76
The Homotopy Groups of K (S) Michael A. Mandell Indiana University Notre Dame Topology Seminar October 30, 2014 M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 1 / 15

The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Homotopy Groups of K (S)

Michael A. Mandell

Indiana University

Notre Dame Topology Seminar

October 30, 2014

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 1 / 15

Page 2: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline

1 Introduction and main result2 Topological cyclic homology3 K -theory and étale cohomology4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 3: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline

1 Introduction and main result2 Topological cyclic homology3 K -theory and étale cohomology4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 4: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline1 Introduction and main result

2 Topological cyclic homology3 K -theory and étale cohomology4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 5: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline1 Introduction and main result2 Topological cyclic homology

3 K -theory and étale cohomology4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 6: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline1 Introduction and main result2 Topological cyclic homology3 K -theory and étale cohomology

4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 7: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Overview

Rognes calculated the homotopy groups of K (S) at regular primes.What happens at irregular primes?

Joint work with Andrew BlumbergPreprint arXiv:1408.0133

Outline1 Introduction and main result2 Topological cyclic homology3 K -theory and étale cohomology4 Main theorem (reprise)

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 2 / 15

Page 8: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 9: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 10: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 11: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 12: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 13: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 14: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 15: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 16: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Waldhausen’s Algebraic K -Theory of Spaces

Algebraic K -theory of spaces ties algebraic K -theory to differentialand PL topology:

A(X ) ' K (S[X ])

Smooth Whitehead space: Ω∞A(X ) ' Q+(X )×WhDiff(X )

Smooth stable concordance space: ΩWhDiff(X ) ' C Diff(X )

C Diff(X ) = colim(C(X )→ C(X × I)→ C(X × I2)→ · · · )

PL Whitehead space and PL stable concordance space

Ω∞(K (S) ∧ X+)→ Ω∞(A(X ))→WhPL(X )

Ω2Ω∞(K (S) ∧ X+)→ C Diff(X )→ C PL(X )

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 3 / 15

Page 17: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization Map

K (−) is functorial in

map

s

of ring spectra

Linearization map: S // Z

K K (S) K (Z)

TC TC(S) TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Waldhausen)

The linearization map K (S)→ K (Z) is a rational equivalence.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 18: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization Map

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) // K (Z)

TC TC(S) TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Waldhausen)

The linearization map K (S)→ K (Z) is a rational equivalence.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 19: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization Map

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) // K (Z)

TC TC(S) TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Waldhausen)

The linearization map K (S)→ K (Z) is a rational equivalence.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 20: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization Map

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) // K (Z)

TC TC(S) TC(Z)

Topological cyclic homology TC

cyclotomictrace

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 21: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization / Cyclotomic Trace Square

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) // K (Z)

TC

TC(S) // TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Dundas)The linearization/cyclotomic trace square becomes homotopycartesian after p-completion.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 22: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization / Cyclotomic Trace Square

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) //

K (Z)

TC TC(S) // TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Dundas)The linearization/cyclotomic trace square becomes homotopycartesian after p-completion.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 23: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Linearization / Cyclotomic Trace Square

K (−) is functorial in maps of ring spectra

Linearization map: S // Z

K

K (S) //

K (Z)

TC TC(S) // TC(Z)

Topological cyclic homology TC

cyclotomictrace

Theorem (Dundas)The linearization/cyclotomic trace square becomes homotopycartesian after p-completion.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 4 / 15

Page 24: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Main Theorem

Theorem (Dundas)The linearization/cyclotomic trace squarebecomes homotopy cartesian after p-completion.

K (S) //

K (Z)

TC(S) // TC(Z)

Consequence: Long exact sequence

· · · → πnK (S)∧p → πnK (Z)∧p⊕πn(TC(S)∧p )→ πn(TC(Z)∧p )→ πn−1K (S)∧p → · · ·

Theorem (Main Theorem)

The sequence πnK (S)∧p → πnK (Z)∧p ⊕ πn(TC(S)∧p )→ πn(TC(Z)∧p ) issplit short exact. (p > 2)

Corollary: p-torsion is split short exact.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 5 / 15

Page 25: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Main Theorem

Theorem (Dundas)The linearization/cyclotomic trace squarebecomes homotopy cartesian after p-completion.

K (S) //

K (Z)

TC(S) // TC(Z)

Consequence: Long exact sequence

· · · → πnK (S)∧p → πnK (Z)∧p⊕πn(TC(S)∧p )→ πn(TC(Z)∧p )→ πn−1K (S)∧p → · · ·

Theorem (Main Theorem)

The sequence πnK (S)∧p → πnK (Z)∧p ⊕ πn(TC(S)∧p )→ πn(TC(Z)∧p ) issplit short exact. (p > 2)

Corollary: p-torsion is split short exact.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 5 / 15

Page 26: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Main Theorem

Theorem (Dundas)The linearization/cyclotomic trace squarebecomes homotopy cartesian after p-completion.

K (S) //

K (Z)

TC(S) // TC(Z)

Consequence: Long exact sequence

· · · → πnK (S)∧p → πnK (Z)∧p⊕πn(TC(S)∧p )→ πn(TC(Z)∧p )→ πn−1K (S)∧p → · · ·

Theorem (Main Theorem)

The sequence πnK (S)∧p → πnK (Z)∧p ⊕ πn(TC(S)∧p )→ πn(TC(Z)∧p ) issplit short exact. (p > 2)

Corollary: p-torsion is split short exact.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 5 / 15

Page 27: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Introduction

Main Theorem

Theorem (Dundas)The linearization/cyclotomic trace squarebecomes homotopy cartesian after p-completion.

K (S) //

K (Z)

TC(S) // TC(Z)

Consequence: Long exact sequence

· · · → πnK (S)∧p → πnK (Z)∧p⊕πn(TC(S)∧p )→ πn(TC(Z)∧p )→ πn−1K (S)∧p → · · ·

Theorem (Main Theorem)

The sequence πnK (S)∧p → πnK (Z)∧p ⊕ πn(TC(S)∧p )→ πn(TC(Z)∧p ) issplit short exact. (p > 2)

Corollary: p-torsion is split short exact.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 5 / 15

Page 28: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Table: πnK (S) in low degrees

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 6 / 15

Page 29: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p

' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 30: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p

' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 31: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p

' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 32: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p

' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 33: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p

' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 34: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

Topological Cyclic Homology

TC(R) is built from the fixed points of THH(R) andextra “cyclotomic” operators.

Theorem (Bökstedt-Hsiang-Madsen)

TC(S)∧p ' (S ∨ ΣCP∞−1)∧p ' S∧p ∨ ΣS∧p ∨ ΣCP∞−1

ΣCP∞−1 → ΣΣ∞+ CP∞ TrT−−→ S

Σ∞+ CP∞ ' S ∨ Σ∞CP =⇒ (CP∞−1)∧p ' S∧p ∨ CP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 7 / 15

Page 35: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 36: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 37: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 38: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 39: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 40: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 41: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC(Z)

Theorem (Bökstedt-Madsen) (p > 2)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p

ku = KU[0,∞)bu = KU[2,∞), bu ' Σ2ku

ku∧p ' ` ∨ Σ2` ∨ · · · ∨ Σ2p−4`

Σbu∧p ' Σ3` ∨ · · · ∨ Σ2(p−2)−1` ∨ Σ2(p−1)−1` ∨ Σ2p−1`

j → ku∧pψk−1−−−→ bu∧p

j ' LK (1)S[0,∞)

TC(Z) ' j ∨ Σj ∨ (∨

i=0,2,...,p−2

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 8 / 15

Page 42: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1 j ∨ Σj ∨

∨(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

J ∨ ΣJ ∨ Σ−1KU∧p J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 43: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1 j ∨ Σj ∨

∨(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

J ∨ ΣJ ∨ Σ−1KU∧p J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 44: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

**UUUUUUUUUUUUUUUUUUUUUj ∨ Σj ∨

∨(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

J ∨ ΣJ ∨ Σ−1KU∧p

J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 45: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 46: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 47: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 48: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 49: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 50: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd '∨'∨??∨ ???

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 51: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd '∨'∨??∨ ???

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 52: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd '∨'∨'∨ ???

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity

=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 53: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Topological Cyclic Homology

TC of the Linearization Map

Originally studied by Klein and Rognes

What we need is easy using K (1)-localization:

TC(S)∧p //

'TC(Z)∧p'

S∧p ∨ ΣS∧p ∨ CP∞−1

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

j ∨ Σj ∨∨

(Σ2i−1`) ∨ Σ2p−1`

22dddddddddd '∨'∨'∨ ???

22dddddddddd

J ∨ ΣJ ∨ Σ−1KU∧p ???// J ∨ ΣJ ∨ Σ−1KU∧p

S(p) → Z(p) is (2p − 3)-connected=⇒ TC(S)∧p → TC(Z) is (2p − 3)-connected

v1 periodicity=⇒ split surjection on π∗ except ∗ ≡ 1 (mod 2(p − 1))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 9 / 15

Page 54: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About K (Z), K (Z∧p)

Theorem (Hesselholt-Madsen)

K (Z)∧p //

K (Z∧p )∧p'

TC(Z)∧p [0,∞) '// TC(Z∧p )∧p [0,∞)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p , LK (1)TC(Z) ' J ∨ ΣJ ∨ Σ−1KU

K (Z∧p )∧p → LK (1)K (Z∧p ) induces isomorphism on π∗ for ∗ > 1.

Theorem(?) (Quillen-Lichtenbaum Conjecture)

K (Z)∧p → LK (1)K (Z) induces an isomorphism of π∗ for ∗ > 1.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 10 / 15

Page 55: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About K (Z), K (Z∧p)

Theorem (Hesselholt-Madsen)

K (Z)∧p //

K (Z∧p )∧p'

TC(Z)∧p [0,∞) '// TC(Z∧p )∧p [0,∞)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p , LK (1)TC(Z) ' J ∨ ΣJ ∨ Σ−1KU

K (Z∧p )∧p → LK (1)K (Z∧p ) induces isomorphism on π∗ for ∗ > 1.

Theorem(?) (Quillen-Lichtenbaum Conjecture)

K (Z)∧p → LK (1)K (Z) induces an isomorphism of π∗ for ∗ > 1.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 10 / 15

Page 56: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About K (Z), K (Z∧p)

Theorem (Hesselholt-Madsen)

K (Z)∧p //

K (Z∧p )∧p'

TC(Z)∧p [0,∞) '// TC(Z∧p )∧p [0,∞)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p , LK (1)TC(Z) ' J ∨ ΣJ ∨ Σ−1KU

K (Z∧p )∧p → LK (1)K (Z∧p ) induces isomorphism on π∗ for ∗ > 1.

Theorem(?) (Quillen-Lichtenbaum Conjecture)

K (Z)∧p → LK (1)K (Z) induces an isomorphism of π∗ for ∗ > 1.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 10 / 15

Page 57: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About K (Z), K (Z∧p)

Theorem (Hesselholt-Madsen)

K (Z)∧p //

K (Z∧p )∧p'

TC(Z)∧p [0,∞) '// TC(Z∧p )∧p [0,∞)

TC(Z)∧p [0,∞) ' j ∨ Σj ∨ Σbu∧p , LK (1)TC(Z) ' J ∨ ΣJ ∨ Σ−1KU

K (Z∧p )∧p → LK (1)K (Z∧p ) induces isomorphism on π∗ for ∗ > 1.

Theorem(?) (Quillen-Lichtenbaum Conjecture)

K (Z)∧p → LK (1)K (Z) induces an isomorphism of π∗ for ∗ > 1.

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 10 / 15

Page 58: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About LK (1)K (Z), LK (1)K (Z∧p)

Theorem (Thomason)

Let R = Z or Z∧p . Let M be a p-torsion group or a pro-p-group.

π2q(LK (K (R)); M) ∼= H0et (R[1/p]; M(q))⊕ H2

et (R[1/p]; M(q + 1))

π2q−1(LK (K (R)); M) ∼= H1et (R[1/p]; M(q))

Theorem (Poitou-Tate Duality)Exact sequenceH1

et (Z[1/p];Z∧p (q))→ H1et (Q

∧p ;Z∧p (q))→ (H1

et (Z[1/p],Z/p∞(1− q)))∗.

Look at q = m(p − 1) + 1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 11 / 15

Page 59: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

Some Facts About LK (1)K (Z), LK (1)K (Z∧p)

Theorem (Thomason)

Let R = Z or Z∧p . Let M be a p-torsion group or a pro-p-group.

π2q(LK (K (R)); M) ∼= H0et (R[1/p]; M(q))⊕ H2

et (R[1/p]; M(q + 1))

π2q−1(LK (K (R)); M) ∼= H1et (R[1/p]; M(q))

Theorem (Poitou-Tate Duality)Exact sequenceH1

et (Z[1/p];Z∧p (q))→ H1et (Q

∧p ;Z∧p (q))→ (H1

et (Z[1/p],Z/p∞(1− q)))∗.

Look at q = m(p − 1) + 1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 11 / 15

Page 60: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

A Fact About H1et

Theorem

H1et (Z[1/p];Z/p∞(−m(p − 1))) = 0

Ultimately boils down to (Cl(OQ(ζpn ))∧p )[1] = 0

Corollary

K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2(p − 1)).

Actually, K (Z)∧p splits K (Z)∧p ' j ∨ Σ2p−1` ∨ rest

K (Z)∧p

j ∨ rest ∨ Σ2p−1`

TC(Z)∧p j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 12 / 15

Page 61: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

A Fact About H1et

Theorem

H1et (Z[1/p];Z/p∞(−m(p − 1))) = 0

Ultimately boils down to (Cl(OQ(ζpn ))∧p )[1] = 0

Corollary

K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2(p − 1)).

Actually, K (Z)∧p splits K (Z)∧p ' j ∨ Σ2p−1` ∨ rest

K (Z)∧p

j ∨ rest ∨ Σ2p−1`

TC(Z)∧p j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 12 / 15

Page 62: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

A Fact About H1et

Theorem

H1et (Z[1/p];Z/p∞(−m(p − 1))) = 0

Ultimately boils down to (Cl(OQ(ζpn ))∧p )[1] = 0

Corollary

K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2(p − 1)).

Actually, K (Z)∧p splits K (Z)∧p ' j ∨ Σ2p−1` ∨ rest

K (Z)∧p

j ∨ rest ∨ Σ2p−1`

TC(Z)∧p j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 12 / 15

Page 63: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

K -Theory and Étale Cohomology

A Fact About H1et

Theorem

H1et (Z[1/p];Z/p∞(−m(p − 1))) = 0

Ultimately boils down to (Cl(OQ(ζpn ))∧p )[1] = 0

Corollary

K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2(p − 1)).

Actually, K (Z)∧p splits K (Z)∧p ' j ∨ Σ2p−1` ∨ rest

K (Z)∧p

j ∨ rest ∨ Σ2p−1`

TC(Z)∧p j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 12 / 15

Page 64: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Main Theorem

The Linearization/Cyclotomic Trace Square

K (S)∧p //

K (Z)

S ∨ ΣS ∨ CP∞−1

// j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

Let c = hofib(S∧p → j) “coker j”

Theorem (Main Theorem)

p-tors(K (S)) ∼= p-tors(S)⊕p-tors(Σc)⊕p-tors(CP∞−1)⊕p-tors(K red(Z))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 13 / 15

Page 65: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Main Theorem

The Linearization/Cyclotomic Trace Square

K (S)∧p //

K (Z)

S ∨ ΣS ∨ CP∞−1

// j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

Let c = hofib(S∧p → j) “coker j”

Theorem (Main Theorem)

p-tors(K (S)) ∼= p-tors(S)⊕p-tors(Σc)⊕p-tors(CP∞−1)⊕p-tors(K red(Z))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 13 / 15

Page 66: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Main Theorem

The Linearization/Cyclotomic Trace Square

K (S)∧p //

K (Z)

S ∨ ΣS ∨ CP∞−1

// j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

Let c = hofib(S∧p → j) “coker j”

Theorem (Main Theorem)

p-tors(K (S)) ∼= p-tors(S)⊕p-tors(Σc)⊕p-tors(CP∞−1)⊕p-tors(K red(Z))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 13 / 15

Page 67: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Main Theorem

The Linearization/Cyclotomic Trace Square

K (S)∧p //

K (Z)

S ∨ ΣS ∨ CP∞−1

// j ∨ Σj ∨ (∨

Σ2i−1`) ∨ Σ2p−1`

Let c = hofib(S∧p → j) “coker j”

Theorem (Main Theorem)

p-tors(K (S)) ∼= p-tors(S)⊕p-tors(Σc)⊕p-tors(CP∞−1)⊕p-tors(K red(Z))

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 13 / 15

Page 68: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

The Main Theorem

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 14 / 15

Page 69: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 70: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 71: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 72: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 73: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 74: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 75: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15

Page 76: The Homotopy Groups of K - Indiana Universitymmandell/talks/NotreDame-141030.pdfIntroduction Waldhausen’s Algebraic K-Theory of Spaces Algebraic K-theory of spaces ties algebraic

Nilpotence

Multiplication on π∗K (S) is Nilpotent

Suffices to consider rational part, p-torsion separately

Rational part is in odd degrees

Saw K (Z)∧p → TC(Z)∧p is surjective on πn for n ≡ 1 (mod 2p − 2).

Implies πnK (Z) = 0 for n ≡ 0 (mod 2p − 2) (Poitou-Tate).

Implies πn hofib(trc) = 0 for n ≡ 0 (mod 2p − 2).Also for p = 2, πn hofib(trc) = 0 for n ≡ 0 (mod 8).

So K (S)∧p → TC(S)∧p injective on πn for n ≡ 0 (mod 8p − 8).

Suffices to see π∗TC(S)∧p is nilpotent.

TC(S)∧p ' S∧p ∨ ΣCP∞−1

M.A.Mandell (IU) The Homotopy Groups of K (S) Oct 2014 15 / 15