators  by  using  an  LCA  software  

-­‐ Identify   the  phases  within   the   life  cycle   that  contribute   the  most   (according   to  chosen  impact  categories)  to  the  environmental  impact  

-­‐ Discuss  how  to  proceed  with  the  products’  future  sustainability  work    1.2  Scope  This  report  highlights  the  most  significant,  overall  environmental  impact  during  each  phase  of  a  product’s   life  cycle,  rather  than  point  out  detailed  issues.  To  be  able  to  perform  the  LCA  itself,  several  boundaries  have  been  set,  which  can  be  found  under  chapter  4  Life  cycle  assessment  of  chosen  product.      1.3  Limitations  The  main  limitation  for  this  project  is  the  relatively  short  period  of  time  in  which  to  conduct  the  study.   Since   only   20   weeks   are   available   to   plan,   perform,   compile   and   present   this  investigation,  not  all  of  the  aspects  regarding  the  aim  are  taken  into  account.      This  study  is  mainly  focusing  on,  but  not  totally  limited  to  the  environmental  aspect  of  the  three  sustainability   perspectives;   financial,   social   and   environmental.   Studies   of   the   social   impact  would  require  specific   information  such  as  working  conditions  etc.,  which  would  be  difficult  to  obtain   from   the   Teracom   Group   external   suppliers   and   their   sub   suppliers.   Previous   studies  regarding  social  sustainability  have  only  been  made  to  a  small  extent,  leading  to  lack  of  scientific  research   in   the   area   (Ekener-­‐Petersen   &   Finnveden,   2012).   The   fact   that   the   concept   of  sustainable   development   is   very   complex   (and   therefore   contains   some   uncertainties),   in  combination   with   lack   of   previous   studies   (which   means   absence   of   data),   might   affect   the  result  of  this  study  and  not  give  complete  answers.  This  issue  is  handled  in  the  discussion.      Some  information  is  difficult  to  obtain  due  to  the  fact  that  Teracom  Group  buys  products  from  suppliers   (with   their   own   sub   suppliers),   have   a   fairly   new   distribution   partner,   works   with  different  retailers  etc.  In  addition  to  this,  the  needed  information  is  often  confidential,  making  it  even   more   difficult   to   collect   and   use.   In   cases   where   reliable   data   cannot   be   obtained,  assumptions  and  official  statistics  are  used.  Some  of  the  obtained  information  is  however  still  of  confidential   nature   and   cannot   be   presented   in   this   report.   This   data   is   put   in   a   confidential  document,  which  will  not  be  attached  to  this  report.      Another  limiting  factor  is  the  lack  of  a  specific  budget  for  this  study.  This  means  that  for  instance  customer   surveys   giving   information   on   for   instance   customer   TV   habits   cannot   be   done.   An  additional  limiting  factor  is  the  lack  of  knowledge  on  how  customers  handle  their  products  and  what  the  actual  disposal  scenario  looks  like.          

Page 13: The Impact of a Teracom Group Product From a Life Cycle

 

3    

2  Theoretical  background    This   chapter   gives   the   necessary   background   information   regarding   the   expression  “sustainability”,  the  investigated  company,  its  supplier  and  the  chosen  product.    2.1  The  concept  of  sustainability  The  concept  of  sustainable  development  has  been  widely  spread  since  the  middle  of  the  1980’s.  The   definition   is   constantly   being   discussed   and   there   is   still   not   an   accepted,   concrete  definition.   Sustainability   was   early   described   as   “development   that   meets   the   needs   of   the  present   without   compromising   the   ability   of   future   generations   to   meet   their   own   needs”  according  to  the  report  “Our  Common  Future”  by  the  World  Commission  on  Environment  and  Development   (1987).   This   means   that   sustainable   development   is   a   way   to   reach   human  wellbeing,  including  a  positive  economic  development  without  affecting  ecological  systems.  For  products,   sustainability   is   all   about   minimizing   environmental   impacts   during   their   total   life  cycle,  and  simultaneously  decreasing  cost  and  impact  on  human  health  and  other  social  related  issues.  (Hållbarhetsguiden,  2012)      Today  several  labels  for  environmental  friendly  products  exist.  The  Ecolabel  Index  is  according  to  the  organisation   itself,   the  world’s   largest  directory  of  Eco   labels,  keeping  an  eye  on  over  400  different  environmental  related  labels  in  almost  200  countries.  (Ecolabel  Index,  2012)    

2.1.1  Environmental  system  analysis  tools  When   investigating   and   evaluating   a   product’s   total   environmental   impact,   a   variety   of   tools  with   diverse   characteristics,   can   be   used.   A   few   worth   mentioning,   with   focus   on   physical  factors,   are   Environmental   Impact   Assessment   (EIA),   Ecological   Risk   Assessment   (ERA)   and  Material   Flow  Analysis   (MFA).   To   investigate   financial   related   impacts,   a   Cost-­‐Benefit   Analysis  (CBA)   focusing   on   the   economic   aspects   is   an   option.   An   LCA   on   the   other   hand   aims   at  investigating   the   environmental   impact   related   to   every   phase   within   the   life   of   a   product   –  from   cradle   to   grave.   The   assessment   normally   includes   aspects   such   as   resource   extraction,  development,   production,   use   and   eventually   disposal   of   the   product.   Transports   needed  between  different  stages  should  also  be  included  to  give  a  comprehensive  picture.  (Baumann  &  Tillman,  2004)  Further  information  regarding  LCAs  can  be  found  in  chapter  3  Methodology.      

2.1.2  Environmental  product  declaration  The  international  Environmental  Product  Declaration  (EPD)  system  uses  LCA  as  a  tool  in  order  to  allow  companies  to  present  product  and  service  information  regarding  environmental  impact,  in  an  objective  way.  Thanks  to  standardised  methods,  EPDs  are  comparable  for  similar  products  in  terms   of   environmental   impact.  When   finalised,   the   EPD   is   viewed   and   approved   by   external  certifying  organisation,  and   then  published   into   the   international   system.  This  gives  EPDs  high  quality   and   credibility   making   them   useful   for   sustainable   procurement   of   products.   The  features  within  the  declaration  include  the  following  areas;  objectivity,  neutrality,  comparability,  summary,  quality  assurance  and  environmental  impact.  (Miljöstyrningsrådet,  2012)    The   Swedish   Environmental   Management   Council   is   responsible   for   the   system   to   work  according   to   the   International   Standard   Organisation   (ISO)   standard   14025   (EPD,   2012).   The  information  presented  in  the  declaration  includes  all  relevant  environmental  impact  categories.  There  are  also  single-­‐issue  EPDs  focusing  on  a  certain  impact  category  in  hope  of  simplifying  the  result  and  better  fit  a  certain  situation.  A  good  example  of  this  is  a  climate  change  EPD  with  the  purpose   to   express   the   environmental   impact   as   carbon   dioxide   equivalents   (CO2   eq).   (EPD,  2012b)      

Page 14: The Impact of a Teracom Group Product From a Life Cycle

 

4    

An   EPD   is   an   effective   tool   for   communication   of   sustainable   development   and   is   created   by  carrying  out  several  steps  (EPD,  2012c):  

-­‐ Product   category   rules   must   be   generated   to   facilitate   global   communication   and  comparability.    

-­‐ Collection  of  data  is  needed  to  perform  an  LCA  according  to  the  ISO  standard  14040.    -­‐ Compilation  of  other  important  environmental  information,  which  also  can  be  a  part  of  

the  EPD.    -­‐ Verification   of   the   collection   and   handling   of   information   and   the   EPD   itself,   leading  

towards  reliability  and  trustworthiness.    -­‐ The  approved  EPD  is  registered  and  published  in  the  system.    

 The   approved   EPD   should   include   the   following   compiled   information   (Baumann   &   Tillman,  2004):  

-­‐ A  description  of  the  company  and  the  declared  product  -­‐ Environmental  performance  declaration  including  the  result  of  the  LCA,  which  should  be  

divided  into  production  phase  (cradle-­‐to-­‐gate)  and  use  phase  (gate-­‐to-­‐grave)  -­‐ Additional  information  such  as  recycling  scenario  and  if  environmental,  health  or  safety  

requirements  are  fulfilled  -­‐ Approved  certificate  including  validity  time  and  registration  number  

 The   International   EPD   system   is   a   member   of   the   Global   Type   III   Environmental   Product  Declarations  Network   (GEDnet),   an   international   non-­‐profit   organisation   aiming   at   simplifying  the  ability  to  exchange  environmental  information  worldwide.  (GEDnet,  2012)  

2.1.3  Social  life  cycle  assessment  Even  if  the  social  aspect  of  the  sustainability  concept  is  as  important  as  the  other  perspectives,  a  social   life   cycle   assessment   (SLCA)   is   for   fairly   obvious   reasons   more   difficult   to   conduct.  Quantitative   indicators   within   an   environmental   based   LCA,   such   as   emissions,   can   easily   be  calculated  with   the   right  kind  of   input  data.  The  way  a   factory  might  affect   its  workers  or   the  near   society   is   far   more   challenging   to   examine.   A   subjective   analysis   becomes   necessary   in  most  cases  to  understand  the  meaning  of  a  certain  impact  indicator.  Salary  is  a  good  example,  which  can  even  be  measured;  but  the  social  impact  depends  on  that  specific  salary  in  relation  to  the   particular   situation   of   the   company,   society   or   location.   (Ekener-­‐Petersen   &   Finnveden,  2012)    Due   to   aforementioned   factors,   an   SLCA   is   often   even   more   time   consuming,   and   therefore  more  expensive  to  conduct  than  a  normal  LCA.  In  addition,  the  assessment  is  normally  far  more  subjective.  The  fact  that  boundaries  to  other  systems  are  harder  to  differentiate  makes  an  SLCA  dependent   on   expert   knowledge  within   the   field.  However,  when   the   SLCA   is   performed,   the  result   will   hopefully   give   a   good   indication   on   social   aspects   such   as   if   the   life   cycle   follows  human  rights,  have  deficiencies  in  health  and  safety  for  employees  and  the  work  conditions,  at  any  phase  include  child  labour  etc.  (United  Nations  Environmental  Programme,  2009)    An  SLCA  called  “Potential  Hotspots  Identified  by  Social  LCA:  a  Case  Study  of  a  Laptop  Computer”,  was  recently  performed  by  Ekener-­‐Petersen  &  Finnveden  (2012).  The  life  cycle  of  a  laptop  was  investigated  from  a  social  impact  perspective,  which  roughly  can  be  described  as  examination  of  the   involved  countries,   including  national   situations,  behind  each  of   the   life   cycle  phases.   The  goal  was   to  discover  hotspots  with   the   largest   social   impact  and   in  which  country   these  most  likely   would   occur.   The   result   of   the   study   showed   for   instance   that   workers   and   the   local  community  are  at  greatest  risk.  Lack  of  site-­‐specific  data  lead  to  uncertainties  in  the  result  and  

Page 15: The Impact of a Teracom Group Product From a Life Cycle

 

5    

future  SCLA  would  benefit  from  accurate  data  from  the  correct  sector,  or  even  more  preferable  from  the  precise  site.  (Ekener-­‐Petersen  &  Finnveden,  2012)  With  this  in  mind,  it  would  not  make  sense  to  spend  time  and  effort  on  including  social  aspects  in  this  LCA.        2.2  Introduction  of  Teracom  Group  Teracom  Group   is  a  Swedish  company  owned  by   the  state  with  business   in  Sweden,  Denmark  and  Finland.  The  company  provides  technical  communication  and  network  solutions  within  the  area  of  radio  and  TV  broadcasting,  pay-­‐TV,  transmission  capacity  for  data  connections  as  well  as  co-­‐location   and   service.   Swedish   Teracom   AB   and   Danish   Teracom   A/S   own   and   run   the  terrestrial   network   in   Sweden   and   Denmark.   (Teracom,   2012a)   Teracom   Group   consists  furthermore  of  Boxer  TV-­‐access  AB,  which  operates  and  sells  pay-­‐TV  program  packages   in   the  Swedish  digital  terrestrial  network  along  with  broadband  and  telephone  services,  Boxer  TV  A/S  which   offers   digital   pay-­‐TV   in  Denmark   for   the   terrestrial   network   and   finally  Digi   TV   Plus  Oy  which  runs  similar  activities  in  the  Finnish  digital  terrestrial  network.  (Teracom,  2102b)    The  Teracom  Group  sustainability  work  has  become  very  important  over  recent  years  due  to  a  strong  development  of  the  company  to  be  competitive,  but  also  as  a  consequence  of  pressure  from   the   owner   as   well   as   international   institutions   such   as   the   EU.   The   sustainable  development  has  been  divided  into,  and  communicated  as,  three  areas  –  society,  environment  and   economy.   The   work   was   initiated   2008   by   identification   of   the   company’s   stakeholders  including   owner,   clients,   employees,   suppliers,   partners,   media,   agencies   and   the   public.   All  areas  of  the  company’s  activities,  such  as  plants,  grids  and  offices,  are  continuously  evaluated  to  examine  environmental  impacts  so  that  these  can  be  improved.  The  largest  impact  arises  from  use   of   fuel   and   energy.   GHG   emissions   occurring   from   these   energy   sources   are   officially  presented   as   CO2   eq   to   facilitate   communication   within   and   outside   the   company.   One   of  Teracom  Group’s  environmental  goals  quantifies  a  reduction  of  GHG  emissions  by  3%  annually.  This   should   be   done   by   efficiency   of   operations,   where   renewable   energy   and   greener  technologies  are  examples.  (Teracom  Group,  2012)    In  the  process  of  purchasing  STBs,  Boxer  puts  great  emphasis  in  choosing  suppliers,  which  have  clear  strategies  regarding  sustainability.  In  addition,  the  suppliers  are  chosen  depending  on  their  ability   to   supply   products   offering   functionalities   according   to   Boxer’s   requirements   and  customers’  demand.  Teracom  Group’s  environmental  manager  conducts  an  investigation  of  the  suppliers   before   purchasing,   to   ensure   that   Teracom   Group’s   sustainability   policy   is   fulfilled.  Boxer  reserves  the  right  to  control  the  suppliers  by  demanding  the  latest  sustainability  report  or  other   document   showing   their   sustainable   development.   In   addition   to   this,   suppliers   must  explain  how  they  work  to  meet  the  ten  principles  regarding  human  rights,  labour,  environment  and   anti-­‐corruption   within   the   United   Nations   (UN)   Global   Compact.   Boxer   furthermore  demands   their   suppliers   to   share   valid   ISO14001   certificate   or   other   description   of  environmental   management   and   valid   ISO9001   certificate   or   other   description   of   quality  management.   Today,   the   STBs   are   purchased   from   three   suppliers   –   Humax,   Pace   and  Sagemcom.  (Jimyr,  2012)    During  the  latest  12  months,  Boxer  sold  more  than  49  000  Set-­‐top  boxes  (STB)  (excluding  ones  sold  by  retailers).  To  illustrate  this  tremendous  amount,  these  would  equal,  if  put  on  each  other,  the  same  height  as  approximately  20  Kaknästornet  (Teracom’s  radio  and  TV  tower  in  Stockholm,  with  a  height  of  155  m).  (Ekman,  2012)    

Page 16: The Impact of a Teracom Group Product From a Life Cycle

 

6    

2.3  Investigated  supplier:  Sagemcom  Sagemcom   is   a   French  high   technology   company  producing,   among  many  other  products,   the  STB   investigated   in   this   study.  The  company  claims  having  a  clear  policy   regarding  sustainable  development   including   areas   such   as   sites   environment,   ethical   approach   and   occupational  health  and   safety.   Sagemcom  constantly   tries   to  minimize   the   impact  of   their  products  by   for  instance  using  recyclable  materials.  “Eco  Design”  is  used  when  developing  products  and  means,  according  to  Sagemcom,  to  make  choices  that  minimise  the  effects  on  the  environment  during  products’  life  cycles.  In  other  words,  Sagemcom  puts  great  effort  in  producing  better  products,  focusing   on   minimizing   use   of   raw  materials   and   energy   consumption.   The   company   further  states   that   LCA   is   used   as   a   tool   to   investigate   how   the   products   affect   the   environment.  However,   these   reports  are  not   yet  officially  published   for  other   companies,   such  as  Teracom  Group.  (Sagemcom,  2012a)      When   conducting   LCAs,   Sagemcom   uses   a   simplified   life   cycle   assessment   tool   created   by  companies  within   the  electronics   industry.  The   tool,   called  Environmental   Improvement  Made  Easy  (EIME),  includes  a  database,  which  covers  statistical  data  of  environmental  impact,  such  as  water   pollution,  GHG   emissions   etc.   (Sagemcom,   2012b)   EIME   also   includes   functions   for   Eco  Design  and  Environmental  Labelling.  The  software   is  created  to  simplify  use  for  different  kinds  companies.  (Bureau  Veritas  CODDE,  2012)    Regarding  disposal   and  waste  management,   Sagemcom  complies  with   the   European  Directive  2002/96/EC   (Official   Journal  of   the  European  Union,  2003),  which  means   that   the   company   is  responsible   for   the   recycling  of  all  electric  and  electronic  products.  The  company   furthermore  invites   their   customers   to   refurbish   the   products   so   that   they   can   be   reused.   This   means  functional  test,  cosmetic  reparation,  new  packaging  etc.  To  minimize  the  environmental  impact  from   packaging   the   products,   Sagemcom   follows   the   European   Directive   94/62/EC   (Official  Journal  of  the  European  Union,  1994)  demanding  exclusion  of  heavy  metals,  minimizing  use  of  raw  materials  and  clarifying  composition  to  ease  recycling.  (Sagemcom  2012c)    2.4  Chosen  product  for  the  life  cycle  assessment  Teracom  Group  suggested  performing  an  LCA  of  the  company’s  most  prioritised  STB.  The  chosen  product  for  this  study   is  thus  Sagemcom  RTI90  320HD  (figure  1)  –  a  STB  with  a  hard  drive  and  two   TV   tuners   which   makes   it   possible   to   record   and   save   two   different   programs   while  watching   a   third.   (Boxer,   2012b)   The   box   is   delivered   with   a   power   cable,   remote   control  (including  batteries),  an  HDMI  cable  and  a  manual  (Sagemcom,  2012d).  

 

   

Figure  1.  Sagemcom  RTI90  320HD.  

Page 17: The Impact of a Teracom Group Product From a Life Cycle

 

7    

The   STB   is  manufactured   in   Sagemcom’s   factory   situated   in   Tunisia.  Most   of   the   components  (approximately   95%)   are   imported   from   sub   suppliers   located   in   different   areas   of   China.  (Tremblay,  2012a)  Teracom  Group’s  distribution  partner  Electra,  who  in  turn  uses  the  services  of  the   Swedish   postal   company   Posten,   delivers   the   products   to   the   Swedish   Boxer   customers.  (Ekman,  2012)    CE-­‐labelling   certifies   that   the   product   is   approved   by   EU   directives   regarding   radio   and  telecommunication   (1999/5/EC),   safety   (2006/95/EC),   electromagnetic   compatibility  (2004/108/EC)   and   Eco   design   (ErP   2009/125/EC).   This  means   that   the   STB   is   constructed   to  ensure   the   safety   and   health   of   the   user   as   well   as   minimize   the   environmental   impact.  (Sagemcom,  2012d)  The  product  is  furthermore  manufactured  with  recyclable  materials  such  as  certain   plastics,   making   the   disposal   phase   highly   important.   According   to   the   European  Directive  WEEE   (Official   Journal   of   the   European  Union,   2003),   the   retailer  must   collect   used  boxes  for  disposal  without  additional  charges.  The  STB  including  supplied  batteries  are  free  from  hazardous  materials   such   as   lead,  mercury   and   cadmium,   in   accordance   to   the   Restriction   of  Hazardous  Substances  (ROHS)  directive.  (Sagemcom,  2012d)    After  the  product’s   lifetime,  the  customer   is  expected  to   leave   it  at  one  of   the  many  recycling  centres.   Teracom   Group   pays   a   fee   to   the   electronic   recycling   company   El-­‐Kretsen,   which   is  responsible   for   taking   care  of   the  product,   together  with  other   kind  of   electric   and  electronic  waste.  The  STBs  are  sorted  and  handled   together  as  “various  electronics”   together  with  other  similar   products   such   as   kitchen   equipment,   TVs,   cell   phones,   computers   etc.   This   group  accounts  for  more  than  half  of  all  the  electronics  collected  and  most  of  the  products  are  treated  with   the  same  techniques.  Products  containing  PCB  have   to  be  dismantled  before  metal  parts  can  be  recycled.  The  metals  such  as  copper,  aluminium  and  iron  are  melted  and  can  be  used  as  raw  materials   for  new  products.  Plastics  and  glass  can  be  recycled  as  well,  and  the  rest  of   the  materials  such  as  fabric,  wood  and  non-­‐recyclable  plastics  are   incinerated  where  the  energy   is  used   for  heat  or  electricity.  The  batteries   in   the  remote  control  are  also  recycled,  normally  by  melting  of  the  metals  and  distillation  of  the  chemicals.  (El-­‐Kretsen,  2012)      

Page 18: The Impact of a Teracom Group Product From a Life Cycle

 

8    

3  Methodology  This  chapter  describes  the  methodology  used  when  performing  this  project  and  covers  literature  study,  interviews,  and  the  process  of  LCA  and  software  used.    3.1  Literature  study  To  obtain  deep  background   information   regarding   the   topic,   a  wide   literature   study  has  been  performed   exploring   former   scientific   research   within   the   area   of   electronic   devices   and  sustainability   with   focus   on   environmental   aspects   including   life   cycle   assessment.   This  information  was  in  the  form  of  annual  reports,  Webpages,  articles  etc.  As  far  as  possible,  current  literature  was  used.      3.2  Interviews  To  understand  activities,  different  processes  and   to  obtain   certain  data,   interviews  have  been  executed   with   various   people   within   the   company.   A   small   group   of   people   including   a  supervisor  has  continuously  discussed  and  evaluated  the  on-­‐going  work.    Information  has   also  been   collected   through   cooperation  with   suppliers   and  other   companies  such   as   Teracom   Group’s   logistics   partner   Electra   and   the   Swedish   postal   office   Posten.   To  collect  the  correct  kind  of  data  regarding  the  chosen  STB,  interviews  have  been  performed  with  Sagemcom’s  Environmental  Expert.    3.3  The  process  of  a  life  cycle  assessment    The  ISO  has  created  several  standards  and  guidelines  to  perform  an  LCA  where  the  main  one  is  called  ISO14040  and  describes  the  tool  as  follows  (Baumann  &  Tillman,  2004):    “LCA   is   a   technique   for   assessing   the   environmental   aspects   and   potential   impacts   associated  with  a  product  by:    

• compiling  an  inventory  of  relevant  inputs  and  outputs  of  a  product  system;  • evaluating   the   potential   environmental   impacts   associated   with   those   inputs   and  

outputs;  • interpreting   the   results   of   the   inventory   analysis   and   impact   assessment   phases   in  

relation  to  the  objectives  of  the  study”      The  standard  further  states  that  use  of  resources,  human  health,  and  ecological  effects  are  the  three  main  impact  areas  that  need  to  be  taken  into  account  when  performing  an  LCA.  (Baumann  &  Tillman,  2004)    The  LCA  should  preferably  be  divided  into  three  different  phases  (figure  2)  where  the  first  one  consists  of  goal  and  scope  definition.  In  this  step  the  product  is  chosen  and  the  purpose  of  the  study  is  described.  The  first  step  should  also  clarify  how  the  result  will  be  used,  the  reason  for  this  and  to  whom  and  how  the  result  will  be  communicated.  To  be  able  to  perform  the  LCA,  it  is  also   important   to   create   a   more   specific   question.   The   function   of   a   product   system,   the  “functional  unit”,  needs  to  be  determined  in  quantitative  terms,  so  that  it  can  be  connected  to  the  environmental   impact   it  has.   There  are   several   factors   that  need   to  be   set  as  a   first   step;  system   boundaries,   description   of   the   included   processes,   environmental   impacts   (such   as  resource  use,  global  warming,  acidification,  eutrophication  etc.)  and   the   level  of  details   in   the  collected  data.  (Baumann  &  Tillman,  2004)    

Page 19: The Impact of a Teracom Group Product From a Life Cycle

 

9    

The  second  step  of  an  LCA  consists  of  making  a  life  cycle  inventory  analysis  (LCI),  which  means  a  model   of   the   product   process   showing   the   flows   of   mass   and   energy   that   will   have  environmental  impact.  The  model  can  be  created  as  a  flowchart  showing  all  steps  of  the  system  including  production,  transportation,  use  and  disposal,  and  the  interaction  between  them.  The  inventory   analysis   should   additionally   include   collection   of   data   as   input   and   output   in   the  process,  such  as  raw  materials,  energy  sources,  products,  waste  and  emissions.  The  final  part  in  this  second  step  should  be  a  calculation  of  used  resources  and  created  emission  per  functional  unit.  (Baumann  &  Tillman,  2004)    The  inventory  analysis   is  followed  by  a  life  cycle  impact  assessment  (LCIA)  with  the  purpose  of  describing  the  potential  environmental  impact  as  effects  of  the  emission  and  the  resource  use,  presented   in   the  previous   step.   This  means   to   sort  out  and   classify   the  parameters   related   to  their   environmental   impact.   The   impact   is   then   further   grouped   by   character,   meaning   for  instance  that  all  kinds  of  GHG  emissions  will  contribute  to  global  warming  and  can  therefore  be  seen  as  one   indicator.  Aggregating   impact   is  normally  not  possible  without  adding   values  and  qualitative  perspectives  formed  by  humans.  (Baumann  &  Tillman,  2004)    

   

Figure  2.  Relationship  between  the  steps  in  an  LCA  and  interpretation  of  these.    Since  technical  systems  described  in  the  inventory  analysis  do  not  exist  without  involvement  of  human  beings  and  social  systems,  it  is  necessary  to  consider  and  take  those  into  account  as  well.  The   same   applies   for   environmental   systems,   due   to   the   fact   that   natural   resources   are   used  and  emissions  created  and  released  back  to  nature,  within  the  technical  system.  Together,  these  three  systems  form  the  base  of  the  LCA.  (Baumann  &  Tillman,  2004)    3.4  SimaPro  and  Ecoinvent  The  software  used  for  conducting  this  study  is  a  Swiss,  computer  based  LCA  tool  called  SimaPro,  which  gives  the  opportunity  to  create  models  of  the  life  cycle  in  a  transparent,  systematic  way.  The   software   is   integrated  with   a   comprehensive   database   called   Ecoinvent   including   a   wide  international  scope.  (PRé,  2012)  The  database  with  more  than  4,000  datasets  in  various  market  categories,   such   as   metals   processing,   packaging   materials,   information   and   communication  technology   and   electronics,   is   based   on   real   industrial   data,   created   by   LCA   consultants   in  corporation  with  large  international  research  institutes.  (Swiss  Centre  for  Life  Cycle  Inventories,  2012)    

Goal  and  scope  definition

Impact  assessment

Inventory  analysis Interpretation

Page 20: The Impact of a Teracom Group Product From a Life Cycle

 

10    

3.5  Impact  categories  The  impact  categories  for  this  study  were  obtained  by  using  an  LCA  methodology  called  ReCiPe  2008.   The   method   was   chosen   to   express   emissions   and   use   of   natural   resources   as   impact  category   indicators   at   midpoint   level.   This   can   be   described   as   direct   environmental   impacts  such   as   climate   change,   ecotoxicity   and   acidification,   in   contrast   to   endpoint   level   where  damage   to   human   health   and   ecosystems   are   described.   The   method   consists   of   18   impact  categories,  which  can  be  found  in  table  1.  (ReCiPe,  2012)    

Table  1.  ReCiPe  2008  Impact  categories.    

Impact  category   Unit  Climate  change   kg  CO2  eq  Ozone  depletion   kg  CFC-­‐11  eq  Human  toxicity   kg  1,4-­‐DB  eq  Photochemical  oxidant  formation   kg  NMVOC  Particulate  matter  formation   kg  PM10  eq  Ionising  radiation   kg  U235  eq  Terrestrial  acidification   kg  SO2  eq  Freshwater  eutrophication   kg  P  eq  Marine  eutrophication   kg  N  eq  Terrestrial  ecotoxicity   kg  1,4-­‐DB  eq  Freshwater  ecotoxicity   kg  1,4-­‐DB  eq  Marine  ecotoxicity   kg  1,4-­‐DB  eq  Agricultural  land  occupation   m2a  Urban  land  occupation   m2a  Natural  land  transformation   m2  Water  depletion   m3  Metal  depletion   kg  Fe  eq  Fossil  depletion   kg  oil  eq  

 Only  a  few  of  the  impact  categories  are  further  prioritised  for  this  study,  due  to  the  fact  that  the  aim  of  this  LCA  is  to  use  the  result  as  an  indicator  on  potential  environmental  impacts  for  further  discussion,  making  a  complete  analysis  unnecessary.      3.6  Classification  and  characterisation  Classification  means  that  certain  environmental  loads  within  the  LCI  are  assigned  to  the  relevant  impact  category,  which  requires  knowledge  on  how  different  resources  and  emissions  affect  the  environment.   Characterisation   on   the   other   hand   means   calculating   the   sizes   of   the  environmental   impacts   by   creating   a   characterisation   factor   for   each   of   them.   (Baumann   &  Tillman,   2004)   The   advantage   of   using   ReCiPe   as  methodology   for   impact   assessment   is   that  classification  and  characterisation  are  already  included.      3.7  Normalisation  In   order   to   understand   the   characterisation   result   and   define   the   size   of   it   in   relation   to   the  actual  situation  of  today’s  environmental  impact,  normalisation  becomes  an  important  step.  It  is  a  way  to  compare  the  value  of  a  certain  impact  category  to  the  total  average  impact  per  person  and  year  within  the  same  category,  regionally,  nationally  or  globally.  (Baumann  &  Tillman,  2004)  

Page 21: The Impact of a Teracom Group Product From a Life Cycle

 

11    

Normalisation   is   used   in   this   study,   in   relation   to   a   European   average   from  2000,   to   obtain   a  picture  of  the  impact  categories  with  the  largest  effects  on  the  environment.        3.8  Life  cycle  interpretation  Within  the  final  phase  of  the  LCA,  the  goal  and  scope  definition  is  combined  with  the  results  of  the   LCI   and   the   LCIA   to  make   possible   the   interpretation   of   the   results.   Based   on   the   result,  conclusions  regarding  the  investigated  product’s  environmental  impact  can  be  drawn.  The  result  is  normally  illustrated  by  different  kinds  of  diagrams.                

Page 22: The Impact of a Teracom Group Product From a Life Cycle

 

12    

4  Life  cycle  assessment  of  the  chosen  product    This   chapter   contains   the   usual   steps   within   an   LCA   according   to   the   aforementioned  methodology  of   the   tool,   including  goal   and   scope  definition,   life   cycle   inventory  analysis   and  life  cycle  impact  assessment  including  interpretation.        4.1  Goal  and  scope  The  goal  of   this  LCA   is   to  explore  the  STB’s  overall  potential  environmental   impact   in  order  to  contribute   to   Teracom   Group’s   further   sustainable   work.   The   result   will   be   used   to  communicate   this   development   within   the   company   and   form   a   base   for   further  recommendations  regarding  future  purchase  of  products.    

4.1.1  Functional  unit  The   chosen   product,   which   also   represents   the   functional   unit   for   the   LCA,   is   as   previously  mentioned  one   (1)   STB   from   Sagemcom  with  model   number   RTI90   320HD.   The   product   itself  including  supplied  accessories  such  as  cables,  remote  control  with  batteries,  the  manual  and  the  package  are  all  included.  The  total  weight  of  the  packages  delivered  to  final  customers  is  1.776  kg.   The   lifetime   of   the   product   is   assumed   to   be   5   years.   Additional   information   regarding  functionalities  and  power  consumption  can  be  found  in  chapter  2.4  Chosen  product  for  the  life  cycle  assessment,  and  in  appendix  I  –  Data  regarding  Sagemcom  RTI90  320HD.  

4.1.2  System  boundaries  The  life  cycle  of  the  chosen  products  begins  with  resource  extraction  from  nature,  to  obtain  all  materials  needed  for  the  production.  The  resource  extraction  can  be  described  as  the  cradle  of  the  product  and  will  only  occur  at  the  very  beginning.  The  life  cycle  ends  when  the  materials  are  returned   to   nature   as   emissions   or   end   up   at   landfills.   Since   emissions   will   occur   during   the  whole  life  cycle,  it  is  harder  to  specify  the  grave.  The  system  boundaries  are  further  illustrated  in  a  flowchart  (figure  6)  under  4.2.2  Flowchart  of  the  life  cycle.    Different  geographical  system  boundaries  will  affect  different  phases  of  the  product’s  life  cycle.  The   resource   extraction   will   most   likely   occur   all   over   the   world   making   boundaries   hard   to  predict.   Most   of   the   components   manufacturer   are   however   limited   to   China.   The   assembly  process  of   those  components   takes  place   in  Tunisia  and   the  products  are  sold  only  within   the  Swedish  market.  The  transports  between  these  locations  affect  globally.    The   time   horizon   stretches   from   use   of   raw   materials   (involving   resource   extraction)   to   the  waste  scenario,  including  production  and  use.  The  data  and  the  situation  will  represent  current  time  meaning  that  future  development  and  changes  will  not  be  considered.    The   technical   system   consists   of   all   the   human   processes,   from   when   natural   resources   are  extracted  until  these  are  released  back  as  emissions  to  nature  or  as  waste  to  landfill.  The  LCA  is  limited   by   investigating   only   the   resource   extraction   and   assembly   process   of   the   production  phase.  This  involves  imported  components  including  all  materials  and  energy  (electricity),  water  and  nitrogen  used  during  the  assembly  of  these.  Due  to  difficulties  in  examining  sub  suppliers,  the  processes  of  components  manufacturing  and  systems  linked  with  these  are  not  included.    Boundaries   regarding   transports   (figure   3,  where   truck   transports   are   indicated   by   green   and  ship   transports   are   indicated   by   blue)   within   the   life   cycle   include   transports   from   Chinese  components  manufacturers  throughout  the  chain,  ending  at  the  local  postal  offices  in  Sweden.  The  components  are  transported   from  the   factories   to  a  Chinese  harbour  by  truck   (right  hand  green  circle  in  figure  3).  From  there  the  parts  are  shipped  (blue  line  in  figure  3)  to  the  assembly  

Page 23: The Impact of a Teracom Group Product From a Life Cycle

 

13    

factory  in  Tunisia.  The  final  products  are  then  transported  to  France  by  ship  (blue  line  in  figure  3)   over   the   Mediterranean   Sea.     Trucks   are   used   to   transport   the   products   through   Europe  (green  line  in  figure  3)  to  Boxer’s  Swedish  warehouse  located  in  Kalmar.  (Tremblay,  2012b)  The  products  are  distributed  to  the   local  postal  offices  by  truck   (left  hand  green  circle   in   figure  3).  Additional  transports  such  as  from  the  postal  offices  to  final  customer  and  to  recycling  centres  etc.  will  not  be  included  due  to  the  relative  short  distances  and  lack  of  statistics  regarding  these  kinds  of   transports.   Furthermore,   transports   of   disposed  products   to   recycling  plants,   landfills  etc.  was  excluded  for  the  same  reason.  Distances  used  for  the  LCA  can  be  found  in  appendix  I.        

   

Figure  3.  Transport  chain  of  the  STB.      The  study  is  further  limited  to  the  Swedish  market,  including  statistics  and  other  data  regarding  households,   energy  mix,  waste   scenario  etc.   The  examined  STB   is   sold  not  only  by  Boxer,  but  also  by  other  retailers,  both  in  shops  and  online.  These  will  not  be  included  in  the  LCA.  Capital  goods  such  as  factory,  office  buildings  and  machinery  used  to  produce  the  product  will  not  be  included   in   this   LCA  since   these   types  of   tools   last   for,  and  produce   far  more   than  1  STB.  The  personnel  and  their  potential   impact  on  the   life  cycle   for  all   involved  companies  and   factories  will  not  be  taken  into  account.  Other  related  services  such  as  maintenance  and  reparation  of  the  products  will  also  be  excluded.  

4.1.3  Data  quality  The   foreground   system   of   this   LCA   includes   the   aforementioned   specific   data,   including   for  instance   assembly,   transports   and   the   use   of   the   STB.   For   the   background   system,   including  areas   such   as   processing   of  materials,   production   of   fuel   etc.,   generic   values   are   used   in   the  Ecoinvent  database.  Most  of  the  collected  information,  such  as  quantity  of  materials  within  the  

Page 24: The Impact of a Teracom Group Product From a Life Cycle

 

14    

product  and  transport  distances,   is  obtained  directly   from  Sagemcom.  This  means  site-­‐specific  values,  which   should  generate  a  more  accurate   result.  Due   to   this,   the  objectivity  of   the  data  can  be  questioned,  which  will  be  handled  in  the  discussion.  Other  information,  such  as  statistics  regarding   TV   habits   and   the   Tunisian   energy   mix   are   as   current   as   possible.   Some   data   is  however  less  certain  since  updated,  reliable  values  were  difficult  to  obtain.  Examples  of  this  are  distances  from  the  Swedish  warehouse  in  Kalmar  to  the  final  customers  and  exact  vehicles  used  for  different  transports.    

4.1.4  Assumptions  and  limitations  Due   to   the   life   cycle’s   complexity   and   therefore   lack   of   certain   data,   some   assumptions   are  made.  The  list  of  materials  obtained  from  Sagemcom,  included  several  materials  that  could  not  be   found   in   SimaPro.   This  was   especially   apparent   regarding   inorganic   chemicals,   and  quite   a  few  of  them  were  instead  substituted  to  a  “global  average  of  inorganic  chemicals  at  plant”  using  the  same  quantity.  A  few  other  materials  that  could  not  be  found  in  SimaPro  were  just  listed  by  their  weight,  without  additional   impact  data.  This  substitution  is  further  shown  in  detail   in  the  confidential  material  list.    The  usage  phase  of  the  STB  is  estimated  to  be  five  years.  It  is  assumed  that,  during  this  period  of  time,  the  product   is  never  completely  turned  off.   It   is  further  assumed  that  the  STB  is   left  at  a  recycle   centre   after   its   lifetime.   Data   regarding   the   vehicles   used   for   transports   is   based   on  assumptions  and  chosen  vehicles  in  the  SimaPro  software  can  be  found  in  appendix  I.    4.2  Life  cycle  inventory  analysis  of  the  chosen  product  The  following  chapter  provides  information  regarding  data  collection  for  the  LCA,  a  flowchart  of  the  life  cycle  including  main  phases  and  the  system  boundary.    

4.2.1  Data  collection  The  materials  used  (and  their  weight)  for  the  STB  have  been  obtained  from  Sagemcom  through  email  correspondence  with  environmental  expert  Florian  Tremblay.  These  were  given  in  kg  per  product  and  can  be  found  in  a  confidential  material  list.  The  list  contains  all  materials  for  the  STB  itself,  as  well  as  the  accessories  previously  described.  Materials  used  for  packaging  and  for  the  wood  pallet  were  also   included.  The  allocation  of  used  materials  divided   into   several  material  groups  are  shown  in  figure  4.  The  energy  consumption  (electricity)  and  use  of  other  resources  (water  and  nitrogen)  during  the  assembly  phase  were  also  obtained  from  Sagemcom  and  given  in  amount  per  product  and  can  be  found  in  the  confidential  material  list.    

 

Page 25: The Impact of a Teracom Group Product From a Life Cycle

 

15    

   

Figure  4.  Share  of  used  materials  divided  into  material  groups.    The  Tunisian  energy  mix  was  created  in  SimaPro  and  used  for  electricity  consumption  during  the  assembly  phase  of  the  components.  The  energy  mix  (shown  in  figure  5)  was,  according  to  official  data   of   2009,   produced   by   oil   (9.2%),   gas   (89.7%),   hydro   (0.5%)   and   wind   (0.6%)   power  (International  Energy  Agency,  2011a).  The  electricity  consumed  by  final  customer  during  the  use  phase  was  on  the  other  hand  Swedish  energy  mix,  which  can  be  found  directly  in  the  Ecoinvent  database,  with  values  equivalent  to  the  current  Swedish  situation.  According  to  official  data  of  2009,   the   Swedish   energy  mix   was   produced   by   coal   and   peat   (1,2%),   oil   (0,5%),   gas   (1,1%),  biofuels   (7,6%),   waste   (1,3%),   nuclear   (38,2%)   hydro   (48,3%)   and   wind   (1,8%)   (International  Energy  Agency,  2011b).  

 

   

Figure  5.  Tunisian  energy  mix.    

Transport   distances,   given   in   km,   from   the   Chinese   sub   suppliers   all   the  way   to   the   Swedish  warehouse,   via   the   assembly   factory   in   Tunisia   were   received   from   Sagemcom.   The   total  

glass  and  ceramics  

inorganic  chemicals  

metals  and  semimetals  

organic  chemicals  

unspecified  materials  

other  mineralic  materials  

cardboard  and  paper  

plasqcs  

water  

oil  

gas  

hydro  

wind  

Page 26: The Impact of a Teracom Group Product From a Life Cycle

 

16    

distance  is  approximately  22  775  km.  An  average  distance  from  the  Swedish  warehouse  to  the  final   customer  was   obtained   by   investigating   the   distance   from   the  warehouse   to   about   800  Swedish  customers  who  purchased   the  chosen  STB  during  September  2012.  This  distance  was  calculated  to  394  km.  According  to  Posten,  the  STBs  are  delivered  by  trucks.        Data  regarding  TV  watching  habits  in  Sweden  was  obtained  from  Mediamätning  i  Skandinavien  (MMS),   a   Swedish   company   owned   by   several   companies   within   the   broadcasting   industry.  According   to   MMS   (2011),   the   average   time   for   watching   TV   in   Sweden   is   162   minutes   per  person  per  day.  The  STB  is  in  “on  mode”  an  additional  180  minutes  before  it  automatically  goes  to   “standby   mode”   (Alksten,   2012).   The   energy   consumption   is,   according   to   Sagemcom,  13.335W  during   “on  mode”   and   1.479W  during   “standby  mode”.   Calculations   regarding   total  energy  consumption  (based  on  use  by  one  person)  can  be  found  in  appendix  I.    The  method   for   waste   scenario   used   in   this   study   is   called   cut-­‐off   approach   and  means   that  recycled  materials  will  have  a  positive  effect  only  when  used  in  another  life  cycle,  since  primary  resource   extraction   and   material   production   then   can   be   excluded.   (Frishknecht,   2009)   This  means  that  the  waste  scenario  will  have  a  very  low  impact  on  the  result  of  this  study.  The  waste  scenario  is  however  modelled  in  SimaPro,  which  in  a  first  step  sorts  out  100%  of  the  cardboard,  paper  and  water  used  within  the  life  cycle,  since  these  most  likely  are  recycled  even  before  the  waste   scenario.  Due   to   the   fact   that   a   cut-­‐off   approach   is   used,   this   step   consists   of   “empty”  recycling  processes  without  data  contributing  to  the  result  of  the  LCA.  The  same  applies  for  the  second   step,  where   the   STB   itself   is   disposed   according   to   the   European  WEEE   directive.   The  remaining  materials  in  the  confidential  material  list  (probably  processing  means  for  assembly  of  the  STB)  go  to  a  generic  landfill  process,  with  emissions  contributing  to  the  result  of  the  LCA.    

4.2.2  Flowchart  of  the  life  cycle  The  flowchart  shown  in  figure  6  illustrates  the  life  cycle  of  the  chosen  STB,  where  the  grey  boxes  symbolise   the  phases  within   the   life   cycle   of   the   STB.   The   red  boxes   show  different   inputs   of  resources   to   the   system   and   the   blue   boxes   symbolise   emissions.   The   orange   box   represents  components  manufacturers,  which  are  not   included.  The  system  boundary   is   illustrated  by  the  dashed  square  framing  the  life  cycle.      

Page 27: The Impact of a Teracom Group Product From a Life Cycle

 

17    

   

Figure  6.  Flowchart  of  the  life  cycle.    

4.3  Life  cycle  impact  assessment  of  the  chosen  product  The  main  result  of  the  LCA  is  first  of  all  illustrated  as  a  characterisation  diagram,  including  each  of   the   characterisation   factors.   A   normalisation   diagram   showing   the  most   significant   impact  categories  in  relation  to  the  average  European  values  are  then  presented.  These  categories  will  together  with   climate   change,  which   appears   to   be   prioritised   by   Teracom  Group,   be   further  presented  and  interpreted.    The   four  main  phases  within   the   life   cycle  –  production,  use,   transports  and  waste   scenario  –  form  the  base  of  each  diagram,  giving  an  opportunity  to  compare  the  impacts  of  these  phases.  It  is  of  greatest  importance  to  remember  that  the  values  in  these  diagrams  should  not  be  seen  as  exact  and  completely  reliable.  They  will  only  be  used  as  indicators  as  a  basis  for  discussion.  

4.3.1  Impacts  by  characterisation  The   overall   results   of   the   LCA   are   shown   in   figure   7,   where   all   18   impact   categories   are  illustrated  as  columns  in  the  diagram.  Each  column  is  divided  into  four  colours  symbolising  the  percentage   of   production,   use,   transports   and   waste   scenario.   The   diagram   gives   an   overall  picture  showing  the  allocation  of  environmental  impact  between  the  main  phases  within  the  life  cycle   of   the   product.   The   production   phase   (represented   by   blue)   and   the   usage   phase  (represented   by   red)   evidently   stand   for   the   main   impact,   while   transports   (represented   by  green)   only   have   a   small   effect   on   certain   categories.   The   waste   scenario   (represented   by  purple),  has  the  least  environmental  impact  during  the  life  cycle.  Therefore,  the  analysis  focuses  on  the  two  phases  with  largest  impact.    

 

Page 28: The Impact of a Teracom Group Product From a Life Cycle

 

18    

 Figure  7.  Impact  by  characterisation.  

 The  diagram  in  figure  7  clearly  shows  that  the  production  phase  has  the  largest  environmental  impact  within  categories  such  as  terrestrial  acidification,  human  toxicity,  freshwater  ecotoxicity,  marine  ecotoxicity,  urban  land  occupation  and  metal  resource  depletion.  The  use  phase  on  the  other  hand  affects  the  environment  foremost  within  climate  change,  ozone  depletion,  terrestrial  ecotoxicity,   ionising   radiation,   agricultural   land   use,   natural   land   transformation   and   water  depletion.      The  diagram  only  compares  the  relationship  between  the  four  main  phases  within  each  impact  category.  However,   the  diagram  does  not  show  the   total   impact  of  each  category,  nor  does   it  show  the  relation  between  the  categories  regarding  environmental  impact.  This  means  that  one  impact  category  can  have  a  significantly  larger  effect  on  the  environment,  than  the  other.  To  be  able   to   further   analyse   the   total   impact,   and   relate   it   to   average   values,   the   process   of  normalisation  becomes  necessary.  

4.3.2  Impacts  by  normalisation  The  normalisation  diagram,  including  all  of  the  impact  categories,  can  be  found  in  figure  8  and  shows   that   freshwater   eutrophication,   human   toxicity,   freshwater   ecotoxicity   and   marine  ecotoxicity   are   the   four   impact   categories   with   highest   values   in   relation   to   the   European  average.  These  will  therefore  further  be  investigated  together  with  climate  change  and  mineral  depletion,   since   Teracom   Group   prioritises   these   categories.   Despite   this,   the   chosen   impact  categories   show   huge   differences   in   environmental   impact   depending   on   how   the   result   is  interpreted.  All   results  within   the  normalisation  diagram  can  be  seen  as   fairly   low,  due   to   the  fact  that  the  values  are  compared  to  an  annual,  European  average  per  person  (from  year  2000).  It  is  still  of  greatest  importance  to  keep  in  mind  that  normalisation  only  can  be  used  as  a  rough  indication.   Firstly,   the   method   of   calculating   annual,   average   European   values   is   not  investigated.   Secondly,   all   the   materials   within   the   material   list   obtained   from   Sagemcom  cannot   be   found   in   the   Ecoinvent   database.   Thirdly,   the   result   of   the   normalisation   diagram  

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  

100%  

Producqon   Use   Transports   Waste  scenario  

Page 29: The Impact of a Teracom Group Product From a Life Cycle

 

19    

does   not   illustrate   which   of   the   impact   categories   are   worse   than   others,   only   that   they   are  higher  in  relation  to  an  average  value  with  units  totally  unrelated  to  each  other.      

 Figure  8.  Impact  by  normalisation.    

   

0  0,02  0,04  0,06  0,08  0,1  

0,12  0,14  0,16  

Producqon   Use   Transports   Waste  scenario  

Page 30: The Impact of a Teracom Group Product From a Life Cycle

 

20    

4.3.3  Climate  change  Not   only   CO2   emissions   affect   the   climate   by   absorbing   infrared   radiation,   thus   heating   the  atmosphere.   Other   GHGs   such   as  methane   and   chlorofluorcarbon   (CFC)   absorb   the   radiation  even  more   effectively.   The   ReCiPe  midpoint  methodology   is   based   on   the   Intergovernmental  Panel  on  Climate  Change  (IPCC)  CO2  equivalents  factor.  This  global  warming  potential  (GWP)  is  a  characterisation   factor   expressing   the   effect   of   GHGs.   It   can   be   explained   as   the   relation  between   increased   infrared   absorption   caused   by   a   certain   gas   in   relation   to   the   infrared  absorption  caused  by  1  kg  of  CO2.  (Baumann  &  Tillman,  2004,  ReCiPe,  2012)        Looking  at  climate  change  (figure  9),  the  total  amount  of  CO2  eq,  caused  by  the  life  cycle  of  the  chosen  STB,   is  approximately  26  kg.  The  use  phase  has   the   largest  environmental   impact  with  approximately   16   kg   CO2   eq   during   the   5-­‐year   period   representing   the   lifetime.   This   amount  corresponds  to  64%  of  the  total  amount  of  CO2  eq  and  derives  exclusively  from  the  production  and  use  of   Swedish   electricity.   The  production  phase  on   the  other  hand  has   a   less   impact   on  climate  change  with  approximately  7  kg  CO2  eq  or  27%,  foremost  due  to  the  production  and  use  of  Tunisian  electricity  as  well  as  the  production  and  use  of  heavy  metals,  since  GHG  emissions  related  fuels  such  as  oil  and  gas  are  used  for  these  processes.      

 Figure  9.  Climate  Change.  

 To   illustrate  previously  mentioned  values,   the  amount  of  CO2  eq   can  be  put   in   the   context  of  food  consumption  in  Sweden,  which  appears  to  be  a  common  debate  regarding  climate  change.  In  Sweden,   food  consumption  by  one  person  per  year  equals  about  2   tons  of  GHG  emissions.  According  to  the  Swedish  Environmental  Protection  Agency  (2011),  meat  has  the  largest  single  impact  within  this  category  standing  for  about  700  kg  CO2  eq  per  person  per  year  (in  2005).  The  comparison  shows  that  the  climate  change  as  a  consequence  of  using  a  STB  over  5  years  is  fairly  low.  The  amount  of  STB  sold  annually  is  still  high  and  have  a  significant  impact.      

0  

2  

4  

6  

8  

10  

12  

14  

16  

18  

Producqon   Use   Transports   Waste  scenario  

kg  CO

2  eq    

Page 31: The Impact of a Teracom Group Product From a Life Cycle

 

21    

4.3.4  Freshwater  eutrophication  Eutrophication  is  normally  described  as  an  increased  amount  of  nutrients  into  the  environment  leading  to  higher  productivity  within  affected  ecological  systems.  Degradable  organic  pollutants  and  sometime  also  waste  heat  are  normally  included  in  this  impact  category  due  to  their  ability  to  affect   the  biological   composition.  Together,   these  effects   lead   to   increased  consumption  of  oxygen.  Nitrogen   and  phosphorus   are   the   two  most   common   substances  within   this   category  and   the   impact   is   therefore  measures   in  phosphorus  equivalents   (P  eq).   (Baumann  &  Tillman,  2004,  ReCiPe,  2012)        Figure  10  shows   the  amount  of   released  P  eq  during   the   life  cycle  of   the  STB.  The  Production  phase  stands  for  the  highest  amount,  equalling  approximately  0.04  kg  P  eq  or  83%  of  the  total  amount.   As   previously   seen   in   the   case   of   climate   change,   this   depends   on   the   use   of   heavy  metals  such  brass,  silver  and  gold,  since  the  production  process  of  these   leads  to  emissions  of  phosphorus  and  nitrogen.  The  use  phase  on  the  other  hand  corresponds  to  about  0.008  kg  P  eq  or  16%  of  the  eutrophication,  due  to  the  production  and  use  of  Swedish  electricity.        

 Figure  10.  Freshwater  Eutrophication.  

     

0  

0,005  

0,01  

0,015  

0,02  

0,025  

0,03  

0,035  

0,04  

0,045  

Producqon   Use   Transports   Waste  scenario  

kg  P  eq    

Page 32: The Impact of a Teracom Group Product From a Life Cycle

 

22    

4.3.5  Toxicity  Toxicity   is   a   complicated   impact   category   due   to   the   fact   that   it   includes   many   different  substances,   such   as   heavy  metals   or   pesticides,  with   a   variety   of   environmental   impacts.   The  toxicity  category   is  normally  divided   into  human  toxicity  and  ecotoxicity,  which  can   in   turn  be  further  divided  into  sub  categories  such  as  terrestrial  and  aquatic  toxicity.  (Baumann  &  Tillman,  2004)      Environmental  persistence,  accumulation   in   the   food  chain  and   toxicity  of  a   certain   substance  compose  the  characterisation  factor  of  human  toxicity.  The  ReCiPe  midpoint  methodology  uses  the  chemical  1,4-­‐dichlorobenzene  as  a  reference  value  for  this  impact  category.  (ReCiPe,  2012)  Values  are  calculated  as  amount  in  kg  released  to  urban  air.      As   shown   in   figure   11,   the   production   phase   has   the   largest   impact   on   human   toxicity,  corresponding   to   approximately   68   kg  1,4-­‐DB  eq  or   83%  of   the   total   impact.  Brass,   silver   and  gold  used  during  the  production  phase  contribute  the  most,  due  to  the  fact  that  the  production  of  these  materials  leads  to  emissions  of  heavy  metals.  The  use  phase  stands  for  about  13  kg  1,4-­‐DB  eq  or  16%  of   the  contribution  to  human  toxicity  and  derives  as   in  previous  cases   from  the  production  and  use  of  Swedish  electricity.      

 Figure  11.  Human  Toxicity.  

     

0  

10  

20  

30  

40  

50  

60  

70  

80  

Producqon   Use   Transports   Waste  scenario  

kg  1,4-­‐DB  eq

     

Page 33: The Impact of a Teracom Group Product From a Life Cycle

 

23    

As  for  human  toxicity,  the  ReCiPe  midpoint  methodology  uses  the  chemical  1,4-­‐dichlorobenzene  as  a  reference  value  for  freshwater  ecotoxicity  and  marine  ecotoxicity.  Values  are  calculated  as  amount  in  kg  released  to  freshwater  and  seawater  (ReCiPe,  2012).      The  production  phase  has,  as  shown   in   figure  12,   the   largest   impact  on  freshwater  ecotoxicity  due  to  the  use  of  foremost  silver  and  gold.  The  value  equals  approximately  0.8  kg  1,4-­‐DB  eq  or  81%  of   the   total   impact.  The  use  phase  stands   for  about  0.1  kg  1,4-­‐DB  eq  or  15%  of   the   total  impact.  For  marine  ecotoxicity,  the  production  phase  corresponds  to  about  0.8  kg  1,4-­‐DB  eq  or  80%  of  impact,  due  to  the  use  of  brass,  silver  and  gold.  The  use  phase  stands  for  or  almost  0.2  kg  1,4-­‐DB  eq  or  17%  of  marine  exotoxicity.    

 Figure  12.  Freshwater  ecotoxicity  and  marine  ecotoxicity.  

   

0  

0,1  

0,2  

0,3  

0,4  

0,5  

0,6  

0,7  

0,8  

0,9  

Producqon   Use   Transports   Waste  scenario  

kg  1,4-­‐DB  eq

   

Freshwater  ecotoxicity   Marine  ecotoxicity  

Page 34: The Impact of a Teracom Group Product From a Life Cycle

 

24    

4.3.6  Metal  depletion  Depletion   of   resources   is   often   seen   as   one   of   the  most   important   impact   categories,   which  have   lead   to   several   different   impact   assessment  methods.   It   is   still   however   a   large   lack   of  certainty   in  these  methods  and  the  problem  is  seen  upon   in  many  ways.  (Baumann  &  Tillman,  2004)  The  ReCiPe  midpoint  method  calculates  metal  depletion  as   the  additional  present  costs  occurring  for  the  society  in  connection  to  the  mining  of  minerals,  expressed  as  iron  equivalents  (Fe  eq).  (ReCiPe,  2012)      The   diagram   illustrated   in   figure   13   clearly   shows   that   the   production   phase   dominates  depletion  of  minerals  with  a  value  of  about  30  kg  Fe  eq,  corresponding  to  approximately  96%.  This  depends  above  all  on  production  and  use  of  tin  and  gold.  The  use  phase  equals  about  1  kg  Fe  eq  or  4%.  

 

 Figure  13.  Metal  depletion.  

     

0  

5  

10  

15  

20  

25  

30  

35  

Producqon   Use   Transports   Waste  scenario  

kg  Fe  eq

     

Page 35: The Impact of a Teracom Group Product From a Life Cycle

 

25    

5  Discussion  The  aim  of  this  study  was  to  investigate  and  determine  the  effect  of  a  Teracom  Group  product  from  a  sustainability  perspective  and  to  develop  recommendations  for  the  company  regarding  how  to  proceed  in  order  to  reduce  this  impact.      Being   external   and   conducting   a   study   in   a   company   is   a   major   challenge.   It   is   essential   to  understand  the  activities  of  the  involved  companies  and  the  investigated  product  life  cycle.  The  process   of   building   a   good  enough   theoretical   background   is   absolutely   crucial   in   order   to  be  able  to  conduct  the  study  and  to   interpret  the  results.  The  project  has  mainly  been   limited  by  the  time  factor.  Additional  time  to  conduct  the  study  would  have  resulted  in  a  more  profound  investigation   since   the   sustainability   perspective,   as   stated   in   the   aim,   is   far   too   complex   and  involves  too  many  systems  and  subsystems  to  be  able  to  cover  in  a  20-­‐week  study.      In  this  study  certain  boundaries  have  been  set,  which  have  had  an  impact  on  the  result.  The  fact  that  only  one  supplier  and  one  product  were  used  to  represent  Teracom  Group  and  its  products  can  be  seen  as  a  shortcoming.  Investigating  other  suppliers  and  additional  products  would  give  a  more   comprehensive   image   of   the   total   effect   of   all   products.   Therefore   this   thesis   could   be  seen  as  a  pilot  study  with  the  purpose  of  fulfilling  the  aim  of  creating  recommendations.    5.1  Methodology  The  comprehensive  literature  study  of  background  material  has  lead  to  a  deep  understanding  of  the   current   situation   such   as   processes,   business   relations   etc.,   which   has   facilitated   the  collection   of   data   needed   for   the   LCA.   It   has   also   given   the   basis   for   performing  meaningful  interviews  giving  answers  regarding  the  study  that  cannot  be  found  in  literature.      Early  in  the  study  it  was  decided  that  an  LCA  would  be  performed,  to  assess  the  environmental  effects  of   the   chosen  product.   Performing  an   LCA  has  many  benefits.   It   takes   into  account  all  phases  within  the  life  cycle  and  not  only  obvious  factors  such  as  energy  consumption  during  the  usage   phase.   It   is   important   to   consider   all   phases   and   aspects   of   the   total   life   cycle   equally  before  conducting  the  assessment,  since  many  less-­‐affecting  phases  might  together  have  a  fairly  large  impact  on  the  result.  This  however  makes  an  LCA  very  extensive  and  time  consuming.  Just  as  mentioned  before,  the  time  limitation  has  led  to  exclusion  of  the  social  and  financial  aspects  within   the   life   cycle   as   well.   This   limitation   also   applies   for   the   decision   to   not   perform   a  sensitivity  analysis  of  the  LCA.      The  fact  that  Teracom  Group  is  on  top  of  the  supplier  chain  makes  it  difficult  to  obtain  data  from  more   than   the   nearest   supplier.   To   be   able   to   conduct   a   complete   LCA,   all   the   involved   sub  suppliers  would  need  to  willingly  contribute  with  data  regarding  their  manufacturing  processes,  transports  etc.  To  start  with,  there  was  a  problem  obtaining  data,  due  to  confidentiality,  which  took  time  to  solve  through  a  non-­‐disclosure  agreement.      Processes   and   techniques   used   during   manufacturing   of   components   by   Sagemcom’s   sub  suppliers   were   left   outside   the   system   boundaries.   This   decision   might   have   had   the   largest  impact   on   the   result   of   the   LCA   since   processes   within   this   phase   most   likely   demand   a  significant   amount   of   energy   and   other   resources.   The   performed   LCA   would   have   shown   a  more   accurate   result   if   this   phase   was   included.   The   problem   occurred   however   due   to   the  difficulty  in  obtaining  data  from  sub  suppliers  that  Teracom  Groups  has  no  direct  connection  to  or  communication  with.      

Page 36: The Impact of a Teracom Group Product From a Life Cycle

 

26    

 In   addition   to   this,   it   is   important   to   keep   in   mind   that   to   a   certain   extent,   the   study   is  dependent  on  information  from  Teracom  Group  and  to  a  large  extent  dependent  on  data  from  Sagemcom.  This  presents   a   risk  of   information  being  biased  and  not  objective.   This  has   to  be  taken   into   account   in   the   judgment   of   the   reliability   of   these   sources.   The   companies   can   of  course  provide  certain  data   that  affects   the  result   in  a  way   from  which  they  would  benefit.   In  combination  with  the  fact  that  each  company  must  be  careful  and  defend  its  trade  secrets  it  is  important  to  be  careful  when  interpreting  the  result.    Another   factor   contributing   to   a   less   reliable   result   of   the   LCA   was   the   structure   of   the   list  describing   all  materials   used  during   the  manufacturing  phase  of   the   STB.   The   information  did  not  explain  how  materials  were  processed,  if  they  were  included  in  the  final  product  or  just  used  as   processing  means.   The   total  weight   of   the  materials   in   the   list  was   2.026   kg   and   the   final  weight   of   the   delivered   packages   was   only   1.776.   This   difference   is   in   some   cases   easy   to  understand.  It  is  obvious  that  materials  such  as  sand  and  water  are  not  included  as  parts  of  the  final  product.  The  remaining  weight  however  can  be  processing  means,  manufacturing  waste  or  used  in  other  ways,  which  of  course  can  have  different  impact  on  the  result  of  the  LCA.    An  additional  example  showing  uncertainties  of  the  obtained   information  from  Sagemcom  are  the   transport   distances.   According   to   the   company’s   data,   the   average   distance   from   the  Swedish   stock   to   final   customer  was   500   km.   This   value   did   however   not  match   the   average  distance  used  in  this  study,  which  as  aforementioned  was  based  on  fairly  accurate  calculations.  Sagemcom   might   however   consciously   have   made   this   assumption,   which   shows   how   the  methodology  and  the  result  of  an  LCA  might  differ  depending  on  who  is  conducting  it.  Without  references  or  explanation  it  is  difficult  to  check  the  reliability  of  used  information.      In  conclusion,   for  people  within  Teracom  Group  with   limited   insight   into  suppliers’  production  process,  use  of  materials  etc.,  in  short  from  cradle  to  gate,  it  is  difficult  to  understand  how  the  obtained  data  should  be  used  in  an  LCA.  This  fact  is  a  strong  reason  to  not  conduct  an  LCA  on  a  sourced  product,  but  rather  have  the  producer  performing  it  and  instead  try  to  get  access  to  the  result.    5.2  Result  of  the  life  cycle  assessment  The   result  of   the   LCA,   including  both   characterisation  and  normalisation   values,   clearly   shows  the   importance  of   interpretation   throughout   a   study   like   this.  Depending  on  what   values   and  how  these  are   illustrated,  the  result  can  be  perceived   in  numerous  ways.  As  mentioned   in  the  study,  due  to  several  reasons  such  as  lack  of  data,  assumptions  made,  uncertainties  in  SimaPro  and  the  used  database  etc.,  the  result  is  not  totally  accurate.    The   study   does   however   give   a   fairly   reliable   indication   that   the   production   phase   has   the  largest  effect  within  several  impact  categories,  while  the  use  phase  plays  a  greater  roll  in  others.  When  evaluating  the  result,  the  climate  change  impact  factor  was  highly  connected  to  the  use  phase.   The   other   impact   categories   on   the   other   hand  were  more   related   to   the   production  phase.   It   is   also   obvious   that   transports   and   the  waste   scenario   have  minimal   impact   on   the  result  and  there  is  thus  no  need  to  prioritise  these  phases  at  the  moment.  A  deeper  analysis  of  the  result,  examining  the  most  contributing  factors  in  each  phase,  would  give  additional  answers  and  better  understanding  of  how  requirements  on   for   instance   future  development  should  be  created.    

Page 37: The Impact of a Teracom Group Product From a Life Cycle

 

27    

The   fact   that   all   materials   included   in   the   product   could   not   be   found   in   SimaPro,   and   that  others  have  been  replaced  with  similar  ones,  has  of  course  affected  the  result.  Factors  like  this  contributes  to  a   less  exact  result  of  the  LCA,  even  if   it  still  works  as  a  good  indication  on  most  impacting  phases  of  the  life  cycle.  Since  SimaPro  is  advanced  software,  additional  training  would  be  needed  to  understand  its  full  capacity  and  foremost  to  be  able  to  interpret  the  result  and  to  be  able  to  consider  it  reasonable.      5.3  Lack  of  the  social  perspective  An   important   shortcoming   of   this   study   that   must   not   be   forgotten   when   dealing   with  sustainability  and  LCA   is  used  as  a  tool,   is   the  social  aspect  within  the  concept.  Environmental  effects   and   economic   consequences   often   overshadow   social   impacts.   Time   has   as   previously  mentioned,   been   the   limiting   factor   in   the   decision   to   not   prioritise   this   aspect.   Besides,   the  social   aspect   is   often   more   difficult   to   connect   to   an   LCA,   which   normally   focuses   on   the  environmental  impacts.      In  order  to  highlight  social  effects  within  the   life  cycle  of  a  product,  a  separate  SLCA  would  be  more   appropriate.   Unlike   the   financial   dimension   within   sustainability,   which   inevitably   is  connected   to   the   product   through   its  manufacturing   cost   in   relation   to   revenues   of   sale,   the  social   perspective   is   usually   not   a   driving   force  when  making   decisions   based   on   an   ordinary  LCA.  In  other  words,  choices  made  to  decrease  environmental  impact  will  have  a  clear  impact  on  the  economic  aspects,  but  not  social  ones.  Using  software  such  as  SimaPro  when  conducting  an  LCA   leads   to   social   conditions   for   employees   in   China,   Tunisia,   France   and   Sweden   being  ignored.      At   this  point,   the   requirements  put  on  suppliers;   such  as   fulfilment  of   the  global  conduct,   is  a  good  start.  A  future  demand  on  suppliers  performing  SLCA  or  similar   investigations  would  give  an  even  more  reliable  base  for  social  related  impacts.      5.4  Further  recommendations  The  aforementioned  shortcomings  of  this  study  demonstrate  the  difficulty  of  making  an  LCA  in  the   position   of   being   at   the   company   purchasing   products,   not   manufacturing   them.   One  example   showing   the  downfall  of  being  external  and  conducting   this   type  of   study,   is   that   far  into   the   project   it   became   obvious   that   Sagemcom   has   a   fairly   well-­‐developed   strategy   for  sustainability  –  a  fact  that  Teracom  Group  did  not  seem  to  be  aware  of.  This  clearly  shows  that  the   company   previously   has   not   focused   enough   on   sustainability   regarding   products.   Better  communication  with   suppliers  would  most   likely  minimise   the   risk   of   performing   less   reliable  investigations   or   even   duplicating   work.   For   the   purpose   of   this   study,   it   could   have   meant  stronger  focus  on  a  deeper   level,  helping  both  Teracom  Group  and  Sagemcom  to  obtain  more  accurate  impact  knowledge  of  the  investigated  product.      The  result  of  the  LCA  should  only  be  used  as  an  indicator  on  the  environmental  impact  of  each  of   the  main  phases.   This   can  however  be   sufficient  as  a   first   step   in   the  development  of  how  products   are   handled  within   Teracom  Group.   The   information  needed   for   conducting   an   LCA,  can  more  easily  be  obtained  from  people  working  directly  with  development  and  manufacturing  of   the   products.   Since   these   data   normally   are   strictly   regulated   by   confidentiality   and   trade  secrets,  Teracom  Group  should  not  put  efforts  into  performing  LCAs  of  the  company’s  sourced  product  range.  An  LCA  performed  by  the  supplier  would  be  more  reliable  since  Sagemcom  has  the   power   to   obtain   data   regarding   the   company’s   own   and   its   suppliers’   processes.   For  instance,   to   decrease   the   amount   of   released   CO2   eq,   Teracom   Group   needs   to   put   greater  

Page 38: The Impact of a Teracom Group Product From a Life Cycle

 

28    

demand   on   the   production   phase   of   the   investigated   STB.   More   exactly,   the   company   must  require  an  effective  production  phase  but  foremost  only  allow  much  lower  energy  consumption,  during   the   use   phase   of   the   STB.   These   requirements   must   be   prioritised   already   in  development  and  procurement.  Communication  and  cooperation  between  Teracom  Group  and  its  suppliers  are  two  key  factors  for  this.    During   future   procurement   the   life   cycle   related   shortcomings   must   be   just   as   prioritised   as  economical  or  functional  aspects  of  the  products.  This  means  that,  as  with  products  not  fulfilling  the   functional   demands,   products   not   investigated   from   a   life   cycle   perspective   with   a   clear  declaration   should   not   be   purchased.   Higher   requirements   should   be   put   on   the   suppliers  including  demands  on  performed  LCAs  with  clearly  described  references  and  methods,  critically  review  by  a  third  party.  The  earlier  mentioned  standardised  method  EPD,  or  other  similar  tools  should   be   included   as   a   step   in   the   follow-­‐up   plan   of   this   project.   A   future   goal   should   be  environmental/sustainability   labelling,   which   would   benefit   both   the   supplier   and   Teracom  Group.      On   the   other   hand,   in   addition   to   putting   demands   on   the   suppliers,   Teracom   Group   has   a  responsibility   of   its   own,   namely   to   compile   the   necessary   data   for   suppliers   to   be   able   to  perform   an   LCA.   Examples   of   this   are   average   distances   of   transports   regarding   products   in  Sweden;  total  amount  of  STBs  sold  annually;  customer  use  including  energy  consumption  etc.  A  solution  would  be  to  create  some  kind  of  compilation  document  containing  this  information.      

Page 39: The Impact of a Teracom Group Product From a Life Cycle

 

29    

6  Conclusions  Based   on   previous   discussion   and   especially   further   recommendations,   the   following  conclusions  have  been  made:    

-­‐ The   production   and   use   phase   have   the   largest   potential   effect   on   the   environment,  while  transports  and  the  waste  scenario  have  a  minimal  potential  environmental  impact.    

-­‐ Sustainable   development   regarding   products   demands   greater   effort   and   more  resources   from   Teracom   Group.   Knowledge,   awareness,   communication   and  cooperation  are  key  words.  There  are  no  shortcuts.  

 -­‐ Teracom   Group   should   not   perform   LCA,   since   the   company   does   not   own   the  

development   process   nor   produce   the   products,   due   to   the   difficulties   in   collecting  accurate  data  and  interpreting  the  results.  

 -­‐ Higher  demands  on  product  declaration,   including  a   third  part  approved  LCA,  must  be  

put  on  suppliers  when  purchasing  new  products.  An  EPD  or  similar  tool  is  a  good  option.    

-­‐ Teracom  Group  has  a   responsibility   to  compile  useable  data   regarding  activities  within  the  company,  for  future  LCAs  performed  by  suppliers.    

         

Page 40: The Impact of a Teracom Group Product From a Life Cycle

 

30    

References  Alksten,  P.,  2012.  Discussion  on  chosen  product.  [Conversation]  (Personal  communication,  15  October  2012)    Baumann,  H.  &  Tillman,  A.M.,  2004.  The  Hitch  Hiker’s  Guide  to  LCA.  Lund:  Studentlitteratur    Boxer,  2012a.  Boxar.  [Online]  Available  at:  http://www.boxer.se/kundservice/teknik-­‐och-­‐felsokning/tv-­‐via-­‐antenn/vilken-­‐utrustning-­‐kravs/Boxar  [Accessed  5  September  2012]    Boxer,  2012b.  Sagemcom  RT90  HD.  [Online]  Available  at:  http://www.boxer.se/vart-­‐utbud/hardvara/sagem-­‐dtr94160ta-­‐hd1/  [Accessed  15  October  2012]    Bureau  Veritas  CODDE,  2012.  Presentation.  [Online]  Available  at:  http://www.codde.fr/en/page.php?rubrique=25&ssRubrique=29  [Accessed  15  October  2102]    Ecolabel  Index,  2012.  Home.  [Online]  http://www.ecolabelindex.com/  [Accessed  13  November  2012]    Ekener-­‐Petersen,  E.  &  Finnveden,  G.,  2012.  Potential  Hotspots  Identified  by  Social  LCA:  a  Case  Study  of  a  Laptop  Computer.  The  International  Journal  of  Life  Cycle  Assessment.  [Online]  Available  at:  http://link.springer.com/article/10.1007/s11367-­‐012-­‐0442-­‐7/fulltext.html  [Accessed  8  November  2012]    Ekman,  M.,  2012.  Discussion  on  distribution  of  chosen  product.  [Interview]  (Personal  communication,  4  October  2012)    El-­‐Kretsen,  2011.  Verksamheten  2011.  [Online]  Available  at:  http://www.el-­‐kretsen.se/sitespecific/elkretsen/files/arsrapport2011/elk_0066_arsrapport_2011_webb.pdf  [Accessed  5  November  2012]    Energimyndigheten,  2012.  Enkla  digitalboxar.  [Online]  Available  at:  http://energimyndigheten.se/sv/Foretag/Ekodesign/Produktgrupper1/Digitalboxar/  [Accessed  5  September  2012]    EPD,  2012a.  The  International  EPD  System.  [Online]  Available  at:  http://www.environdec.com/en/The-­‐EPD-­‐system/#.UKIO1KU0cp1  [Accessed  13  November  2012]    EPD,  2012b.  Climate  Declarations.  [Online]  Available  at:  http://www.environdec.com/en/Climate-­‐Declarations/#.UKITpKU0cp0  [Accessed  13  November  2012]    EPD,  2012c.  Creating  an  EPD  in  the  International  EPD  System.  [Online]  Available  at:  http://www.environdec.com/en/Creating-­‐EPD/the-­‐epd-­‐process/#.UKIcZKU0cp2  [Accessed  13  November  2012]    Frishknecht,  R.,  2009.  LCI  modelling  approaches  applied  on  recycling  of  materials  in  view  of  environmental  sustainability,  risk  perception  and  eco-­‐efficiency.  [Online]  Available  at:  

Page 41: The Impact of a Teracom Group Product From a Life Cycle

 

31    

https://edit.ethz.ch/ifu/ESD/education/master/AESEA/Frischknecht_IntJLCA_2010_final.pdf  [Accessed  17  December  2012]    GEDnet,  2012.  About  GEDnet.  [Online]  Available  at:  http://gednet.org/?page_id=2  [Accessed  13  November  2012]    Hållbarhetsguiden,  2012.  Vad  är  hållbar  utveckling.  [Online]  Available  at:  http://www.svid.se/Hallbarhetsguiden/Mojligheter-­‐verktyg/Vad-­‐ar-­‐hallbar-­‐utveckling/  [Accessed  18  October  2012]    International   Energy   Agency,   2011a.   Electricity/Heat   in   Tunisia   2009.   [Online]   Available   at:  http://www.iea.org/stats/electricitydata.asp?COUNTRY_CODE=TN  [Accessed  5  November  2012]    International   Energy   Agency,   2011b.   Electricity/Heat   in   Sweden   2009.   [Online]   Available   at:  http://www.iea.org/stats/electricitydata.asp?COUNTRY_CODE=SE  [Accessed  4  February  2013]    Jimyr,  C.,  2012.  Discussion  on  purchase  of  products.  [Interview]  (Personal  communication,  3  September  2012)    Miljöstyrningsrådet,  2012.  EPD.  [Online]  Available  at:  http://www.msr.se/sv/epd/  [Accessed  13  November  2012]    MMS,  2011.  Årsrapport  2011.  [Online]  Available  at:  http://www.mms.se/_dokument/rapporter/ar/Årsrapport%202011.pdf  [Accessed  6  November  2012]    Official  Journal  of  the  European  Union,  1994.  European  Parliament  and  Council  Directive  94/62/EC.  [Online]  Available  at:  http://eur-­‐lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1994:365:0010:0023:EN:PDF  [Accessed  12  December  2012]    Official  Journal  of  the  European  Union,  2003.  Directive  2002/96/EC  of  the  European  Parliament  and  of  the  Council.  [Online]  Available  at:  http://eur-­‐lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0024:0038:en:PDF  [Accessed  12  December  2012]    PRé,  2012.  About  SimaPro.  [Online]  Available  at:  http://www.pre-­‐sustainability.com/simapro-­‐lca-­‐software  [Accessed  11  December  2012]    ReCiPe,  2012.  ReCiPe  2008.  [Online]  Available  at:  https://35f23ee4-­‐a-­‐62cb3a1a-­‐s-­‐sites.googlegroups.com/site/lciarecipe/file-­‐cabinet/ReCiPe_main_report_REVISED_13-­‐07-­‐2012.pdf?attachauth=ANoY7cpng8sgZRJEQdcCg7OOswYIvUfvySa1Pmj0_SivL-­‐qrb6tsqy_0UDzWd8BLF2_8mnxGHBHFd8wkVWu7cO7x5VhBwlxAAV-­‐fxSd47Ra2P1dRv9XwhD9AUkrwAK8-­‐CVrVi8W080aadKiaYq2dCau-­‐bx0aVvAcdgYGKMZt73GBhNWlcQWW63DeI4k0TMbBXnx2uMEWSbBjr5obeZfNlaeaOc8SBrnVpYeVOqqcxGmTjxKas2ii7XotCQfxOjxp_-­‐sL0g7gMWynYPuv07lGE-­‐YzWTECZzieYg%3D%3D&attredirects=0  [Accessed  27  November  2012]    

Page 42: The Impact of a Teracom Group Product From a Life Cycle

 

32    

Sagemcom,  2012a.  A  Commitment  to  Sustainable  Development.  [Online]  Available  at:  http://www.sagemcom.com/index.php?id=1801&L=0  [Accessed  5  September  2012]    Sagemcom,  2012b.  Life  Cycle  Analysis  &  Comparison  of  Impacts.  [Online]  Available  at:  http://www.sagemcom.com/index.php?id=2544&L=0  [Accessed  5  September  2012]    Sagemcom,  2012c.  Electrical  &  Electronic  Equipment.  [Online]  Available  at:  http://www.sagemcom.com/index.php?id=2540&L=0  [Accessed  5  September  2012]    Sagemcom,  2012d.  RTI90-­‐320  HD  Boxer.  [Online]  Available  at:  http://www.sagemcom.com/index.php?id=2540&L=0  [Accessed  18  October  2012]    SVT,  2006.  Övergången  till  digital-­‐TV.  [Online]  Available  at:  http://www.svt.se/2.53343/1.373026/overgangen_till_digital-­‐tv  [Accessed  5  September  2012]    Swedish  Environmental  Protection  Agency,  2011.  Köttkonsumptionens  klimatpåverkan.  [Online]  Available  at:  http://www.swedishepa.se/Documents/publikationer6400/978-­‐91-­‐620-­‐6456-­‐3.pdf  [Accessed  5  December  2012]    Swiss  Centre  for  Life  Cycle  Inventories,  2012.  Database.  [Online]  Available  at:  http://www.ecoinvent.org/database/  [Accessed  11  December  2012]    Teracom,  2102a.  Teracom  Group.  [Online]  Available  at:  http://www.teracom.se/Teracom_Group/  [Accessed  3  July  2012]    Teracom,  2012b.  About  Teracom  Group.  [Online]  Available  at:  http://www.teracom.se/About-­‐Teracom/  [Accessed  3  July  2012]    Teracom  Group,  2012.  Års-­‐  och  hållbarhetsredovisning  2011.  [Online]  Available  at:  http://www.teracom.se/Documents/Rapportarkiv/AR%202011/Teracom%20Group_AR_2011_sve.pdf  [Accessed  3  July  2012]    Tremblay,  F.,  2012a.  Discussion  on  Sagemcom  and  chosen  STB.  [Phone  call]  (Personal  communication,  10  September  2012)    Tremblay,  F.,  2012b.  Data  regarding  Sagemcom  RTI90  320HD.  [Email]  (Personal  communication,  8  October  2012)    United  Nations  Environmental  Programme,  2009.  Guidelines  for  Social  Life  Cycle  Assessment  of  Products.  [Online]  Available  at:  http://www.unep.fr/shared/publications/pdf/DTIx1164xPA-­‐guidelines_sLCA.pdf  [Accessed  12  December  2012]    World  Commission  on  Environment  and  Development,  1987.  Our  Common  Future.  [Online]  Available  at:  http://www.un-­‐documents.net/our-­‐common-­‐future.pdf  [Accessed  13  November  2012]    WWF,  2008.  Hållbar  utveckling  och  lärande.  [Online]  Available  at:  http://www.wwf.se/source.php/1229462/Hållbar%20utveckling%20och%20lärande%20-­‐%20inspirationsskrift%20för%20universitetslärare.pdf  [Accessed  5  September  2012]  

Page 43: The Impact of a Teracom Group Product From a Life Cycle

 

33    

 WWF,  2012.  Företagssamarbeten  för  en  levande  planet.  [Online]  Available  at:  http://www.wwf.se/fretag/fretagssamarbeten/1123160-­‐fretagssamarbeten  [Accessed  5  September  2012]    Åstrand,  M.,  2012.  Projektbeskrivning.  [Document]  (Personal  communication,  27  June  2012)      

Page 44: The Impact of a Teracom Group Product From a Life Cycle

 

i    

Appendix  I  –  Data  regarding  Sagemcom  RTI90  320HD    Transport per product Distance

[km] Ton km [tkm]

SimaPro

Chinese manufacturers to Chinese harbour 2000 4.052 Transport, lorry >16t, fleet average/RER S Chinese harbour to Tunisian factory 17500 35.455 Transport, transoceanic freight ship/OCE S Tunisian factory to French harbour 850 1.722 Transport, transoceanic freight ship/OCE S French harbour to Swedish stock 2425 4.913 Transport, lorry >16t, fleet average/RER S Swedish stock to final customer 394 0.798 Transport, lorry >16t, fleet average/RER S Reference: Tremblay, F., 2012. Data regarding Sagemcom RTI90 320HD. [Email] (Personal communication, 8 October 2012) Tunisian electricity mix Electricity

[GWh] Per Cent

[%] oil 1443 9.2 gas 14074 89.7 hydro 79 0.5 wind 97 0.6 Reference: International Energy Agency, 2011. Electricity/Heat in Tunisia 2009. [Online] Available at: http://www.iea.org/stats/electricitydata.asp?COUNTRY_CODE=TN [Accessed 5 November 2012] Use Phase Effect

[W] Time

[min/day] Electricity

[kWh] Electricity (over 5 years)

[kWh] active watching 13.335 162 0.036 65.708 additional on mode 13.335 180 0.040 73.009 standby mode 1.479 1098 0.027 48.718 off 0 0 0 0 References: Tremblay, F., 2012. Data regarding Sagemcom RTI90 320HD. [Email] (Personal communication, 8 October 2012) MMS, 2011. Årsrapport 2011. [Online] Available at: http://www.mms.se/_dokument/rapporter/ar/Årsrapport%202011.pdf [Accessed 6 November 2012]    

Page 45: The Impact of a Teracom Group Product From a Life Cycle

TRITA-IM 2013:01

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se