28
Swiss Federal Institute of Technology Page 1 The Finite Element Method for the Analysis of Linear Systems Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology ETH Zurich, Switzerland Method of Finite Elements 1

The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 1

The Finite Element Method for the Analysis of Linear Systemsy y

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology

ETH Zurich, Switzerland

Method of Finite Elements 1

Page 2: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 2

C t t f T d ' L tContents of Today's Lecture

• G l Sh ll El t• General Shell Elements

Pure displacement based formulation- Pure displacement based formulation

- Mixed interpolation elements (MITCn)

• Boundary conditions

• Assignment 5

Method of Finite Elements 1

Page 3: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 3

General Shell ElementsGeneral Shell Elements

t

s

kw0 k

nV

Element midsurface

k

kv

kukα

02kV

ka

,z w r0

1kV

,y vye

ze

xe 0 0at Gauss integration point at Gauss integration point2 2

kn k n

a aV h V=∑

Method of Finite Elements 1

,x uat Gauss integration point at Gauss integration point2 2n k n

k∑

Page 4: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 4

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elements

0nV

r

kv

kukα

02kV

01kV

ka

Top surface

t

s

2a

Gauss pointr

s-coordinate line (r,t constant)r-coordinate line (s,t constant)

re

se

Mid surface

2a

Bottom surface

, , rr s t

××= = =

t es t te e et t t

, , : Tangent vectors to , , coordinate linesr s tr s t

2 2 2r× ×s t t e t

Method of Finite Elements 1

Page 5: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 5

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elements

• W it th C t i di t f i t i

r

kv

kukα

02kV

01kV

ka

• We may write the Cartesian coordinates of a point using natural coordinates before and after deformation as:

1 1( , , )

2

( , , )

q ql l k

k k k k nxk kq q

l l kk k k k

tx r s t h x a h V

ty r s t h y a h V

= =

= +

= +

∑ ∑

∑ ∑1 1

1 1

( , , )2

( , , )2

h

k k k k nyk kq q

l l kk k k k nz

k k

y r s t h y a h V

tz r s t h z a h V

= =

= =

+

= +

∑ ∑

∑ ∑where:

, , : Cartesian coordinates of any point in the element, , : Ca

l l l

l l lk k k

x y zx y z rtesian coordinates of -th nodek

: Thickness of the element in t direction at node

, , : Components of unit vector normal to the shell mid

s

kk k k knx ny nz n

a k

V V V V

urface in direction at nodal point . (normal/director t k

Method of Finite Elements 1

vector at node )k

Page 6: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 6

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elements

• N it th di l t t i t

r

kv

kukα

02kV

01kV

ka

• Now we can write the displacements at any point as:

1 1

( , , )2k

q qk

k x k k nxk k

tu r s t h u a h V= +∑ ∑1 1

1 1

2

( , , )2

( , , )2

k

k

k kq q

kk y k k ny

k kq q

kk z k k nz

tv r s t h v a h V

tw r s t h w a h V

= =

= =

= +

= +

∑ ∑

∑ ∑1 12

where

kk k= =∑ ∑

1 0k k kn n n= −V V V

We can express the components of efficiently as: knV

0 kV00

1 0

2

, with being the unit vector in the -directionk

y nkyk

y n

e VV e

e V

0 0 0k k kV V V

Method of Finite Elements 1

0 0 02 1k k k

n= ×V V V

Page 7: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 7

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

Letting and be the rotations of the director vector around and then we can write (small rotations):

knVkα kβ

01kV 0

2kV

0 0k k kα β+V V V2 1n k kα β= − +V V V

Now we substitute this result into the relations for the displacements and get: p g

0 02 1

1 1

( , , ) ( )2k

q qk k

k x k k x k x kk k

tu r s t h u a h V Vα β= =

= + − +∑ ∑1 1

( , , )2k

q qk

k x k k nxk k

tu r s t h u a h V= =

= +∑ ∑

0 02 1

1 1

0 0

( , , ) ( )2

( ) ( )

k

q qk k

k y k k y k y kk k

q qk k

tv r s t h v a h V V

tw r s t h w a h V V

α β

α β

= =

= + − +

= + − +

∑ ∑

∑ ∑

1 1

( , , )2

( , , )2

k

q qk

k y k k nyk k

q qk

k z k k nz

tv r s t h v a h V

tw r s t h w a h V

= =

= +

= +

∑ ∑

∑ ∑2 11 1

( , , ) ( )2kk z k k z k z k

k k

w r s t h w a h V Vα β= =

= + +∑ ∑1 1

( , , )2kk z k k nz

k k= =∑ ∑

Method of Finite Elements 1

Page 8: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 8

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

Now we can follow the same procedure as for the beam element in developing the element matrixes

The components of the displacement interpolation matrix H are given in the relation:

0 02 1

1 1( , , ) ( )

2k

q qk k

k x k k x k x kk kq q

tu r s t h u a h V V

t

α β= =

= + − +∑ ∑0 0

2 11 1

0 02 1

( , , ) ( )2

( , , ) ( )2

k

k

q qk k

k y k k y k y kk kq q

k kk z k k z k z k

tv r s t h v a h V V

tw r s t h w a h V V

α β

α β

= =

= + − +

= + − +

∑ ∑

∑ ∑ 2 11 1

( , , ) ( )2kk z k k z k z k

k kβ

= =∑ ∑

Method of Finite Elements 1

Page 9: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 9

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

In evaluating the strain-displacement matrix B we first need the derivatives of the displacements in regard to the natural coordinates

[( , , ) 1 k kkhu v w tg tg∂∂ ⎡ ⎤⎡ ⎤ ⎤⎦⎢ ⎥⎢ ⎥ [

[

1( , , ) 2( , , )

1( , , ) 2( , , )1

1

( , , ) 1

x y z x y z

kqk kkx y z x y z k

k

tg tgrr uhu v w tg tg

s sαβ=

⎤⎦⎢ ⎥⎢ ⎥ ∂∂ ⎡ ⎤⎢ ⎥⎢ ⎥∂∂ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎤= ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥∂ ∂

⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

∑0

1 2

0

121

k kk

k k

a

a

= −

= −

g V

g V[ 1( , , ) 2( , , )

( , , ) 0 kk kk x y z x y z

u v w h tg gt

β⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦∂ ⎤⎢ ⎥⎢ ⎥ ⎦⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎣ ⎦

2 1 2 ka= −g V

Method of Finite Elements 1

Page 10: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 10

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

As usual we must now transform the derivatives to achieve their Cartesian components (global coordinates):

1−∂ ∂=

∂ ∂J

x r

then we may write:

( ) h⎡ ⎤∂∂⎡ ⎤1( , , ) 2( , , )

1( ) 2( )

( , , )

( , , )

k k k kkx y z x x y z x

kqk k k kk

k

hu v w g G g Gxr uhu v w g G g G α

⎡ ⎤∂∂⎡ ⎤⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥ ⎡ ⎤⎢ ⎥∂∂ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∑ where:

1( , , ) 2( , , )1

1( , , ) 2( , , )

( , , )

x y z y x y z y kk

kk k k kkx y z z x y z z

g G g Gs y

u v w h g G g Gt z

αβ=

⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦∂ ∂⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥∂⎣ ⎦ ∂⎣ ⎦

∑1 1

11 12

1 1 1

k k k

k k k

h h hJ Jx r s

h hG t J J J h

− −

− − −

∂ ∂ ∂= +

∂ ∂ ∂∂ ∂⎛ ⎞+ +⎜ ⎟

Method of Finite Elements 1

⎣ ⎦ 1 1 111 12 13

k k kx kG t J J J h

r s⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

Page 11: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 11

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

Having established the displacement derivatives we can now assemble the strain-displacement matrix B for the shell element.

In order to establish the strain-stress matrix (constitutive law) we must impose the shell assumption (constitutive law) we must impose the shell assumption that the stress in the direction of the normal to the shell surface is zero

with:sh=τ C ε

Txx yy zz xy yz zx

Txx yy zz xy yz zx

τ τ τ τ τ τ

γ γ γ

⎡ ⎤= ⎣ ⎦⎡ ⎤= ⎣ ⎦

τ

ε ε ε ε

Method of Finite Elements 1

yy y y⎣ ⎦

Page 12: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 12

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

Where

sh=τ C ε

T ⎡ ⎤⎣ ⎦T

xx yy zz xy yz zx

Txx yy zz xy yz zx

τ τ τ τ τ τ

γ γ γ

⎡ ⎤= ⎣ ⎦⎡ ⎤= ⎣ ⎦

τ

ε ε ε ε

⎛ ⎞⎡ ⎤1 0 0 0 01 0 0 0 0

0 0 0 0

ν⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥

2

0 0 0 0 (1 ) 0 0 1 2 (1 )

Tsh sh

E νν

ν

⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥−⎜ ⎟⎢ ⎥=−⎜ ⎟⎢ ⎥

⎜ ⎢ ⎥

C Q sh

Q(1 )symmetrical 0

2(1 )

2

k

k

ν

ν

−⎜ ⎢ ⎥⎜ ⎢ ⎥⎜ −⎢ ⎥⎜ ⎢ ⎥⎣ ⎦⎝ ⎠

⎟⎟⎟⎟

Method of Finite Elements 1

2⎢ ⎥⎣ ⎦⎝ ⎠

Page 13: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 13

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

The transformation from the Cartesian shell aligned coordinate system to the global coordinate system is made through the 4th order tensor transformation

, ,r s t

2 2 21 1 1 1 1 1 1 1 12 2 2

l m n l m m n n ll l l

⎡ ⎤⎢ ⎥2 2 2

2 2 2 2 2 2 2 2 22 2 23 3 3 3 3 3 3 3 3

1 2 1 2 1 2 1 2 2 1 1 2

2 2 2sh

l m n l m m n n ll m n l m m n n ll l m m n n l m l m m n m

=+ +

Q2 1 1 2 2 1n n l n l

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

+⎢ ⎥2 3 2 3 2 3 2 3 3 2

3 1 3 1 3 1 3 1 1 3

2 2 22 2 2l l m m n n l m l ml l m m n n l m l m

++

2 3 3 2 2 3 3 2

3 1 1 3 3 1 1 3

where

m n m n n l n lm n m n n l n l

⎢ ⎥⎢ ⎥+ +⎢ ⎥

+ +⎢ ⎥⎣ ⎦

1 1 1

2 2 2

wherecos( , ), cos( , ), cos( , )

cos( , ), cos( , ), cos( , )x r y r z r

x s y s z s

l m n

l m n

= = =

= = =

e e e e e e

e e e e e e

Method of Finite Elements 1

3 cos( , ),y

x tl = e e 3 3 cos( , ), cos( , )y t z tm n= =e e e e

Page 14: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 14

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

In general this transformation has to evaluated at each integration point during the integration of the stiffness matrix

– there are exceptions for e.g. flat plates

Method of Finite Elements 1

Page 15: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 15

G l Sh ll El t

s

t

kw0 k

nV

Element midsurface

General Shell Elementskβ

r

kv

kukα

02kV

01kV

ka

We can compare the present formulation with a shell element constructed through superposition of a plate bending and a membrane stress behavior

Let us assume that we apply the general shell element as a flat element in the modeling of a shellflat element in the modeling of a shell

- in this case we can construct the stiffness matrix by superposition of a plate stiffness matrix and a plane stress superposition of a plate stiffness matrix and a plane stress stiffness matrix

the effective difference lies in the fact that when we the effective difference lies in the fact that when we establish the stiffness matrix for the general shell element we integrate in all directions whereas for the plate element and the plane stress elements we do not integrate in the

Method of Finite Elements 1

and the plane stress elements we do not integrate in the t-direction.

Page 16: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 16

G l Sh ll El tGeneral Shell Elements

Let us consider an example

z 100 2

nV0 3nV

y1.20.8 2

t 45o23

15

s

15

0 8 2

r0 1

nV

0 4nV

0.80.8 2

45o 14

Method of Finite Elements 1

x 10

Page 17: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 17

G l Sh ll El t

y

z

1.20.8 2

10

t 45o23

0 2nV0 3

nV

General Shell Elements

Let us consider an example

15

0.80.8 2

s

r

4

0 1nV

0 4nV

x

0.845o 1

4

10For this element the interpolation functions are those of the 4-node two dimensionalfunctions are those of the 4 node two dimensionalelement (solid element)

The directional vectors are:The directional vectors are:

0 1 0 2 0 3 0 4

0 0 0 01/ 2 , 1/ 2 , 0 , 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥V V V V1/ 2 , 1/ 2 , 0 , 0

1 11/ 2 1/ 2n n n n⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

V V V V

0 1 0 2 0 3 0 41 1 1 1

hence10⎡ ⎤⎢ ⎥= = = = ⎢ ⎥V V V V

Method of Finite Elements 1

1 1 1 1

0⎢ ⎥⎢ ⎥⎣ ⎦

Page 18: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 18

G l Sh ll El t

y

z

1.20.8 2

10

t 45o23

0 2nV0 3

nV

General Shell Elements

Further we have

15

0.80.8 2

s

r

4

0 1nV

0 4nV

x

0.845o 1

4

10

0 1 0 2 0 3 0 42 2 2 2

0 01/ 2 ; 1

0

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

V V V V01/ 2

and

0 8 2 1 2 0 8a a a a

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= = = =1 2 3 40.8 2, 1.2, 0.8a a a a= = = =

The thickness and the director vector are determinedas:

40 0

midpoint , 012 2

kkn k r s n

k

aa h ==

⎛ ⎞ =⎜ ⎟⎝ ⎠⇓

∑V V

0 0

0 0 0 0 0.00.8 2 1.2 0.81/ 2 0 0 0.2 0.406 , 0.985n n

a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎛ ⎞ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + = − ⇒ = − =⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠

V V

Method of Finite Elements 1

,2 4 8 8

1 1 0.45 0.9141/ 2n n⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

Page 19: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 19

G l Sh ll El tGeneral Shell Elements

So far we have considered a pure displacement based element – however, as for the beam and the plate element shear locking (and membrane locking) is a problem (at least cubic displacement interpolation p ( p pfunctions are required)

In order to solve this problem we use again mixed In order to solve this problem we use again mixed interpolation functions (Dvorkin & Bathe)

( ) ( ) ( )r r s s r s s r r t t r s t t s( ) ( ) ( )r r s s r s s r r t t r s t t srr ss rs rt st= + + + + + + +ε ε g g ε g g ε g g g g ε g g g g ε g g g g

In-layer strains Transverse shear strainsIn-layer strains Transverse shear strains

[ ]; ; , Tr s t x y zd d d∂ ∂ ∂

= = = =x x xg g g x

Method of Finite Elements 1

[ ]r s t ydr ds dt

g g g

Page 20: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 20

G l Sh ll El tGeneral Shell Elements

The Green-Lagrange covariant strain tensor components are determined from :

1 1 1 0 0 0 11 ( )( )ε ∂ ∂ += − = =

x x ug g g g g gi i0 ( ), , 2ij i j i j i i

i ir rε = − = =

∂ ∂g g g g g gi i

The objective is to interpolate the in-layer and The objective is to interpolate the in layer and transverse shear strains independently and then to express these in terms of the usual displacement interpolation functionsinterpolation functions.

We then get a formulation of the stiffness matrixas usual in terms of the usual nodal point as usual in terms of the usual nodal point displacement (and rotations) .

Method of Finite Elements 1

Page 21: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 21

G l Sh ll El tGeneral Shell Elements

The four-node shell element (MITC4) proposed by Dvorkin and Bathe is attractive –

The in-layer strains are computed from the displacementy p pinterpolations

The covariant shear strains are computed from the The covariant shear strains are computed from the displacement interpolation functions at discrete locationsas for the plate element.

1

ˆijn

ij DIij k ij k

khε

=

=∑ B u

Better general performance is achieved from the MITC9 and MITC16 elements by Bucalem and Bathe.

Method of Finite Elements 1

Page 22: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 22

G l Sh ll El tGeneral Shell Elements

In the MITC9 element the discrete locations in which themixed interpolations are fixed with the displacement interpolation functions are:

ijn

For the strain components,rr rtε ε

: are the 6-node displacement ijkh

1

ˆij

ij DIij k ij k

khε

=

=∑ B u

1 1s

interpolation functionsk

3 3

r

35

r

35

Method of Finite Elements 1

Page 23: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 23

G l Sh ll El tGeneral Shell Elements

In the MITC9 element the discrete locations in which themixed interpolations are fixed with the displacement interpolation functions are:

ijn

∑For the strain componentrsε

: are the 4-node displacement ijkh

1

ˆij DIij k ij k

khε

=

=∑ B u

1 1s

interpolation functionsk

3 3

r

13r13

Method of Finite Elements 1

Page 24: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 24

B d C ditiBoundary Conditions

The plate elements we considered in the previous lecture were based on the Reissner-Midlin plate theory

- transverse displacements and section rotationsp

The Kirchhoff plate theoryThe Kirchhoff plate theory

- transverse displacements

Boundary conditions are prescribed accordingly

therefore the Reissner-Midlin formulation providesmore accurate representation of boundary conditions

Method of Finite Elements 1

Page 25: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 25

B d C ditiBoundary Conditions

Let us consider an example:

,z w

,y v,x u L

h Rigid support

L

1hL

rigid

Method of Finite Elements 1

Page 26: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 26

B d C diti

,z w

,y v,x u L

Boundary Conditions

Let us consider an example:L

1hL

h Rigid support

rigid

,z w ,z w

,y v,x u 1i +

i

2i +

1i +i

2i +,y v,x u yθ

i ixθ

0, , 1, 2,..k k ku v w k i i i= = = = + + 0, , 1, 2,..kw k i i i= = + +

Reissner-Midlinsoft – only w

3-D solidDi l t i ll

Method of Finite Elements 1

soft – only whard - also θ

Displacement in all directions

Page 27: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 27

B d C diti

,z w

,y v,x u L

Boundary Conditions

Let us consider an example:L

1hL

h Rigid support

rigid

,z w ,z w

,y v,x u 1i +

i

2i +

1i +i

2i +,y v,x u yθ

i ixθ

0, , 1, 2,..k k ku v w k i i i= = = = + + 0, , 1, 2,..kw k i i i= = + +

3-D solidDi l t i ll

Kirschhoffw and the derivatives i e

w∂

Method of Finite Elements 1

Displacement in all directions

w and the derivatives i.e. dx

Page 28: The Finite Element Method for the Analyyysis of Linear Systemsarchiv.ibk.ethz.ch/emeritus/fa/education/ss_FE/FE_I_FS09/Lecture_10.pdf · xyz xy zrtesian coordinates of -th nodek:

Swiss Federal Institute of Technology Page 28

B d C diti

,z w

,y v,x u L

Boundary ConditionsL

1hL

h Rigid support

rigid

The main message here is that we have to specify boundary conditions in accordance with the characteristics of elements we are using !

Method of Finite Elements 1