82
THE DESIGN OF A NATURAL GAS FORECASTING MODEL PETER RICHARD TOEWS A RESEARCH PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION in the Department of Economics and Commerce @PETER RICHARD TOEWS 1 9 7 6 SIMON FRASER UNIVERSITY March 1976 All rights reserved. This project may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

The design of a natural gas forecasting model

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

THE DESIGN O F A

NATURAL GAS FORECASTING MODEL

PETER RICHARD TOEWS

A RESEARCH PROJECT SUBMITTED I N PARTIAL

FULFILLMENT O F THE REQUIREMENTS FOR THE

DEGREE O F MASTER O F BUSINESS ADMINISTRATION

i n t h e D e p a r t m e n t

of

E c o n o m i c s and C o m m e r c e

@PETER RICHARD TOEWS 1 9 7 6

SIMON FRASER UNIVERSITY

M a r c h 1 9 7 6

A l l r i g h t s reserved. T h i s project m a y n o t be

reproduced i n w h o l e o r i n p a r t , by photocopy o r

other means, w i t h o u t p e r m i s s i o n of t h e au tho r .

NAME : Peter Richard Toews

DEGREE SOUGHT: Master of Business Administration

RESEARCH PROJECT TITLE : The Design of a Natural Gas Forecasting Model

Roger C. Verga , Professor

William C . wedldY, Assistant Professor

DATE OF APPROVAL: @& x, ~ 7 7 6

PARTIAL COP'JtRIGHT LICENSE

I hereby g r a n t t o Simon F r a s e r U n i v e r s i t y t h e r i g h t t o lend

my t h e s i s o r d i s s e r t a t i o n ( t h e t i t l e of which i s shown below) t o u s e r s

of t h e Simon F r a s e r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r s i n g l e

c o p i e s o n l y f o r s u c h u s e r s o r i n r e sponse t o a r e q u e s t from t h e l i b r a r y

of any o t h e r u n i v e r s i t y , o r o t h e r e d u c a t i o n a l i n s t i t u t i o n , on i t s 'own

b e h a l f o r f o r one of i t s u s e r s . I f u r t h e r a g r e e t h a t pe rmiss ion f o r

m u l t i p l e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d

b y me o r t h e Dean of Graduate S t u d i e s . It is unders tood t h a t copying

o r p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l lowed

w i t h o u t my w r i t t e n pe rmiss ion .

T i t l e of ~ h e s i s I ~ i s s e r t a t i o n :

THE DESIGN OF A NATURAL GAS FORECASTING MODEL.

Author :

( s i g n a t u r e )

P. R . TOEWS

(name )

March 12th, 1974

( d a t e )

ABSTRACT -

The aim of t h i s work was t o des ign an a n a l y t i c a l n a t u r a l

gas f o r e c a s t i n g model. A gas s u p p l i e r i s confronted with

opposing penal ty c o s t s f o r excess ive and d e f i c i e n t gas s u p p l i e s .

Natural gas consumption is p r imar i ly r e l a t e d t o v a r i a t i o n s i n

t h e weather. The o b j e c t i v e was t o develop a model t o f o r e c a s t

demand wi th an e r r o r no t t o exceed 5 pe rcen t of t h e a c t u a l

demand f o r 95 pe rcen t of a l l f o r e c a s t s .

The b a s i s of t h e model i s a modified m u l t i p l e s tepwise

r eg ress ion program. The procedure c o n s i s t s of ga the r ing

25 independent and 1 dependent v a r i a b l e . A combination of

v a r i a b l e and observat ion weight ing, a s w e l l a s t h e use of dummy

v a r i a b l e s i s appl ied . These v a r i a b l e s a r e subjec ted t o t h e

m u l t i p l e s tepwise r eg ress ion procedure, which r e t a i n s only t h e

s i g n i f i c a n t v a r i a b l e s based on p a r t i a l r e g r e s s i o n using t h e

F test. The r e s u l t i n g c o e f f i c i e n t s a r e app l i ed t o tomorrow's

weather f o r e c a s t i n o rde r t o a r r i v e a t t h e p red ic ted n a t u r a l

gas sendout f o r tomorrow.

A four phase model was developed wi th t h e mul t ip le s tepwise

r eg ress ion performing t h e t h i r d phase. I n excess of 97% of t h e

v a r i a t i o n occuring i n t h e d a t a was accounted f o r by t h e 25

v a r i a b l e s . The model was allowed t o genera te a sample n ine

day period. The mean e r r o r of t h i s sample run was -.7% wi th t h e

h ighes t v a r i a t i o n being - 3 . 3 % .

iii

TABLE OF CONTENTS

............................................. ABSTRACT......... iii

LIST OF TABLES............................................... vi

LIST OF EXHIBITS............................................. vii

........................................ LIST OF ILLUSTRATIONS viii

1 INTRODUCTION ........................................... 1

Generalization

Background

Contractual Commitments

Gas Supply Mix

Model Overview

Significance of Literature in the Field

Previous Research Findings

Objective of the Study

........................................ I1 RESEARCH DESIGN 12

Data Sources

The Analytical Model

Alternatives Tested

Computer Facilities

I

111 THE MODEL DESIGN ....................................... 28

Model Analysis

Data Weighting Validation

Selection of Variables

Future Consideration

Summary

........................................... GLOSSARY OF TERMS 36

BIBLIOGRAPHY ................................................. 37

APPENDIX ................................................... 39

A. Forecasting Model Flow Chart

B. Sample Data Card Listing

LIST OF TABLES

TABLE Page

1 . Error Analysis of Region 4 .......................... 23 2 . Effective Temperature Comparisons .................... 25 3 . Time period model comparisons ........................ 30 4 . Analysis of Variance ................................ 32

................. 5 . Final Variables for Regression Model 38

LIST OF EXHIBITS

EXHIBIT

. 1 . I n l a n d N a t u r a l Gas Co Ltd . System Map ................. .................... 2 . F l u c t u a t i o n i n Annual Temperatures

3 . Annual Temperature P r o f i l e ............................. 4 . Annual Gas S a l e s Volume ................................ 5 . N a t u r a l Gas U t i l i z a t i o n P e r Customer ................... 6 . Regional Day o f t h e Week F a c t o r ........................ 7 . E f f e c t i v e Temperature Formula G a s Sendout Comparison ... 8 . F o r e c a s t i n g Model w i t h o u t Dummy V a r i a b l e s .............. 9 . F o r e c a s t i n g Model w i t h Dummy V a r i a b l e s .................

....... 10 . Sample L i s t i n g o f 1 d a y ' s F o r e c a s t f o r Phase I11

11 . Sample F o r e c a s t Based on 3 Months o f H i s t o r y ........... 1 2 . Sample F o r e c a s t Based on 6 Months o f H i s t o r y ...........

Page

4 5

46

46

46

46

4 7

4 8

51

52

55

69

vii

FIGURE

LIST OF ILLUSTRATIONS

Page

Pictorial Presentation of M o d e l V a r i a b l e s ........... lg

Comparative Graph of Forecasted V e r s u s A c t u a l

Natural Gas Sendout ................................ 24

viii

Page 1

Generalization -

A search for the optimization of a function whose behavior

is more or less unknown to the observer necessarily involves

much experimentation. It was through the direct measurement

of each experiment that this model was derived. The purpose

of this study is to develop and tes,t a natural gas forecasting

model. The usefulness of the model is its value in helping

derive a future nomination* value and its worth to the daily

gas dispatch operations. The design of the model includes

conkinual updating and reformulation of the various variables

on a daily basis so as to avoid obsolescence.

The results have revealed some interesting relationships

between various weather factors and natural gas sendout.

Although this program has not been put into production at the

Inland Natural Gas Company, it is intended that this will occur

when the present computer conversion is completed.

Background

Inland Natural Gas Co. Ltd. is a public utility operating

its distribution system in the interior of British Columbia (see

system map, Exhibit 1, Pg. 45). The customers being served can

*See "Glossary of Terms" Page 36, for definitions of technical . . terms.

Page 2

be c l a s s i f i e d a s t o r e s i d e n t i a l , commercial , s m a l l and l a r g e

i n d u s t r i a l . Peak sales of 148,223,000 c u b i c f e e t occu r r ed on

February 9 , 1975, w i t h t o t a l r e co rded s a l e s f o r t h e y e a r 1975

be ing 35,640,714,000 c u b i c f e e t . The n a t u r a l g a s r e q u i r e d

t o meet t h e s e demands ha s been purchased s o l e l y from Westcoas t

~ r a n s m i s s i o n Company Limited. Beginning i n 1976, peak demands

can be m e t by u s i n g an a l t e r n a t e supp ly from A l b e r t a & Sou the rn

Gas Co. L td . , a l t h o u g h t h i s must b e r e t u r n e d t o them t h e

fo l l owing summer.

The cus tomer b a s e ha s been growing a t a compound r a t e i n

exces s o f 10 p e r c e n t f o r t h e l a s t t h r e e y e a r s (see E x h i b i t 4 ,

Page 46 f o r l o a d p r o f i l e . A major p o r t i o n o f t h e n a t u r a l g a s

s o l d i s used f o r h e a t i n g purposes . A s a r e s u l t , g a s s a l e s

va ry g r e a t l y w i t h t h e wea the r , and it is d i f f i c u l t t o f o r e c a s t

a c c u r a t e l y i n advance what t h e a c t u a l g a s r equ i r emen t s w i l l be .

Weather c a u s e s annua l v a r i a t i o n s i n g a s usage between " c o l d " ,

"normal" and "warm" y e a r s , as i n d i c a t e d i n E x h i b i t 2, Page 46.

I n a d d i t i o n , t h e r e i s a l a r g e s e a s o n a l v a r i a t i o n i n g a s usage

between d i f f e r e n t months o f t h e y e a r a s E x h i b i t 3 shows.

The r equ i r emen t o f a l l r e g u l a r or s o c a l l e d " f i rm" cus tomers

must b e s u p p l i e d even on t h e c o l d e s t w i n t e r day , w i t h o u t 1

c u r t a i l m e n t o r i n t e r r u p t i o n s . P l a n t f a c i l i t i e s must , t h e r e f o r e ,

be l a r g e enough f o r t h e s e peak day r equ i r emen t s . his means

t h a t t h e f a c i l i t i e s w i l l n o t be f u l l y u t i l i z e d a t o t h e r t i m e s .

The maximum day sendout h a s i n c r e a s e d from 123,579,000 c u b i c .-

f e e t i n 1973 t o 136,485,000 c u b i c f e e t i n 1974 and 148,223,000

c u b i c f e e t i n 1975. Complex r a m i f i c a t i o n s r e s u l t from demand

p e n a l t i e s , minimum b i l l p r o v i s i o n s and c o n t r a c t u a l commitments

Page 3

listed below, coupled with the fact that the escalating maximum

day sendout must be nominated* one year in advance. An additional

pertinent item stems from the daily fluctuations in revenue due

to varying weather patterns. This variation has created a need

to develop a more satisfactory method of daily forecasting,

which must comply with the following contractual commitments.

Contractual Comni tments

- Nomination of gas (maximum quantity that can he purchased per day) must be submitted by November 1, to be effective

November 1 next year, for a one year term.

- The minimum monthly billing demand is based on 92.5% of the nomination.

- A billing demand penalty in excess of seven fold is incurred for any gas taken in excess of the nomination.

- The yearly minimum that falls under a take or pay category is based on 65% of the nomination (365 x ' \ nomination x .65) .

- Should the minimum billing demand be exceeded, a new minimum billing demand is then established up to the

maximum where the minimum billing demand equals the

nomination. Any gas exceeding the nomination is

penalty gas.

- If it is known today that the quantity of gas required for tomorrow will exceed the nomination, sufficient

advance notice must be given to certain industrial

customers, whose gas supply can then be curtailed for

the followina dav.

Page 4

Gas Supply Mix

In l and has v a r i o u s a l t e r n a t i v e s a v a i l a b l e t o it i n o r d e r

t o meet t h e customer requi rements .

- Basic g a s supply from Westcoast Transmiss ion Company

Limited.

- Peak shaving , which c o n s i s t s , o f t a k i n g gas i n t h e summer

when consumption i s low, and l i q u i f y i n g t h i s gas . I n

t h e w i n t e r t h i s gas i s r e t u r n e d t o t h e l i n e on peak

days , t h u s lowering t h e q u a n t i t y of gas t aken from

Westcoast .

- Using propane, which i s s t o r e d i n r a i l cars. On s e v e r e l y

c o l d days , propane i s mixed w i t h a i r and f ed i n t o t h e

system.

- A l b e r t a gas (any gas bought i n t h e peak w i n t e r pe r iod

must be r e t u r n e d t h e fo l lowing summer).

- Using l i n e pack, which c o n s i s t s o f f o r c i n g more g a s i n t o

t h e m i l e s of p i p e l i n e by i n c r e a s i n g t h e p r e s s u r e through

t h e u s e of compressors. Then on s e v e r e days more gas

i s t aken from t h e system than i s f ed i n t o it from

Westcoast , t h u s reduc ing t h e p r e s s u r e . This has l i m i t e d

u s e s i n c e working p r e s s u r e s must be main ta ined .

Page 5

Model Overview

The model i s based on a modified m u l t i p l e s tepwise

regress ion program developed by S t a t i s t i c s Canada. Various

methods of v a r i a b l e and observat ion weight ing , use of dummy

v a r i a b l e s , a s w e l l a s au to r e g r e s s i v e v a r i a b l e s a r e included.

The s tepwise a lgor i thm performs an eva lua t ion on t h e v a r i a b l e s

based on a p a r t i a l r eg ress ion using t h e F t e s t . The procedure

c o n s i s t s of ga the r ing t h e i n i t i a l d a t a of 6 independent,

11 dummy, and 1 dependent v a r i a b l e . Phase 1 e v a l u a t e s t h e

dependent v a r i a b l e , and genera tes 1 a d d i t i o n a l independent

v a r i a b l e , t h e day of t h e week f a c t o r . The e f f e c t i v e temperature

formula producing t h e lowest e r r o r i s s e l e c t e d by phase 2 , which

c a l c u l a t e s 3 a d d i t i o n a l independent v a r i a b l e s , ( v a r i a b l e s 13,

16 & 18 i n Table 5, Page 3 8 ) . Phase 3 i s en te red wi th 11

dummy v a r i a b l e s , 1 3 independent and 1 dependent v a r i a b l e , which

performs t h e m u l t i p l e s tepwise r e g r e s s i o n procedure, thus

r e t a i n i n g only t h e s i g n i f i c a n t v a r i a b l e s . The f i n a l phase

c o n s i s t s of applying t h e c o e f f i c i e n t s t o tomorrow's weather

f o r e c a s t i n o rde r t o a r r i v e a t t h e p red ic ted n a t u r a l gas sendout.

A f o u r phase model was developed wi th t h e m u l t i p l e

s tepwise r eg ress ion performing t h e t h i r d phase. The combination

of v a r i a b l e s accounted f o r i n excess of 97% of t h e v a r i a t i o n

occurr ing i n t h e d a t a . The model was allowed t o genera te -a

Page 6

sample n i n e day pe r iod . The mean e r r o r o f t h i s sample run w a s

-.7% w i t h t h e h i g h e s t v a r i a t i o n be ing -3.3%. To d a t e , t h e

model has been run i n a tes t mode on ly . However, t h e model ' s

performance has r ece ived accep tance from t h e e n g i n e e r s , who

p lan t o implement it. The model w i l l t h e n become a p roduc t ive

t o o l t o a s s i s t t h e n a t u r a l gas d i s p a t c h e r .

S i g n i f i c a n c e of L i t e r a t u r e i n t h e F i e l d

The l i t e r a t u r e review c o n s i s t e d o f a s e a r c h by t h e a u t h o r

and by t h e P a c i f i c Coast Gas Assoc i a t i on . Th i s combined s e a r c h

covered e x t e n s i v e in format ion on g a s technology from 1960

through 1973. S e v e r a l a r t i c l e s c o n t a i n i n g a n a l y t i c a l approaches

i n i d e n t i f y i n g some of t h e p r i n c i p a l f a c t o r s a f f e c t i n g g a s l oad

were d iscovered . Publ i shed l i t e r a t u r e w a s n o t a v a i l a b l e which

addressed i t s e l f s p e c i f i c a l l y t o t h e nomination o f n a t u r a l gas .

I n a d d i t i o n , a l l of t h e s t u d i e s w e r e conducted i n compara t ive ly

w a r m r e g i o n s i n a r e l a t i v e l y conf ined a r e a .

Page 7

, previous Research Findings

One of t h e e a r l i e r models developed i n 1962 t 1 I * *

desc r ibes an a n a l y t i c a l model t h a t a p p l i e s t h e f i r s t o r d e r

l i n e a r form. I t can be expressed a s :

y = Bo+B X +B X ----- 1 1 2 2 B~ XN

Where y i s t h e dependent v a r i a b l e t o be f o r e c a s t , t h e B ' s a r e

the r eg ress ion c o e f f i c i e n t s determined by t h e l e a s t squares

c r i t e r i o n , t h e X's a r e t h e exogenous v a r i a b l e s . This s tudy

considered t h e l i n e a r weather e f f e c t s from temperature, wind

v e l o c i t y and d a i l y i l lumina t ion . This w a s r e f i n e d by f i t t i n g

a parabol ic curve t o t h e temperature d a t a . A n e g l i g i b l e day of

t h e week c o r r e c t i o n f a c t o r was a l s o included. The equat ion

maintained b e t t e r than 5% accuracy f o r 80% of t h e t ime, b u t

e r r o r s i n t h e magnitude of 1 0 % were introduced from time t o time.

I n 1964 Van Note [ 11 1 used m u l t i p l e l i n e a r c o r r e l a t i o n

with v a r i a b l e s inc luding weighted temperature and a 24 hour

l a g e f f e c t . These were f i t t e d t o a second degree polynomial

equation. E r r o r s i n excess of 6% were f r equen t ly experienced.

I n 1967 Ruskin C 9 1 developed a genera l i zed s imula t ion

model. New f a c t o r s such a s r a t e of temperature change, and

customer c h a r a c t e r i s t i c s which inc lude number and growth of

customers, c l a s s of s e r v i c e and type of s e r v i c e were included.

This s tudy in t roduces t h e idea of s c a l i n g a v a r i a b l e such a s

wind s o it can be included a s a dichotomous v a r i a b l e . A major

he he numbers i n parentheses r e f e r t o t h e r e fe rences i n t h e Bibliography, Page 37.

Page 8

f i n d i n g of t h i s s t u d y is t h a t t h e r e l a t i o n s h i p o f environmental

changes t o g a s sendout i s non l inea r . Th i s i n c l u d e s t h e

growth of t h e g a s l o a d w i t h r e s p e c t t o t i m e , s i n c e t h e customer

growth i s more l i k e l y t o occur d u r i n g t h e summer c o n s t r u c t i o n

season than du r ing t h e w in t e r . S ince t h e g a s l oad accumulated

from r e s i d e n t i a l c o n s t r u c t i o n i s d i f f e r e n t from t h a t of

commercial, t h e growth w i l l b e s e a s o n a l l y d i f f e r e n t . Economic

changes a f f e c t i n g produc t ion schedu le s and t h e day t o day mix

of commercial and r e s i d e n t i a l customers add more complexi ty t o

t h e d a i l y sendout .

I n 1968 Hingorani and Marcynski 1 5 I developed a model

u s ing a non s t a t i o n e r y t ime series and a c r o s s p roduc t v a r i a b l e

of wind v e l o c i t y m u l t i p l i e d by tempera ture . The use of t h e

t i m e s e r i e s model was in tended t o i n t r o d u c e economic and

environmental e f f e c t s i n a d d i t i o n t o weather . A f o r e c a s t

e r r o r as h igh a s 10 p e r c e n t of t h e g a s l oad was exper ienced.

I n 1973 Haenel t 4 1 developed a model u s i n g t h e m u l t i p l e

s t epwise r e g r e s s i o n technique as t h e base . A geometr ic we igh t ing

f a c t o r was a p p l i e d t o t h e d a t a t o i n t r o d u c e an a u t o r e g r e s s i v e

t i m e s e r i e s e f f e c t . I n a d d i t i o n , a n o p t i m a l weight ing f a c t o r

was in t roduced , which minimized t h e sum of t h e squared e r r o r . 1

The model y i e l d e d 9 5 p e r c e n t of a l l f o r e c a s t s w i t h i n + 5.36 -

p e r c e n t of a c t u a l , which i s a c o n s i d e r a b l e improvement ove r

p rev ious models.

Page 9

i i I n a l l of t h e s t u d i e s , on ly a p o r t i o n of t h e y e a r ' s d a t a ?

was s e l e c t e d f o r model l ing. Many used d a t a from t h e prev ious

yea r and a l l excluded ho l idays and non t y p i c a l g a s days . A l l

p a r t i t i o n e d t h e d a t a , and w i t h i n t h e s e p a r t i t i o n s assumed t h e

e f f e c t s of t h e v a r i a b l e s t o have a nea r l i n e a r r e l a t i o n s h i p

wi th g a s l oad .

The most d i f f i c u l t and impor t an t p e r i o d f o r f o r e c a s t i n g

is t h a t of t h e w i n t e r h e a t i n g season. I t i s h e r e t h a t t h e

peak day i s encountered, and it i s t h i s sendout t h a t has t h e

g r e a t e s t e f f e c t on y e a r l y c o s t s . I f t h e d i s p a t c h e r selects

t o o low a nomination v a l u e , revenues w i l l b e reduced. I f h e

chooses t o o h igh a va lue , c o n s i d e r a b l e p e n a l t i e s cou ld be

r e a l i z e d .

The use o f mathemat ical models i n f o r e c a s t i n g d a i l y g a s

load i s l i m i t e d th roughout t h e i n d u s t r y . P a s t model response

t o s h o r t t e r m t r e n d s i n t h e economy o r from changes i n

customer h a b i t s have been u n s a t i s f a c t o r y . Thus, obso lescence

of t h e f o r e c a s t i n g equa t ion f r e q u e n t l y r e s u l t s . The

a v a i l a b i l i t y of i n fo rma t ion and t h e c o s t o f a c q u i r i n g t h i s

i n fo rma t ion must be cons idered . I t is e v i d e n t t h a t con t inuous

d a i l y f o r e c a s t i n g over a pe r iod o f t i m e w i l l b e necessary t o

demonstra te t h e u s e f u l n e s s of t h i s t o o l .

Page 10

k 4

o b j e c t i v e of t h e Study

The main framework of c o u r s e , i s t o d e s i g n a model t h a t t

w i l l f o r e c a s t t h e demand of n a t u r a l g a s t h a t w i l l be needed ! ! tomorrow. The need has been c r e a t e d due t o t h e i n c r e a s i n g i : complexity of t h e g a s system o p e r a t i o n s . A s can be seen from

t h e system map ( E x h i b i t 1, Page 4 5 ) , t h e o p e r a t i n g r eg ion

covers i n exces s of 700 m i l e s , which c r o s s e s two mountain <

ranges . Consequently, ve ry d i s t i n c t wea ther p a t t e r n s a s w e l l

a s geograph ica l p e c u l i a r i t i e s e x i s t . A c o l d f r o n t moving a c r o s s

such a v a s t a r e a i n t r o d u c e s d i v e r s i t y between t h e peak days i n

v a r i o u s towns. The r a m i f i c a t i o n s encountered w i t h m u l t i p l e

gas s u p p l i e s , demand p e n a l t i e s and minimum b i l l p r o v i s i o n s and

advance n o t i f i c a t i o n of customers t o be c u r t a i l e d have c r e a t e d

t h e need t o develop a more s a t i s f a c t o r y method of f o r e c a s t i n g

sendout . The fo l lowing o b j e c t i v e s are s t a t e d :

(1) Design a model w i t h a f o r e c a s t e r r o r n o t t o exceed

5% of t h e a c t u a l demand f o r 95 p e r c e n t o f a l l f o r e c a s t s .

The b e n e f i t h e r e w i l l b e i n s u b s t a n t i a t i n g a d i s p a t c h e r ' s

c a l c u l a t i o n p l u s a s s i s t i n g i n n o t i f y i n g customers i n

t i m e t o a f f e c t c u r t a i l m e n t f o r t h e fo l lowing day. \

( 2 ) Sources of d a t a must be r e a d i l y a t t a i n a b l e and must be

t ime ly s o t h a t t h e s e can be a c t e d upon f o r t h e

fo l lowing day. The n a t u r e o f t h e c u r r e n t c o n t r a c t

s i t u a t i o n r e q u i r e s 8 hours n o t i c e t o t h e i n t e r r u p t i b l e *

Page 11

customers , and improvement i n p r e d i c t i o n s could

i n c r e a s e t h e s e c u r i t y of t h e system. S i n c e t h e

c o n t r a c t day beg ins a t 8 a . m . , t h i s means t h a t

customers must be n o t i f i e d by midn igh t i f c u r t a i l m e n t

is t o b e e f f e c t i v e f o r t h e f o l l o w i n g day.

Cons ide ra t ions w i l l b e g iven i n t h e model d e s i g n t o

p rov ide f o r p o s s i b l e f u t u r e o b s o l e s c e n c e o f v a r i a b l e s

which a r e no longe r s i g n i q i c a n t .

An a d d i t i o n a l problem a s s o c i a t e d w i t h g a s d i s p a t c h is

t h a t o f s e l e c t i n g a nominat ion v a l u e which w i l l become

e f f e c t i v e one y e a r hence. T h i s r e q u i r e s f o r e c a s t i n g

f u t u r e wea ther a s w e l l as f u t u r e demand. A p r o b a b i l i s t i c

approach t o t h e u n c e r t a i n t y o f wea the r can b e ach ieved

by us ing t h e Monte-Carlo s i m u l a t i o n method. The

s imu la t ed tempera tures must have t h e s a m e s t a t i s t i c a l

p r o p e r t i e s a s a c t u a l t empefa tu re s . By u t i l i z i n g

p a s t h i s t o r i c a l d a t a c o n s i s t i n g o f t h e extremes and

t h e d a i l y mean tempera tures i n c o n j u n c t i o n w i t h a

random number g e n e r a t o r , a sample set of s imu la t ed

tempera tures can be d e r i v e d . Using t h i s d a t a a s a

base , it i s p o s s i b l e t o f o r e c a s t f o r t h e subsequent

y e a r i n o r d e r t o a r r i v e a t a nomina t ion va lue .

However, a l though t h i s i s a s t a t e d o b j e c t i v e , t h i s w i l l

n o t be r e a l i z e d i n t h i s s tudy . I t is in t ended t h a t

t h e d a i l y f o r e c a s t i n g model w i l l b e i n p roduc t ion and

accep ted b e f o r e ' t h i s phase w i l l b e a t t empted .

Page 12

V a r i a b l e 1

I1 RESEARCH D E S I G N

Data Sources -

C u r r e n t l y , t h e d i s p a t c h f u n c t i o n i s performed on a manual

b a s i s . U n t i l r e c e n t l y , a l l weather i n fo rma t ion t h a t t h e

d i s p a t c h e r r e q u i r e d was r ece ived v i a t e l e x . I n December 1974,

a P.D.P. 11/40 p roces s c o n t r o l computer w a s i n s t a l l e d . The

f i r s t pa se of i t s development w a s t h e moni tor ing of t h e t e l e x

l i n e t o c a p t u r e any weather d a t a pe , r ta in ing t o r e g i o n s s e rved

by t h e d i s t r i b u t i o n system. The unique code of t h e weather d a t a

i s t r a n s l a t e d and p r i n t e d i n a r e a d a b l e format . I t i s from t h i s

source t h a t t h e independent v a r i a b l e s f o r t h i s model o r i g i n a t e .

The o b j e c t i v e of t h e model i s t o f o r e c a s t tomorrow's

sendout . Weather d a t a i s r ece ived hour ly , w i t h f o r e c a s t s

r ece ived a t 5 a.m., 10 a.m., 2:30 p.m., 7:30 p.m. and 10:30 p.m.

These f o r e c a s t s c o n s i s t of g e n e r a l p u b l i c i n fo rma t ion , w i t h an

o u t l i n e of g e n e r a l area e x p e c t a t i o n s . I n a d d i t i o n , a 2:30 p.m.

s p e c i a l f o r e c a s t i s r ece ived from t h e wea ther o f f i c e i n d i c a t i n g

\ , t o n i g h t ' s low, tomorrow's h igh , and t h e low tomorrow n i g h t .

should t h e r e be a d r a s t i c change i n t h e wea the r , r e v i s e d f o r e c a s t s

w i l l be i s s u e d a t any t i m e .

The d i f f e r e n t v a r i a b l e s i nc luded f o r each day a r e l i s t e d

i n Table 5.

- A Cons tan t f a c t o r .

V a r i a b l e s 2-12 - These v a r i a b l e s are dummy v a r i a b l e s and

a r e used t o s i g n i f y d i f f e r e n t wea ther r eg ions . T h i s

Page 13

i s necessary i n order t o account f o r t h e s e p a r a t e

e f f e c t s on t h e gas sendout which a r e p e c u l i a r t o

each region .

Var iables 13-15 - These v a r i a b l e s form t h e au to regress ive

s e r i e s . The temperature is measured i n degrees Ce l s ius ,

whi le t h e opera t iona l v a r i a b l e i s measured i n m i l l i o n s

of cubic f e e t of gas. The v a r i a b l e s a r e i n t e r v a l

sca led over a continuous 'range.

Var iables 16-18 - These v a r i a b l e s a r e c a l c u l a t e d weighting

v a r i a b l e s .

Var iables 1 9 - 2 4 - These v a r i a b l e s a r e t h e o r i g i n a l

independent v a r i a b l e s rece ived from t h e P.D.P. 11/40.

When o p e r a t i o n a l , t h e s e w i l l be t h e f o r e c a s t s f o r t h e

fol lowing day.

Var iable 25 - Is t h e dependent v a r i a b l e c o n s i s t i n g of t h e

a c t u a l gas sendout.

Addit ional v a r i a b l e s such a s cloud cover , i l l u m i n a t i o n and \

p r e c i p i t a t i o n were considered. The au thor d i d n o t have an

opportuni ty t o determine t h e e f f e c t on sendout from t h e s e

weather v a r i a b l e s , s o no conclusion can be reached a s t o t h e

b e n e f i t t h a t could be der ived from t h e i n c l u s i o n of t h e s e

v a r i a b l e s . The reason f o r excluding t h i s d a t a was t h a t it was

e i t h e r s u b j e c t t o human i n t e r p r e t a t i o n t o t r a n s l a t e it t o a

numerical va lue , o r was unava i l ab le f o r a l l of t h e r eg ions

.under cons ide ra t ion , o r both.

Page 1 4

I t i s known from h i s t o r i c a l d a t a w i t h i n t h e Company t h a t

a s p r i n g and f a l l t r a n s i t i o n p o i n t o c c u r s , i . e . , t h e s l o p e of

t h e demand v e r s u s wea ther i s d i f f e r e n t f o r w i n t e r t han f o r

summer. However, as mentioned e a r l i e r , t h e c r i t i c a l requ i rement

f o r e x a c t sendout i s n o t p r e s e n t du r ing t h e s e t r a n s i t i o n p e r i o d s ,

s o a l though it i s recognized , t h i s problem w i l l n o t be pursued

i n t h i s s tudy .

Some of t h e earl ier models w e r e des igned by c o n s i d e r i n g

one v a r i a b l e a t a t i m e and f i n d i n g t h e optimum s o l u t i o n , f i x i n g

t h e r e l a t i o n s h i p w i t h demand and t h e n c o n s i d e r i n g t h e nex t

v a r i a b l e . Although t h e m u l t i p l e r e g r e s s i o n model a l l ows c r o s s

c o r r e l a t i o n s , t h e s e can be removed by p l a c i n g d i f f e r e n t l e v e l s

of tests on each independent v a r i a b l e . The f a c t t h a t n a t u r a l

gas demand i s dynamic would tend t o i n d i c a t e t h a t models w i t h

f i x e d v a r i a b l e s a r e s l a t e d f o r obso lescence .

I f a l l t h e v a r i a b l e s a r e c o n t i n u a l l y made a v a i l a b l e t o

t h e M u l t i p l e Stepwise Regress ion Program, on ly t h o s e v a r i a b l e s

which b e s t a i d i n e x p l a i n i n g t h e v a r i a t i o n i n a c t u a l g a s sendout

w i l l b e chosen f o r any one f o r e c a s t .

The b e s t se t of v a r i a b l e s i s con t inuous ly chosen by

re-examining t h e i n t e r r e l a t i o n s h i p s between t h e v a r i a b l e s . The

model w i l l t h u s i n c l u d e d i f f e r e n t combinat ions of v a r i a b l e s

depending upon v a r i o u s economic o r s e a s o n a l c y c l e s .

Page 15

The following is a description of the final variables

included in the model:

- One constant factor. - Eleven dummy variables allowing a separate description of each weather region.

- Yesterday's effective temperature, which is derived from a formula based on the weighted average temperatures of

the past 4 weeks (see Page 1,7 Item iii, for the effective

temperature formula used).

- Yesterday's average temperature which is computed from the 24 hourly temperatures.

- Yesterday's sendout consisting of the natural gas load in millions of cubic feet.

- Wind times corrected average temperature consisting of the wind speed in knots times tomorrow's forecasted

average temperature. \

- Day of the week factor consisting of a constant percentage determined by the actual day of the week being forecasted

(see Exhibit 6, Page 47 for sample) . - Change in effective temperature consisting of the difference between the previous day's and yesterday's

effective temperature.

- High temperature consisting of the high forecast for tomorrow.

- Low temperature consisting of the low forecast for tomorrow.

Page 16

- Average temperature consisting of the forecasted average for tomorrow.

- Wet bulb average determined by the dispatchers tomorrow.

- Daylight hours consisting of the hours between

for

sunrise

and sunset for tomorrow.

- Wind speed consisting of forecasted wind for tomorrow.

The Analytical Model

A Multiple Regression Program with modified variables was

' used in the formulation of the model. The program used was

developed by Statistics Canada C 10 3. A very useful text

relating to multiple regression was one written by Draper and

Smith 1 2 1.

, The steps employed by the foreCasting model are as follows: \

\

'\ Step 1 -

Step 2 -

Segregate historical data by region, and analyze

each region for day of the week variations.

Discount the day of the week variation, and

analyze which formula of effective temperature

produces the least error. The effective temperature

is intended to show a warming or cooling trend.

In addition, it also accounts for temperature

latency* ofbuildings as well as human psychological

factors.

Page 17

The three different effective temperature formulas were

taken from a study conducted by F. G. Van Note t 11 1.

Where a + b = 1

T~ = Today's average temperature

T ~ - 1 = Yesterday's average temperature

T~ = Effective temperature

T~ , ~ - l = Yesterday ' s effective temperature

Where WK = Average tem6erature in the week.

The optimal formula is then used to calculate other effective

temperature related variables.

Step 3 - An increasing wind at the same temperature has a greater chilling effect. This effect is only

noticed below 15O Celsius. The formula as supplied

by the Inland Natural Gas Dispatcher is:

CHILLF = t(TD - 15) X W1 Where TD = Average temperature Celsius

W = Wind speed in knots

Step 4 - E s t a b l i s h t h e twenty-five v a r i a b l e s f o r each

region f o r t h i s day, t ak ing i n t o account t h e

va lues e s t a b l i s h e d i n t h e previous t h r e e s t e p s .

S tep 5 - Subjec t a l l of these v a r i a b l e s t o m u l t i p l e

r eg ress ion , which f i n d s t h e v a r i a b l e no t y e t i n

t h e r eg ress ion with t h e h i g h e s t F va lue , and i f

t h i s i s above t h e necessary l e v e l , adds t h e v a r i a b l e

t o t h e equation. Then t h e r e g r e s s i o n equat ion i s

t e s t e d f o r t h e v a r i a b l e wi th t h e lowest F va lue ,

t h i s v a r i a b l e being removed i f it i s below t h e

s i g n i f i c a n t l e v e l . I f s t i l l s i g n i f i c a n t , t h e

equat ion i s t e s t e d wi thout t h i s lowest v a r i a b l e

t o f i n d a lower e r r o r var iance . I f s o , t h e v a r i a b l e

i s d e l e t e d , ( s e e Appendix B, Page 4 0 f o r flow c h a r t ) .

S tep 6 - Using t h e c o e f f i c i e n t s e s t a b l i s h e d , inc lude

c u r r e n t f o r e c a s t s f o r tomorrow f o r each of t h e

r eg ions , and d e r i v e a gas sendout by region.

(Exhib i t 1 2 , Page 72 is an example of t h e f i n a l

r e p o r t . Figure 1 p r e s e n t s a p i c t o r i a l overview

of where t h e v a r i a b l e s a r e der ived from, and how

t h e y come toge the r i n t h e model).

r i g . I. - P i c t o r i a l P r c a c n t n t i o n of Model Voriablcs

Indcpcmdent Var iab les

. calculated

and Store

Page 20

The v a r i a b l e s i n r e g r e s s i o n e q u a t i o n s u s u a l l y t a k e v a l u e s

o v e r some con t inuous range. However, t h i s model must a ccoun t

f o r t h e s e p a r a t e d e t e r m i n i s t i c e f f e c t s on t h e r e sponse due

t o t h e e f f e c t o f d i f f e r e n t wea ther r e g i o n s . V a r i a b l e s which

h e l p d i s t i n g u i s h d i f f e r e n t l e v e l s o f r e s p o n s e a r e c a l l e d dummy

v a r i a b l e s . I n o r d e r t o d e a l w i t h r r e g i o n s , (r-1) dummy

v a r i a b l e s a r e i n c l u d e d i n t h e r e g r e s s i o n a n a l y s i s . For example,

i f 3 r e g i o n s w e r e i n c l u d e d , t h e n dummy v a r i a b l e s would be

i nc luded a s fo l l ows :

X1 X2

1 0 = r e g i o n 1

0 1 = r e g i o n 2

0 0 = r e g i o n 3

The g e n e r a l form o f t h e model i s a s fo l l ows :

n y ( t ) = Bo + ----- b . x . ( t ) +-----

1 1 + b p k (t)

+ ----- b . y . (t) +----- 1 1 b k ~ k ( t )

+ ----- b . 2 . (t-t . ) +----- 1 1 1

A Where y i s t h e dependent v a r i a b l e t o b e f o r e c a s t e d , t h e

b ' s a r e t h e l e a s t s q u a r e c o e f f i c i e n t s de te rmined by t h e model

f o r each f o r e c a s t , t h e x v a r i a b l e s a r e t h e dummy v a r i a b l e s

r e q u i r e d t o i d e n t i f y each r e g i o n , t h e y v a r i a b l e s a r e t h e

exogenous series, and t h e z ( t - t i ) v a r i a b l e s are a u t o r e g r e s s i v e

v a l u e s o f t h e f o r e c a s t e d series i t s e l f .

P a g e 2 1

A s a m p l e c a l c u l a t i o n f o r r e g i o n 4 f o r F e b r u a r y 22 is:

V a r i a b l e - # V a r i a b l e D e s c r i p t i o n

2 Reg ion 1

4 R e g i o n 3

5 R e g i o n 4

6 R e g i o n 5

C o e f f i c i e n t V a r i a b l e D a t a

. I 3 1 9 5 9 - 0

1 . 5 1 5 1 7 0

7 R e g i o n 6 . l l 1 3 1 4 - 0

1 0 R e g i o n 9 .121379 - 0

11 R e g i o n 1 0 .0928959 0

1 2 R e g i o n 11 . I 2 0 1 8 2 - 0

1 3 Y e s t e r d a y ' s E f f e c t i v e t e m p e r a t u r e .00308867 - 6.3-

1 4 Y e s t e r d a y ' s Avg. Temp. ,0212799 .6-

1 5 Y e s t e r d a y ' s s e n d o u t .860937 2 .999

1 6 Wind x Temp. .00010965 2 1 7 . 1 I

1 7 Day o f t h e Week F a c t o r .751174 .969 t

I

1 8 C h a n g e i n E f f e c t i v e Temp. .0571149 1 .6 - I

1 9 E f f e c t i v e Temp. .0102688 4.7-

20 F o r e c a s t e d High Temp. .0181356 - 5 .0

2 1 F o r e c a s t e d Low Temp. .0192658 - .6-

22 F o r e c a s t e d Avg. Temp. .0192827

23 F o r e c a s t e d W e t B u l b .OX47737

24 F o r e c a s t e d D a y l i g h t H r s . . 369423 1 0 . 1

2 5 F o r e c a s t e d Wind .00668735 - 1 3 .

C o n s t a n t .go258 - 1

( # I s 3 , 8 & 9 were d r o p p e d d u e t o p a r t i a l F b e i n g i n s i g n i f i c a n t )

Page 22

n F e b r u a r y 22 Y = 2.765

The a c t u a l s e n d o u t f o r r e g i o n 4 f o r F e b r u a r y 22 was

2.735, t h u s t h e forecast r e s u l t e d i n a r e s i d u a l error o f

TABLE 1

Page 23

ERROR ANALYSIS OF REGION 4

Actua l Fo recas t ed Res idua l 02/22/75 2.735 2.765 .030-

Average % e r r o r -. 28%

Average Residual -.004

Standard Devia t ion .085

However, it should be no ted t h a t t h e key e lement of succes s

of t h i s model does n o t r e l y on f o r e c a s t i n g each r eg ion

i n d i v i d u a l l y , b u t r a t h e r on p r e d i c t i n g t h e requi rement f o r t h e

e n t i r e system. Although c e r t a i n i n d i v i d u a l r e g i o n f o r e c a s t s

were beyond t h e a c c e p t a b l e c r i t e r i a , t h e combining of t h e

11 r e g i o n s i n t h e system forms a normal d i s t r i b u t i o n whose mean

was w e l l w i t h i n t h e s t a t e d o b j e c t i v e (see E x h i b i t 11, Page 69).

An i n d i c a t i o n of t h e model" a b i l i t y t o p r e d i c t t u r n i n g

p o i n t s , and a comparison of Fo recas t ed Versus Actua l Na tu ra l

Gas Sendout i s shown i n F igu re 2.

Page 24

Fig. 2 - Comparative Graph of Forecas ted Versus Actual Sendout

Region 4

Forecasted f ----. Ir

1 Actual

Day of t h e Week (February 2 2 - March 02)

Page 25

Alternatives Tested

Although many alternatives were tested, only a few of

the significant variables and their associated effect on the

final formula will be discussed.

As indicated earlier and as evidenced by the system map,

an extensive area is being served by the distribution system.

The solution to treating the diverse weather patterns was to

divide the system into 11 distinct regions.

Another distinct pattern idenkified was the consistent

variation in consumption based on the day of the week. An

example of these variations can be seen in Exhibit 6, Page 47.

Discounting a major upheaval such as a strike, indications

were that consumption by region, for the same day of the week,

tended to be quite stable.

Earlier mention was made of the different formulas used

in arriving at the effective temperature. Exhibit 7, Page 48

shows three sample runs made from the same basic data, with

only the effective temperature formula changed.

TABLE 2

EFFECTIVE TEMPERATURE COMPARISONS

Effective Effective Effective Temperature Temperature Temperature Formula 1 Formula 2 Formula 3

Multiple Correlation Coefficient

Error of Standard Deviation

Regression F

Page 26

The method used i n a l l of t h e t e s t i n g w a s t o va ry t h e d a t a

on one v a r i a b l e o n l y , t h u s de te rmin ing whether t h e e f f e c t of

t h i s one v a r i a b l e w a s p o s i t i v e o r nega t ive .

F i n a l l y , t h e dummy v a r i a b l e s w e r e i n t roduced t o account

f o r t h e 11 d i s t i n c t weather r eg ions . E x h i b i t 9 , Page 52 i n d i c a t e s

t h e s l i g h t improvement i n e x p l a i n i n g v a r i a t i o n s i n t h e dependent

v a r i a b l e by t h e i n c l u s i o n of t h e d e t e r m i n i s t i c e f f e c t s o f t h e

dummy v a r i a b l e s . This i s a by-product of t h e weather d a t a , which

had t o be submi t ted r e g i o n a l l y . A r e g i o n by r e g i o n f o r e c a s t i s

a l s o provided.

Without Dummy V a r i a b l e s With Dummy V a r i a b l e s

R~ .98253 .98424

E r r o r of S td . Devia t ion .523918

E r r o r Mean .001191

Computer F a c i l i t i e s

The same equipment was used th roughout t h e development and

d e s i g n o f t h e model. Many d i f f e r e n t programs and methods of

manipula t ing t h e d a t a were a t tempted b e f o r e s e t t l i n g w i t h t h e

program developed by S t a t i s t i c s Canada. ,

A l l a c c e s s t o t h e Simon F r a s e r 370/155 computer was through

a remote t e rmina l . Data was submi t ted i n t h e form of c a r d s

through a 2501 c a r d r e a d e r . The r e p o r t s w e r e produced on a

Telex 5403 p r i n t e r . These t e r m i n a l s are l o c a t e d i n t h e academic

b u i l d i n g a t Simon F r a s e r Un ive r s i t y .

Page 27

The o r i g i n a l t es t d a t a and sample r u n s c o n s i s t i n g of

3 months of d a t a r e q u i r e d a 120K reg ion of memory.

as t h e t ime span of t h e d a t a base w a s i n c r e a s e d t o

per iod of December 1 7 t h t o June 22nd, it was found

memory s i z e had t o be i nc reased t o a 240K reg ion .

However,

t h e l o n g e s t

t h a t t h e

T h i s was

due t o t h e f a c t t h a t a l l t h e d a t a was k e p t i n memory i n a

ma t r ix , r a t h e r t h a n us ing a u x i l l i a r , ~ s t o r a g e dev ices .

Consequently, t h e r u n s were ve ry f a s t , r e q u i r i n g about one

minute t o execute .

The l o c a t i o n of t h e t e r m i n a l s made it neces sa ry t o keypunch

t h e weather d a t a and a s s o c i a t e d dependent v a r i a b l e s . This

d a t a was t h e n t r a n s p o r t e d t o t h e t e r m i n a l s , where t h e computer

runs could be performed. Although t h i s was accomplished i n

o r d e r t o d e s i g n t h e model, it i s c e r t a i n l y n o t p r a c t i c a l f o r

d a i l y f o r e c a s t i n g from a d i s p a t c h e r ' s v iewpoin t . Mention a s

t o t h e implementat ion of t h i s model w i l l b e made i n a l a t e r

s e c t i o n .

Comparison of E x h i b i t 11, Page 69 and E x h i b i t 1 2 , Paqe 72

a l s o i n d i c a t e s t h a t t h e l onge r h i s t o r i c a l d a t a b a s e d i d n o t

produce r e s u l t s w i t h t h e same accuracy a s t h e s h o r t e r t i m e span.

Thus it i s i n t e r e s t i n g t o n o t e t h a t t h e l onge r t i m e span i s

more expens ive t o ma in t a in , by r e q u i r i n g more memory and computer

t i m e , w h i l e producing poorer r e s u l t s .

Page 28

I11 THE MODEL DESIGN

Model Ana lys i s -

Typ ica l d a t a weight ing and a r r i v a l a t t h e f o r e c a s t t a k e i

t h e fo l lowing form. The l a s t d a y ' s a c t u a l wea ther v a r i a b l e s

and g a s sendout a r e added t o t h e d a t a base f o r each r eg ion .

The e a r l i e s t o b s e r v a t i o n s ( c o n s i s t i n g of 1 day of d a t a ) a r e

d e l e t e d , s o t h a t a c o n s t a n t t i m e frame is mainta ined. This

new d a t a base is analyzed t o de te rmine t h e day of t h e week

f a c t o r f o r each r eg ion . The e f f e c t i v e t empera tu re which

produced t h e l owes t e r r o r i s t h e n chosen. Now t h e o t h e r

independent v a r i a b l e s a r e gene ra t ed , which become i n p u t t o t h e

m u l t i p l e r e g r e s s i o n . The r e s u l t i n g c o e f f i c i e n t s a r e combined

w i t h t h e f o r e c a s t e d weather f o r tomorrow, from which t h e new

f o r e c a s t f o r tomorrow's sendout f o r a l l r e g i o n s r e s u l t s i n t h e

t o t a l sendout f o r t h e n e x t 24 hours .

Many of t h e p a s t models u s e a c o r r e c t i o n f a c t o r from l a s t

y e a r , o r a weigh t ing t o r e f l e c t p r ev ious weather p a t t e r n s .

The a u t h o r contends t h a t t h i s i s i r r e l e v a n t , and p o s s i b l y

mis lead ing . A s an example, peak days i n t h e p a s t 3 y e a r s

occur red on February 8 , 1973, January 10 , 1974 and February 9 ,

1975. I f t h e cor responding day from t h e p rev ious y e a r had been

al lowed t o i n f l u e n c e t h e c u r r e n t f o r e c a s t , it is e v i d e n t t h a t

an e r r o r would have been in t roduced i n t o t h e model.

I n ana lyz ing E x h i b i t 11, Page 69 it can be seen t h a t t h e

pe rcen tage e r r o r s f o r each i n d i v i d u a l r e g i o n a r e q u i t e h igh ,

and vary q u i t e cons ide rab ly . However, t h e v a r i a t i o n between

r e g i o n s is random, w i t h t h e f l u c t u a t i o n s n e t t i n g o u t t o an

a c c e p t a b l e f o r e c a s t f o r t h e e n t i r e system f o r one day.

Page 29

The m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t has been used a s

t h e measure of t h e succes s of t h e r e g r e s s i o n e q u a t i o n i n

exp la in ing t h e v a r i a t i o n of t h e d a t a . The observed mean

square r a t i o is s t a t i s t i c a l l y s i g n i f i c a n t , i n d i c a t i n g t h a t

t h e v a r i a t i o n i n t h e d a t a , which has been accounted f o r by

t h e equa t ion , i s g r e a t e r t h a n would be expected by chance.

Examining t h e r e s i d u a l s from E x h i b i t 1 0 , Page 55 g i v e s

no i n d i c a t i o n of t i m e dependent nonrandomness o r unusual

behavior . Occasional spo rad ic p o i n t s r ang ing t o s e v e r a l s t a n d a r d

e r r o r s a r e observed f o r c e r t a i n o b s e r v a t i o n s . No s p e c i f i c

exp lana t ion has been uncovered t o account f o r t h e s e d e p a r t u r e s .

Fu r the r r e s e a r c h w i l l be neces sa ry t o de te rmine t h e cause ,

and d e r i v e a v a r i a b l e which w i l l a ccoun t f o r t h e s e spo rad ic

p o i n t s . However, it should be noted t h a t c o n t r a r y t o s e v e r a l

p a s t s t u d i e s , no d a t a p o i n t s such as h o l i d a y s o r weekends

w e r e removed. With t h e t r e n d towards f l e x i b l e hour s , a

s h o r t e r work week, and o p t i o n s r e g a r d i n g h o l i d a y s , it was

f e l t t h a t p o s s i b l e maximum exposure t h a t a d i s p a t c h e r could

be s u b j e c t e d t o should be shown. However, i n t h e c a s e of

n a t i o n a l h o l i d a y s , a l though t h i s day w a s f o r e c a s t e d , i n

p r a c t i c e such a h o l i d a y should b e suppressed i n t h e d a t a base ,

t o p reven t f u t u r e f o r e c a s t s from be ing b i a sed .

Page 30

Data Weighting V a l i d a t i o n -

Two d i f f e r e n t t i m e p e r i o d s w e r e t e s t e d t o de t e rmine t h e

i n f l u e n c e o f h i s t o r i c a l e v e n t s on tomorrow's s endou t . Both

sets i n c l u d e d t h e same v a r i a b l e s and began a t t h e same t i m e .

The a c t u a l e r r o r v a l u e s were c a l c u l a t e d as a c t u a l g a s s endou t

minus t h e f o r e c a s t e d sendout . T h i s d i f f e r e n c e was t a k e n a s

a p e r c e n t o f a c t u a l g a s sendout .

The s h o r t e r t i m e span was found t o improve t h e model

s i g n i f i c a n t l y by r e d u c i n g t h e f o r e c a s t e r r o r . T h i s i s due t o

t h e f a c t t h a t c o n d i t i o n s d u r i n g t h e p a s t s e v e r a l weeks a r e much

more r e l e v a n t t h a n c o n d i t i o n s s ay . f o u r months ago. The l o n g e r

t i m e span a l lowed t o o much we igh t i ng t o b e p l a c e d on o l d e r

h i s t o r i c a l d a t a . E x h i b i t 11, Page 69 and E x h i b i t 12 . Page 72

c o n t a i n a sample o f t h e d i f f e r e n t t i m e p e r i o d s .

TABLE 3

~ i m e P e r i o d Model Comparisons

D e c . 17 - Feb. 22

Mean P e r c e n t E r r o r - . 7

Standard ~ e v i a t i o n

M u l t i p l e C o e f f i c i e n t of De te rmina t ion

S e l e c t i o n o f V a r i a b l e s

D e c . 17 - June 28

3.0

.704

The f i n a l se t o f v a r i a b l e s are shown i n Tab l e 5. A s c an

be s een from E x h i b i t 1 0 , Page 55 t h e s e v a r i a b l e s accoun ted f o r

i n exce s s o f 9 8 % o f t h e v a r i a t i o n i n t h e dependen t v a r i a b l e .

A d d i t i o n a l v a r i a b l e s such a s c l o u d c o v e r , p r e c i p i t a t i o n and

Page 31

wind direction were also considered. These variables were

discarded due to the fact that they were either not available

in all of the areas, were subject to human interpretation,

and also were most prone to forecasting error from the

weather bureau.

A human psychological factor is evidenced by the fact

that the thermostat is not set as high on the first day of

a cold spell, as it is on the 3rd or 4th day of continuing

cold. The effective temperature was intended to account

for this fact. In all of the variations of testing performed,

the effective temperature, yesterday's effective temperature,

and the change in effective temperature remained significantly

high and were never excluded from the equation.

. One of the other significant effects that the model was

intended to allow for was the speed of temperature change.

This was accomplished by showing <he high, low and average

temperatures, and the change of temperatures from the

previous day. Although hourly readings are received, it

can be seen how massive the data base would become if a11 of

these variables were accumulated by the hour for each region.

According to J. M. Wetz C 2 1 , the range of values of ,

the observed F ratio should be considerably greater than the

selected percentage point of the F distribution. The

inaccuracy of a regression equation derives from the regression

lack of fit and pure error. The F ratio consists of the

(regression mean square)/ (residual mean square) . The test of

Page 32

lack of fit and the satisfactory results for F(21, 715,.05)

= 1.56 are

Source of Variation

Regression

Rcsidual

Total

shown in the following table:

TABLE 4

Analysis of Variance

Degrees of Surn of Mean Square Freedom Squares

Page 33

I V CONCLUSION

presen t Model Design

A s evidenced by Exh ib i t 11, Page 69 t h e f o r e c a s t i n g model

has m e t t h e o r i g i n a l o b j e c t i v e s . The work i n t h e s tudy has

been designed around t h e d i spa tch ing philosophy of t h e Company.

The v a r i a b l e s s e l e c t e d have been chosen on t h e b a s i s of

a v a i l a b i l i t y and t ime l iness t o t h e d i spa tch ing personnel .

The b a s i c philosophy of t h e model has been t o l eave it

open ended. I n t h i s manner, it i s intended t h a t a s economic

and personal h a b i t s change, t h e model w i l l dynamically a d j u s t

t h e c o e f f i c i e n t s . I n a d d i t i o n , should any of t h e v a r i a b l e s

become i n s i g n i f i c a n t due t o changes such a s consumer h a b i t s

o r economic cond i t ions , t h e v a r i a b l e s w i l l simply drop from

t h e r e g r e s s i o n equat ion.

The d i s p a t c h e r w i l l have t o o p e r a t e t h e system under

appropr ia t e guidance and c o n t r o l s , i n o r d e r t o ga in confidence

i n t h e f o r e c a s t i n g system. The f o r e c a s t i n g des ign must work

i n t h e environment which a c t u a l l y e x i s t s i n o rde r t o prove

t h e a p p l i c a t i o n .

The model i s modular i n des ign , and provides p rogress ive

information of t h e d a t a t h a t i s s e l e c t e d . Although a number

of v a r i a b l e s must be entered by t h e d i s p a t c h e r , they a r e a l l

based on information a v a i l a b l e t o him. The one disadvantage

is t h e cons ide rab le computer c a p a c i t y r equ i red t o d e r i v e t h e

f o r e c a s t i n g c o e f f i c i e n t s . ..

Page 34

Fu tu re Cons ide ra t ions

E a r l i e r mention was made of t h e u s e o f t h e computer

f a c i l i t i e s e x i s t i n g a t Simon F r a s e r U n i v e r s i t y . I t is in t ended

t h a t t h e model w i l l b e implemented i n t h e fo l lowing manner.

The weather d a t a o r i g i n a t i n g from Toronto w i l l b e c a p t u r e d

by a PDP 11/40. The PDP i s a l s o c o n t r o l l i n g t h e t e l e m e t r y

l i n e s i n d i c a t i n g a c t u a l gas sendout . The PDP w i l l be l i n k e d

t o a Univac 90/30 c o n s i s t i n g of i 3 1 ~ of memory and 120 m i l l i o n

b y t e s of o n l i n e d i s c s t o r a g e . The 90/30 w i l l p o l l t h e PDP

and r e c e i v e from it both t h e t e l e m e t r y and weather d a t a .

The d i s p a t c h e r i s l i n k e d w i t h t h e 90/30 v i a a ~ n i s c o p e 200

ca thode r a y tube . Through t h e t e r m i n a l , t h e d i s p a t c h e r can

r e q u e s t t h e f o r e c a s t program, which w i l l prompt him f o r

the necessary f o r e c a s t e d weather d a t a f o r each r eg ion . When

t h e f i n a l v a r i a b l e i s r e c e i v e d , t h e s e are l i n k e d w i t h t h e

a c t u a l d a t a r e c e i v e d from t h e PDP 11/40 and a f o r e c a s t w i l l b e

genera ted . his w i l l be d i s p l a y e d back t o t h e d i s p a t c h e r

on h i s t e rmina l . The d a t a b a s e w i l l b e a u t o m a t i c a l l y

updated a s a c t u a l d a t a is r e c e i v e d from t h e PDP.

It i s e v i d e n t t h a t f u r t h e r r e s e a r c h w i l l b e neces sa ry

t o improve t h e model t o account f o r unknown v a r i a t i o n s , and

f o r d r a s t i c changes t h a t cou ld occur . S i n c e t h e computing

f a c i l i t i e s w i l l be a v a i l a b l e , t h i s w i l l probably be accomplished

by ma in t a in ing a p a r a l l e l set of v a r i a b l e s which w i l l

Page 35

SUMMARY

The primary intent of the study was to design a model

which would assist dispatching personnel in forecasting daily

natural gas sendout. The first problem was formulating an

analytical model which would simulate the natural gas

environment. Statistical measures had to be applied to

determine the significance of the model results.

The first phase consisted of removing non-weathcr effects,

such as day of the week, after the system had been segregated

into distinct weather regions. Then data weighting had to

be applied to help determine which factors produced the most

relevant forecast. These factors were finally subjected to

Multiple Regression Analysis. The final resulting model

consisting of the variables listed in Table 5 included the

use of the dummy variables which helped to account for the

unique influence from each geographical region.

Although considerable work has gone into the formulation

of the model, much remains to be proven, as the model is

actually implemented and proves itself in a real time working

environment. Only a bit of a byte has been taken out of the

entire spectrum of accurate natural gas forecasting.

GLOSSARY OF TERMS

B a s e Load -

I n t e r r u p t i b l e Cus tomers -

Nominat ion -

Sendou t -

T r a n s i t i o n Zone -

Tempera ture Latency -

The p o r t i o n of t h e sendout t h a t i s

Page 36

r e l a t i v e l y c o n s t a n t , w i t h some v a r i a t i o n s

from day t o day due t o work schedu le

and customer h a b i t s .

An i n d u s t r i a l customer whose gas supply

may be c u r t a i l e d , fo l lowing a s p e c i f i e d

number of hours of advance n o t i c e .

The maximum d a i l y volume of gas t h a t

t h e s u p p l i e r i s o b l i g a t e d t o p rov ide

t o t h e Company, and t h e b a s i s f o r

c o n t r a c t u a l minimums and " t a k e o r pay"

c l a u s e s .

A t e r m used , to r e p r e s e n t t h e amount of

g a s d e l i v e r e d from a system. I t i s t h e

dependent v a r i a b l e i n t h e equa t ion .

A t e r m used t o d e s c r i b e a s e c t i o n of

t h e e q u a t i o n where t h e c o r r e l a t i o n

becomes poor.

A p h y s i c a l a t t r i b u t e o f a b u i l d i n g

whereby it w i l l r e q u i r e from 2 4 t o 4 8

hours t o r e a d j u s t t o a r a p i d e x t e r n a l

environmental change i n temperature .

Page 37

Bib l iography

Barn, M.D. and W. J. Gunderson, "Load F o r e c a s t i n g and Dispa tch ing f o r D i s t r i b u t i o n Companies". Paper p re sen ted a t t h e 1962 American G a s A s s o c i a t i o n Conference, Houston, Texas (CEP-62-16) . Draper, N.R. and H. Smith, Applied Regress ion Ana lys i s . N e w York. John Wiley & Sons, I n c . , 1966.

Ger tz , M.L. "Development and U t i l i z a t i o n of Load Sendout Fo recas t ing" . Paper p re sen ted a t t h e 1968 American Gas Assoc i a t i on Dispa tch ing Workshop.

Haenel, R .D . , "An Analys i s and Model f o r F o r e c a s t i n g Dai ly N a t u r a l Gas Load", Masters D i s , s e r t a t i o n , Northrop I n s t i t u t e of Technology, Inglewood, C a l i f o r n i a , 1973.

Hingorani , G. and L. F. Marcynski, "Sendout F o r e c a s t i n g Technique Development and U t i l i z a t i o n " . Paper p re sen ted a t t h e 1968 American Gas A s s o c i a t i o n Conference, Cleveland, Ohio (68-T-41).

Luecke, M.C., "Gu ide l ines on Developing a Succes s fu l Model". Management ~ d v i s e r , January-February, 1973.

Naylor, T.M. and J. L. B a l i n t f y . Computer S imula t ion Technique. John Wiley & Sons, I n c . , 1966.

R i v e t t , P . , P r i n c i p l e s of Model Bui ld ing : The Cons t ruc t ion of Models f o r Decis ion Analys i s . The Mendy's P r e s s , Bath.1972

Ruskin, V.W. "S imula t ion o f Companies by Models". Paper p re sen ted a t t h e 1970 Canadian Gas A s s o c i a t i o n Conference, Vancouver, B.C.

S t a t i s t i c s Canada, "General Purpose M u l t i p l e Regress ion Program." Program documentation made a v a i l a b l e through Simon F r a s e r Un ive r s i t y .

Van Note, F.G. " S t a t i s t i c a l and Computer Ana lys i s of t h e E f f e c t of Weather on Gas Sendout". A.G.A. Opera t ing S e c t i o n Procedures , 1964.

Wilde, D . J . Optimum Seeking Methods, N e w J e r s e y : P r e n t i c e - H a l l , I n c . , 1964.

No.

1

Page 38

TABLE 5

Variables for Regression Model

Variable

Exogenous

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

Region 7

Region 8

Region 9

Region 10

Region 11

Yesterday's effective temperature

Yesterday's average temperature

Yesterday's sendout

Wind x corrected average temperature

Day of the week factor

Change in effective temperature

High Temperature in Celsius

Low temperature in Celsius

Average temperature in Celsius

Wet bulb average

Daylight hours

Wind speed in knots

Actual gas load in MMCF

* /

/~

r5

4~

3C

C

JiJY

(+

*++

.+**

++

).*i

3IC

K

T3

ZW

S'

rTX

iZ

E=

CC

CI

JO

S

11

8

//

A

EX

EC

Q

ZG

7C

7r

?E

GI;

U=

24

3K

//

SY

SI:

J

D3

+

_

* t

iiT

U9

6L

G

LS

- F

l?

fC

iS

T !

'.G

W

~T

WY

UT

.3U

Y'4

y-

Vh

21

4S

LC

5

- ---

-

62

72

52

5 i

i

1.

2.-

7

. C

c

0

' L

C-

1

L C

0

00

3

0

64

5

L3

CS

25

XC

tl

2:G

:O:u

IL

ZR

EG

IO',

2

C3

RE

G1

34

3

5u

R;G

I2'.

4

CL

RE

GIO

N

E0

6R

CG

IDE

: O

C7

R

ZG

IZV

7

f c

9E

GX

C'd

E

i3

Rf

GI

JV

9

10

RE

GO

N

1(.

11

9S

GO

N

11

12

EF

TV

7

-1

13

AV

G 1

-1

1

4S

ND

CU

T-1

15

*'

J>K

T'd

P

16

C/n

'K

FT

P:

7C

Ht.

S

57

L

OE

FT

V

TY

Pl3

H I

GH

TM

PZi?

L..!W

T

f "P

Zi

hV

RG

T

VP

22

WE

T

5U

L3

23

G

AL

IT

HQ

24

d 1

Y3

S

P2

2T

- l~12FloO~3Xv2F4~l~r~~3vF~~~1v4XoF4r3r3F4~

lsF

30

1*

F2

.C

~"

5.

3)

1

1C

Jw

30

C?

~f

C

3C

( 3

1

46

3 2

99

0

1C

C5

9

-

4C

i-

56

-

30

- 3

3

74

13

4

40

lC

Ol

lU

13

~3

~c

3~

cC

d~

d-

3

2-

1

1

76

; 8

32

1

06

7

26-

56

-

11

- 7

2-

44

- 9

c

7u

3

82

1

lCO

2.-

--

10

i10

3C

3C

G;C

CC

O-

27

-

6

t9

43

1

33

0

1C

35

la

- 4

7

5-1

3

5-

66

- C

6

74

05

1C

57

2

10

03

lC

+d

~i0

iOC

1C

>C

b-

29

-

6

76

4 1

33

G

95

0

13

- 4

7

5-1

55

- €

0- 66

74

05

7

C2

1

ClC

1

0C

21

;JL

CC

CC

CC

C-

32

-

4C

I

E4

9

1c1

,E

21

- 5

3

9-1

44

- 5

4-1

16

7

4

0

19

35

. 1

00

4

. '

~C

CJJ

O;O

CC

CU

IC~

';-

3r

-

GL

1

5~

2

2

:-

53

5

-12

d-

91

-11

6

74

0

17

9

13

11

I

OC

;C

IQ

CC

~~

G~

C~

~-

3

2-

22

1

t4

1

23

9

16

27

2

1-

53

- 2

7-

13

~-

~a

-1

05

74

1

1

~5

4

10

0s

1

9C

~2

71

LC

~C

~0

23

2

1-

41

0

2P

3

91

3

36

-

F7

- 2

7-1

3E

- tP

-1C

S

74

1

43

7

10

06

1

03

JC

;G1

3

3C

L6

3C

1

7-

1

17

1

76

3

93

3-

1

C-

7

27

- 1

1

9-

44

E

O

4

1 l

L6

I

UC

7

lOb

JL

'~O

wlr

(;l

C*

lti

;> 3

3

12

64

9

L5

_

9>

0

5

15

2

7

5

1:

8C

5

10

9G

1

0C

6_

- 1

0C

3C

'lO

~C

lOG

b2

3-

19

- 1

7

25

4

76

3

97

5-

1

0-

9

27

- 1

1

8-

44

f

C1

4

2

32

1

9G

9

I~

C~

~J

JC

?L

CC

OC

~-

4;-

3C

4

4C

3

13

2

lC

59

1

3-

53

-

44

-

77

-

el

-1

16

7

41

2

49

1

ll

Cl

l~

l>C

29

2C

Ot

CO

??

- 5

6-

94

E

L1

1

26

4

11

39

1

7-

73

-

93

-2

01

-1

16

-1

33

7

4 4

13

u0

l

lC

2

10

- lC

3L

aC

3C

t-2

3;-

L

7-

66

1~

37

2 1 : 73

lC

.35

- 2

0-

i7

-

55

-1

33

5

-12

; 7

t

€1

32

26

1

10

3

IU

~S

C~

JC

~S

~~

CJ

C-

4

7-

50

7

02

11

72

0

24

-

2C

- 2

7-

b

5-

13

3

5-

12

2

74

6

10

93

1

11

0

10

0>

13

0C

~C

3C

03

>-

53

-

94

1

95

: I

td

l

22

-

75

-1

11

-lo

C-

13

9-

15

5

74

0

34

63

1

1C

4

~O

C~

~G

LI

>~

CC

l,>

~r-

53

-

94

1

73

1

Cs

; 2

2-

75

-11

1-1

66

-13

9-1

5:

74

0

21

7

11

11

IC

O~

L:O

CC

GO

C~

;~-

53

- a

&

5-

93

3

- ;C

35

1

5-

6!?-

66

-!

*A

-ll

l-ll

r

74

?

2094

ll

C5

V,

lC~

Cd

b3

13

C~

S~

03

.J

-

57

-

3E

4

37

9

33

9

54

1

3-

7

0-

66

-14

4-1

11

-11

1

7&

,

53

?

11

96

fD

-'----

10

fJJ

CL

Cli

3C

v3

5C

- 7

t

11

06

1

25

3

94

9

16

- 2

3

5-1

11

- E

O-1

11

3

L

C 1

13

9

ll

C7

IG

L;C

;O-I

CS

G~

CJ

1

5

11

1

33

4

64

4

* 3

96

5

10

5

11-

SP

- 1

1-

27

E

G

4

12

56

1

10

8

10

0~

0~

5>

31

~0

~3

3-

9

e L

s;

1 2

59

9-9

17

- 76

3-1

11

- rC

l-ll

k

5c

5

3!?3

l

lC

9

k'

3

'-cl

~~

GJ

O~

OL

SC

CC

~~

J-

5

3-

61

1

31

3

33

2

1C

12

- 3

- SC

- 7

2-

3

&-

F

4

74

14

8

23

2C

l

(D

TI

1L

14

03

G3

CC

C0

39

C-

73

-1

16

1

34

C

13

52

1

C7

4-

13

- 6@-

15

-1 6

1-

C6

- SC

? 7

4 7

11

24

1

2C

2

1C

C 1

0 JC

J;O

CS

20

30

-

27

5

1 ?

22

6

45

46

'3

1

~4

7

9-

36

-

94

-

3a

- 7

7

74

17

12

73

8

1x

3

10

C3

Gt

GC

0~

;~

33

C-

27

5

.,33

r0

~6

--_

5

59

9

- 3

6

u

M

-

- 9

4-

3

e-

77

7

41

7

99

9

i21

0

C

1D

C J

~O

L~

~~

,O

CC

~~

~-

7

5-

13

c

36

53

1

33

5

96

9-

2

2-

53

5

-15

5-

55-

77

7

4

6

27

17

. 1

2C

4

10

Cd

G,

S~

0L

i 1

02

3-

7

5-

13

&

21

7

15

30

27

-

22

- E

3

5-1

=

4-

55

- 7

7

74

6

11

9

12

11

PJ

H

rr

u

13

33

31

tv

OiC

CC

30

-

55

-1

11

2

CS

4

33

15

9

54

-

15

- 5

3-

27

-1 1

6-

5

5-

83

7

41

3 2

07

2

12

05

1 O

C3

C.2

1 ;

OC

CC

39

J-

70

- 1

1 1

5

34

3

31

3

470-

15

- 5

- 2

7-1

1

6-

15

-

e3

7

41

3

49

3 1

20

6

X

p

~G

C1

33

C?

lCG

i'2

D3

~-

2

3-

5

L

11

39

1

53

C

99

2

7- 3C

3-1

GC

- 5

5-

11

1

EC

6

11

41

1

20

7

lC

CO

23

23

13

b3

03

~

5-

11

1

2@

? 2

02

4

~5

7-

7

12

3

3-

33

1

6-

33

e

cll

12

74

1

20

e

P'

3' 1

00

~3

;G

~3

1C

C3

3?

-

25

-

5C

3

%

11

'33

C

32

7

- 3

3

5-1

20

- 5

5-1

1:

8C

6

3A

1

12

09

cn

_ 1 A

03

03

CC

39

3;'

33

S-

52

- 3g

c2

5

35

13

lC

E7

-_

1

6-

35

-

11

-_

?2

5

--6

5-7

41

".

09

9

13

C1

_

rt

10

1>

33

Cir

JL

ZC

CJ

d2

- b

C-

6t

11

34

1

32

7

92

5-

le

- 4

2

5-

CI-

2

7-

44

7

4

7

12

18

1

x2

-+

'----

10

Jl t

~i

dC

LC

G3

t3

- 3

b-

3

c 1

27

3c

2 9

46

1

0C

O-

2-

34

-

51

- 2

2-

66

7

41

31

1C

57

1

3C

3

3

~G

CJ

OL

O~

CC

~O

;C

C-

36

- 9

99

2

3i

5

75

1-

2

- 3

6

- 6

1-

32

-

66

7

t1

3 l

li

9 !

3!G

9

:~

CJ

:J

CJ

~~

:~

%)

?-

33

- 3

5

27

17

1

10

5

FE

E-

15

- 3

8

27

-13

3-

33

-

61

7

4 5

19

14

1

3C

b

iCC

~u

db

C0

0,l

CC

C-

5

3-

55

1

19

1

1 5

5

65

1-

1

5-

39

2

7-1

33

- 3

3-

6

1

74

5

99

1

31

1

* G

AS

S

EN

GL

UT

W

ITH

C

UM

MY

V

AR

IAB

LE

S

j-

2 -

---

.

..

_. -

_ ___

- -

--

99

- 5

9 -

2.

6 1

2-.

. -:

-- S

1.O

3

01.0

4

21

.0

5 C

; .O

6

3 1

.'3

7

Cl-

'3

C

2 1 *P

Dlr

O

.-

@,

i1.3

11

3

1.0

1

2

Cl.

0

- -

- - -

- - .

C -

- --

- - - --

- .- . -

-

/

c( 7:

APPENDIX B

Check For I Val id E n t r i e s

Page 40

A P P S N D I X B (Cont'd)

Calculate E f f e c t i v e

Var iables By 171 1 I n s e r t Next

NO i E f f e c t i v e > Temperature

Formula L ----

Var iab les /------------- 1 New Var iab les

pou t i n e By Region

Page 41

APPENDIX B (Cont'd)

Page 4 2

I ----v-- E d i t Paranw tcr Cards i

A P P E N D I X B (Cont'd)

Page 4 3

\

$.-.

F V a l u c Vnr inh1 .e i n Equation

' V a l u e

-. -. - i

V a r i a n c e M i n u s Above L*<i

V a r i a b l e

*

APPENDIX B (Cont'd)

Page 4 4

- - - . . . - -- -- - - Reformat Grouped Var i ab l e s an

1 d

F Leve l

- I -- -

I

4 -- Punch i

\ , v a r i a b l e tL

.i,Coeff i c ien ' t s

' ~ a n u a l Inpu t I L- ".---I-

I \ (/ F--.---------..-.. ' I

l o r e c a s t Data I

f C a l c u l a t e 1 - . -- --. . f ~ e n d o u t From I ( v a r i a b l e 4 I - - - j) ICoeff ic ient-s -,

p f i c i e n t s ' 1 /

SYSTEM MAP C . ....a

WALL

IlLinSON - NOPE CIICTKYHD 1' FT. ST. JOllN lL1.1p.

MACKLNLIE LAKE ). MACKENllC TCl lP .

PRINCE GEOhOE > PRINCE GEOllGE TEMP.

QUCSXEL I. QUCCNZL I L M P .

WlLLlAUS LAKC f. WILLIAMS LAK): TEMP.

I00 MILE IIllilOC LAC L A HACIIL ) WILLIAMS LAKE TEMP.

MERRITT 3 LYTTON TEIIP.

EXHIBIT 2 ,

. - . . " . .. ..', " .,.....- J

AREA TEMPERATURES

BASE0 ON 30 YEAR AVERAGE Clln~alology fJrvslon. hfoloorlogrc.ll Branch

Don~~nron Oopl. ol Tronsporl

COLDER Normal Avorngo System Degree Days 7565

WARMER 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

YEAR ENDED JUNE 30 . . i 9.. . I - - . .-ur. . .. .. ., .-- . ..-.... .--. d

E X H I B I T 4 .

36

34

COMMERCIAL 32 30

28

28

P 0 24 H 22

U 0

20

cn 18 Z

3 16

14 5i 12

10

8 6

4

2

1065 1 x 0 lMi7 1 x 8 1069 1970 1971 1072 1073 1874

YEAR ENDED JUNE 30 L:. .. . . - . . ." .- . ... A . D . -* .. ..l

Page 46

NORMAL. Bawd on 30 yvnr uverngo. DEGnEE DAY. hlca:.wo 01 lllc oxlonl wh~cli Ihu mcan dally lempcrjturu rolls ~ O I O W (is ' Fol~runhcll.

JULY AUG. SEPT. OCT. NOV. OEC. JAN. FEB. MAR. APRIL MAY JUNE

MONTHS OF YEAR ENDED JUNE 31 1973

~ a ' z Z ~ - ~ X ~ w 4 1

EXHIBIT 5

E X H I B I T 6 Page 47

R E G I O N 1 - 3 MNTHS DFMAND P R F O I C T I O N M n D F L

D A Y O F WFEk FACTOR W I T H MON = 100.0 t TllF = 1011-4

WFD = 1 0 2 . 0 THR = 100.6 F R I = 106.9 S A T = 1 0 1 . 2 SON = 1 0 6 . 7

R E G I n N 2 - 3 MNTHS D F M A N n P K F n I C T I O N M n D F L

D A Y O F WEEK FACTf lR W l T H Mf lN = 100.0 TlJE = 1 0 1 . 7 w E n = 1 0 4 . 5 THR = 106.7 F R I = 1 1 3 . 9 SAT = 107.4 Sl lN = 9 7 - 5

R E G I O N 3 3 MNTHS DEMAND P R E D I C T I O N MODEL . -

D A Y OF WEEK F A C T n R b I T H MON = 100.0 TIJE = 1 0 4 . 7 WFD = 1 0 8 . 1 THR = 108 .9 . F R I = 1 0 9 . 5 <AT = 1 0 8 - 5 SlJN = 1 0 4 . 7

R E G I O N 4-3 MNTHS DEMAND P R E D I C T I O N M n n F L

I 11 11

4 1ll1l

D A Y O F WEEK FACTOR W I T H MON = 100.0 1 1 1

,_-_ _I ___-_-___ -__- - TUE = 101.6 - - -. WED = 101.8 THR = 1 0 0 . 5 F R I = I n h - 1 S A T = 96.9

R E G I O N 5-3 MNTHS DEMAND P R E D I C T I O N MODFL

D A Y O F MEEK FACTOR W I T H MON = 100.0 -- - - - . -- - - -- - . - -- TOE = 1 0 2 . 6 WED = 1 0 7 . 1

L THR = 1 0 7 . 7 rn F R I = 1 0 3 . 5

S A T = 9 8 . 4 - - - _ - - - - - * . .. A C l l h l - 0 1 3

GhS

5E

N30U

T

EF

FE

CT

IVE

TE

MP

T

YP

E

1

..

..

..

..

R

EG

?E

SS

AY

D IS

-26

G

AS

LJA

D

F

TE

ST

L

EV

EL

1.0

---

---.

.-. -

---.

- --

-

R

SQ

UA

RE

0

.97

37

1

R B

AR

S

Q 0

.97

05

2

ER

RJR

S

TD

eD

EV

. 0

.€2

2'3

3

JE

G3E

SS

15-i

di.2-3

i

AN

D

66.

3.F-

1

CJ

EF

FIC

lEN

T

STD

a C

EV

. N

ULL

T

ST

3*C

3C

F

RS

OsC

ON

T

VA

RIP

SL

E

Y G

RP

PA

RT

OF

P

AR

T-C

UR

Q

SQ

IN

C

HU

LT

ICO

L

TR

INC

- -

0.3

2-

3.

~5

~

- o 1

1

.79

C

I-II

C,

a.

o~

ci

iL

m!

~~

i~

~

i~

:

I

1.9

9

r.le

ac

-o

.co

oo

c

.6

~7

0

-le

.1.a

6

- n -3

.15

1

61 7

0

02

85

3i2

E-5

1

-5.5

6

-0.0

99

4

6.0

71

3

I H

1C

.t-

TU

P 2C

1 32.C

9

-0.5

72

G

-0.C

00

7

0.9

28

5

-61

.63

.

-

-50

7>

92

77

E-0

1

3.2

41

88

65

-0 1

-2

.93

-0

.C838

0.0

73

0

1 LO

W

TZ

'dP

2

1

1 1.6

0

-C.3

39

5

-Co

CO

>2

0

.97

16

-e

6*7

9

H

-3e

6Z

53

22

E-0

1

0.3

C9

63

2E

-01

-1

.96

-3

.66

33

L

a0

57

8 I

kE

T

aU

LB

2

3

I 3

4e

3

-0.2

34

1

-0e

C0

01

0

.97

95

-7

3.7

4

m

."..

......-..

.

0e

78

JC

56

E-0

1

2.58 . 3

.11

14

C

olC

BZ

1

LA

LIT

H

R 24- 1

-..6

,@3--

.Gq3022

:0*C

00

1

- 0

19

88

5

-13

9.1

7

H

-..

3.2

32

15

5

- -F

3 --

T

RA

CE

X

'X

1 N

VE

RS

E

C S

T3

0 tY

GT

3.

)

48

8.3

72

4

n

V

AFiS

a

NO

T

IN

FF

TV

7

-1-1

3

I

01C

6

-0.0

31

5

0.0

00

0

0.9

82

7

23

7.0

7

cV

G

--I

-1

4

i 0

.62

-0

.09

72

C

at0

00

C

.9659

17

2.3

6

GA

S

SE

N33U

T

EF

FE

CT

IVE

TE

MP

T

YP

E

2

RE

67

ES

SA

Y3

IS

-2

6

GA

S

L3

4D

F

TE

ST

L

EV

SL

1.

0 -

.

. -

- - -.

-

R S

OU

AR

E

0.9

72

94

R

a&

@ s

o

0.9

75

1

2

E~

R;

R S

TD

.CE

V.

0.6

20

32

3

-S

L~

NF

AL

L&

-(

7 ANn

67-

n-

r-

I

CJ

EF

FIC

IEN

T

STO

ICE

V.

NU

LL

T

S

TO

rCO

EF

R

S3.C

ilEIT

V

AR

lLS

LE

+

GRP

FA

RT

eF

P

bR

Tm

CG

R

QS

O

INC

M

UL

TlC

OL

TR

IN

C

-

--

-

6-2

20

: I

SN

'CU

T-1

1

5

1 32.6

8

0.5

72

6

-0.C

C07

0.9

eE

5

-89

.63

~

~~

23

1

I

~N

CX

W?

I

8-5

6

C.3

36

6

-Q.C

00

2

0.7

56

5

-1E

.29

43

I

/K

F

1 9

9.0

0

0.7

72

3

-0.0

02

2

0.9

88

1

-143m

.3

7 2

i_tF

LG

T!1

E

7C

_

. , 7

-0*G

Q-2

9

0.9

19

2

- 3%

A

0.0

82

9

1 L

OW

TE

MP

2

1

1 1

1-5

5

-0.3

93

5

-0e

C0

03

0

.96

94

-6

2.2

3

~0

06

4a

I

WE

T ~

UL

B 23

I

4.

E7

-6

.26

C3

-G

.CG

CI

0.9

78

9

-7C

. 1

9

0.1

14

7

1 L

AL

IT

H

R

24

1

?o

r5

0

.31

64

-0

.00

02

0

.98

83

-1

41

.54

.

- --

. --

--

- -

- -

-- M

- -

T

DT

AL

C

OE

F.

V4

RtA

YC

E

I

5.4

92

9

VkR

Ze

FaPT

IF

: 5

EF

~V

T

-1-1

3

I

0.1

3

0.0

44

6

0*0

03

0

0.9

66

1

33

4.0

9

H

LV

G 7

-1

-14

1

0.1

0

-C*0

39

1

G.0

000

0.9

62

0

249.5

0

CH

t G

C

T -1

8

I 0.4

0

0.0

77

2

0e

C0

00

0

.69

40

16C

.22

u

H

--

- rF

TV

T

HP

-19

1

- .-.

G.

15

..

-0.0

46

8--

_

C.C

O01

) 0

*9

94

0

15

5a

39

-. .-

- ,+

A

VR

G T

MP

-22

I

0-3

2

-0.0

69

8

0*0

03

0

00

97

55

5S

.72

WIN

D

SP

D-2

5

I

Ge

t0

-0.O

C14

0.6

00

0

0.9

70

3

75.

32

C

3h

ST

PN

T-9

9

I

0.2

9

-0.0

66

t 0

.00

00

0

.99

93

1

28

7.0

7

4

15

-0

s 3

40

-

3/w

i<

FT

R

17

a

It -3

.36

3

16

0

.07

5

V

L3W

T

EU

?

21

--

-

15

0.3

26

16

-0

.36

5

- -

17

--0

.06

1

20

0

.G3

6

.-....---

---

------

- ----

VE

T BULB 23

15

0.0

16

16

0

,16

0

17

-0

.08

8

20

-0

.61

6

21

-C

ab

67

- .

3

AL

1T

MR

24

2

1

-0

.~

56

2

7

0.1

78

C3

EF

FlC

IEN

T

ST

2 .

LE

V*

NU

LL

T

5

TC

.C3

EF

R

SO

.CQ

'.T

VA

RIL

3L

E

Y GRP

PA

RT

OF

P

AR

T.C

GR

R

SQ

IN

C

MU

LT

ICO

L

Ti?

IN

C

- .-

-.-

-

30 3

35

56

7%

-Cl

0.7

35

19

1E

-02

4

.56

0

00

96

7

-0.O

Q9

C:I

P

VG

T-

1

2 1

20

0e

3

0.1

78

6

-0.0

00

4

0.9

57

6

-34

.64

0

.93

29

03

0

-52

53

33

:-2

2

15

7.7

3

Go3336

L1

9F

31

I

SN

LtU

T-1

3

1

****

***

0.9

91

2

-C.6

72

9

0.3

14

2

-2.3

4

3.5

26

55

3:-

01

t.

17

77

1

lz-k

l 3.

54

Gs'2

27

4

C.C

C17

I C

Ht

G

ET

6

1 1

2.5

2

0.1

39

4

-C*C

OO

2

0.6

82

2

-32

.34

*

-?.=

4611-

- - CI

6-4

- - -,

2 -

2

-:.~

fi7

0

c..c

29

=

1 t-

I-h

kL

fdP

?

I 1

2.4

9

- F.1

79

2

- 0 .GO Q

ZC

.9

47

4 - 7

L.6

2

-20

27

0C

1 3

E-0

1

0.7

13

45

dE

-G2

-3

.39

-5.1

06

5

C.0

58

5

i L3W

TE

MP

9

1

1

5.1

0

-0.1

52

e

-0.0

00

3

0.9

74

6

-10

3.3

0

00

24

34

94

E-0

1

0.1

41

SC

7E

-01

1.7

2

C.

07

02

-0

.03

5

F I

kV

PC

1 M

P

1 C

I

2.9

6

0.0

69

3

-0.0

00

1

0.9

88

5

-12

4.1

3

t/

WK

F

TP

-5

1

0

.62

0

.03

15

0

.00

00

0.

~F

TV

T

UP

-7

I

6-2

0

6.0

17

9

0.0

00

0

0.

2

-0.2

55

3

-0.3

65

6

3

.13

9

LJW TEYP

9

- z

-0.2

51

3

.c.1

42

---

6--

0.0

66

--

-a.-

O.L.O?

- ----

--.--

------

A -

AV

?G

TM

P

10

2

-0

.23

3

3

0.0

35

6

@

.a2

3

9

-0.7

15

9

-0.7

96

.

- -

GA

S ~

FN

DO

UT

w

IT~

TO

UM

MY

V

AR

IAB

LES

-

--

--

-- -

-

RE

GR

ES

SA

ND

I

S -2

6

GA

S

LO

AD

F

TE

ST

L

EV

EL

0.

0 D

RO

P

-9

RE

GIO

N 8

-. .

- - --

R

SQ

UA

RE

0

.98

42

4

R

BA

R

SQ

0

.98

37

0

ER

RO

R

ST

D-D

EV

. 0

.50

40

52

RE

GR

ES

SIO

N F

----

lCG

32:O

l-.!_

2

lL

tt

NO

616.-F+ )

_ --

.

._

_ ...

- .

-- ----

....--

CO

EF

F I

C IE

NT

S

TD

eD

EV

o

NU

LL

T

S

TD

.CO

EF

R

SO

.CO

NT

V

AR

IAB

LE

# GRP

PA

RT

-F

PA

RT

wC

OR

US0

INC

M

UL

TIC

OL

T

R

INC

TO

TA

L'

CO

EF

* V

AR

IAN

CE

n

30

62

80

V

AR

S.

NO

T

IN

RE

GIO

N 2

-3

6

0.0

00

0

0.4

50

5

6.

5_5

0.6-

bd

0 0.5

5-7

3

ll.8

5

RE

GC

N

10

-11

J

.86

0

10

37

4

0*.

00

00

0.4

283

5.

05

RE

GIO

N 3

4

--

- 3

RE

GIO

N 4

5

2

0.1

15

4

0

.44

2

RE

GIO

N 5

6

- ..

-.

- ---

-.

- - - - -. -.

- 2

0.2

17

4

0.2

79

5

0

.32

6

-

-.

RE

GIO

N 6

7

2

0.3

30

4

-0

.21

7

5

01

11

1

6

,00

20

0

RE

GIO

N 7

t3 .

'3

2

0.2

12

4

-0

.04

8

3

0

1 J

BC

G-1

5--.T

tr (

Pl

RE

GIO

N 9

10

5

0

.05

3

6

0.0

99

7

0.2

41

8

0.3

34

.

9

2

00

24

4

4 -0

.23

4

(D

- -. .

RE

GO

N 11

12

0.3

17

0

.22

4--

0.2

58 -

- -

- --

- -

---

- -

--

2

0.3

11

4

-0.1

77

5

0.1

66

6

0.2

08

Ul

EF

TV

T

-1

13

8

-0.0

55

1

0 -

0.0

56

12

-0.0

01

h]

2

0.0

70

4

0

.04

4

5

3.0

20

6

0.0

38

7

-0-0

04

A

VG

T

-1

14

2

-4.0

79

4

-GI-

69-

5 -01088

6 - 6

;0%

6---

-g7-

=03-

1 3

8

0.

01

~-

0*

10

3

12

0.0

14

A

3 -0

.427

SN

DO

UT-1

1

5

2

0.2

75

4

-0.9

51

5

-0

.381

6

-0-1

99

7

0

.30

5

8

0.1

17

L

O

0-3

04

1

2

0.2

76

1

3-0

.03

2

14

0

01

56

W

ND

XTM

P

16

- -

-- - -

-.

-

-

2

-0.0

92

4

0.0

21

5

0.0

23

6

0.0

26

7-0

e

05

0

8

-0.0

98

1

0 -

0.0

87

1

2

0~

01

5--i3

-~

0;0

28

1

4 -0

.001

15

-0

-00

8

D/W

K

FT

R

17

2

-0

.197

4

-0 0

05

4

5

-0.0

95

6

-0.1

13

7

0.0

33

8

-0.0

65

1

0 -0

.00

4

12

-0

.16

5

13

-0.0

07

14

-0

-01

4 .

15

-0

.038

16

0

.08

7

CH

NG

1

18

2

0.0

67

4

-0

.05

9

5

0.0

05

6-0

.00

5

7

0.0

22

8

0.0

28

10

0

.02

8

12

0.0

55

13

-0.1

20

14

-0

-55

1

15

0-!070

16

-0

.Od

l 17 -0

.07

8

--

--

- - - -- - -

--

EF

TV

TM

P

19

2

0.1

83

4

0.0

43

5

0

.081

6

0.0

74

7

0.1

30

8

-0.0

67

1

0 -0

-06

8

12

0

.06

8

13

-0

.51

8

14

0.0

31

15

-0

.021

16

-0

*0

01

1

7

0.0

32

1

8 -0

.00

2

HIG

H

TMP

20

2

-0

.038

4

0.1

06

5

-0.0

24

' .

6

0.0

54

7

0.0

61

8

-0.1

02

1

0 -0

.12

3

12

-0

.10

1

13

-0

.01

9

14

-0

-18

3

15

-0

.113

16

0

.16

5

17

0

.03

9.

18

0.0

17

19

0

.05

9

LOW

TEM

P

21

7

0.0

71--

2-Q

oQ

4-7

4

0.

.075

5

0.0

75-

6

0..106

-- 8

-0 ~

11

6~

1~

0~

0~

13

.0

1Z

~O

0 3

9

13

-0

.42

3

34 -a-

15

-0

.059

16

0

.18

5

17

-0

.01

8

18

-0

.03

1

19

70

.04

6

.20

---0

.44

2

AVR

G

TMP

22

2

-0

.063

4

-0.0

76

5

-0

.01

8

6

0.0

08

7

-0.0

06

8

-0

.05

8

10

-0

.03

3

12

0.0

28

13

0.1

16

14

-0

.124

15

0.0

71

16

0.1

68

17

0

.023

1

8

0.2

77

19

-0

.37

8

20

-0

.43

5

21

-0

.35

6

I -

- W

ET

B

ULB

2

3

2

0.1

32

4

-0.0

44

5

-0

.02

8

6

-0.1

17

7

-0.0

72

8

0

12

10

1

0

0.2

05

1

2

0.0

06

1

3

0.0

51

1

4 -0

.089

15

0.0

50

16

-0

.20

0

17

-0

.03

1

18

0.1

27

19

0.1

74

20

-0

.27

6

21

-0

.35

7

22

-0

.46

4

DA

LIT

H

R

24

-- - -

---- 2

0

y2

46

4

0

.16

3

5

0.~

36

6

0.1

40

7

oil~

~--

--

8-0

.14

4

10

-0

.1

65

12

0.0

60

13

0.2

01

14

-0.2

78

1

5 -0

.123

16

-0

.04

1

17

-0

.03

8

18

0.0

80

19

0.4

17

20

0.0

24

21

-0.0

50

2

2 -0

.19

7

23

0.2

19

WIN

D

SP

D

25

2

0.0

19

4

-00

04

6

5

-00

00

4

6

-0.0

60

7

-00

06

3

*8

0

.11

3

10

0.1

06

12

0.0

13

13

0.0

38

14

0

00

18

-

-

15

0.0

21

16

-0

.94

8

17

-0

.06

0

18

0.1

03

19

-0

.01

6

20

-0

,16

9

21

-0.2

35

22

-0

.20

3

23

0.2

88

24

-0

.002

CO

NS

TA

NT

99

2

-0

.097

4

-0.0

51

5

-0

0

06

8

6

-0.0

68

7

-0.1

53

8

0.0

90

10

0.0

61

12

-0

.00

1

13

-0

.142

14

0

-17

6

15

0.0

66

1

6

0.0

75

1

7 -015

88

18

-0

.02

1

19

-0

.30

4

20

-0

.06

3

21

Q

.129

22

O

dQ

B

23

0-1

14

3

4

0-7

00

-

- 2

5

-0

080

GR

OU

P

A

1 V

AR

S.

RSO

IN

C

0.0

002

TE

ST

F

1

-0

0

F=

7.10

. -

.

- C

OEF

AD

J 0

02

17

56

7E

-01

2

-0.2

1

75

67

. -

GR

OU

P

C

1 V

AR

S.

RSO

IN

C 0

.00

12

T

ES

T F

1-0

0 F=

50.7

7

CO

EF

AD

J.

-0.1

71601

GR

OU

P

D

1 V

AR

S.

RSO

IN

C 0

.00

02

TE

ST F

1-0

0

f=

9.1

7

CO

EF

AD

J . -

0-

23

59

53

E-0

1

5

0.2

35

353

GR

OU

P

E

1

VA

RS

. R

SO

1N

C

0.0

000

TE

ST

F

1.0

0

FJ

1

-6

0

.

CO

EF

AD

J I

-00

92

69

80

E-0

2

6

0-9

26

98

0E

-01

I;8

av

P F

1

V

AB

S

T

F

1.0

0

Ft

5

80

.

CO

EF

AD

J.

01

18

20

14

E-

01

7

-0

.18

20

14

- -

- - --

- - -

-

-.

- -- -

-

--

-

GR

OU

P

G

1 V

AR

S*

RS

Q

INC

0

00

00

1

TE

ST

F

1

.00

F

=

20

01

C

OE

F

AD

J 0-

1

04

22

3E

-01

n

8

-0.1

04

22

4

- x

GR

OU

P

K

1 V

AR

Ss

RSQ

IN

C

0.0

00

1

TE

ST

F

1-0

0 F='

4-4

6

CO

EF

AD

J.

0.1

59

30

1E

-01

..........

12

-0

.15

F3

01

-

.- . .

- --. -

CR

oU

PS

tQ

AM

CA

.0

00

1

ES

T F

1

.00

F

=

59.8

.0.

CO

EF

AD

J.

00

18

20

14

E-0

1

7 -0

.18

20

14

AD

J .C

ON

ST

-0.

53

66

05

-- ER

RO

R

ME

AN

S

KE

WN

ES

S

- --

0.7

16

0E

-05

-0

.50

1

GR

OU

P I

1 V

AA

S*

RSQ

IN

C 0

.00

02

T

ES

T

F

1-0

0

F= .

6-7

3

. .

CO

EF

AD

J 0

.19

81

44

E-0

1

10

-0

. 1

98

14

4

r i r I i 1 i I- I I

EXHIBIT 10 (~ont'd) I

U 1 Z w "I-

' .. IL.

q u o 0 I

nu 3 N 0 %

EXHIBIT 10 (Cont'

,

a

E '

.* . :: a-

nt- :5 0 c I I

(r v 22 x . . 0 0 I l

96 .tr

* * i

I......

. * '* * ,

t

1

I . : 000000< nlOO(\r?Ol l I0 01 CF m l.1 0 . 1 N U ) O nt .us C .Nt- * - a ,. . .a- .. 00 0 ~ ~ L ( U N ~ N . c ' ; - . ~ o . c N .

00 loo

-.. -

_ ._

_+..̂

_-

_- .

L I - -. -

- -.A- 11--

12

3

2.0

'20

1

re

70

9

0.2

01

13

0.

4

1

1.0

:

* .

12

3

C.4

4S

00

0

.29

31

4

9 .

?0

58

4

0.4

2

1.0

:

*.

_1

Q_

1d

91

0

1,

19

96

-_

-0

. 5%

05E

--Q

l__--

-0

. 1

2

I.%

: --

.- _

-

---

. *

13

1

1.7

74

0

1.0

77

8

0.1

F6

2E

0.

4

0

1.0

:

* 1

32

0

.34

1

00

0

.33

79

5

0.3

04

65

E-0

2

0 -

01

1

.0 :

*. 1

33

0

.43

99

0

0.5

66

22

- C

. 4

72

1 S

F-0

1

-0.1

0

1

.0 :

13

4

1.2

13

0

0 .

7C

30

3

0.4

24

92

0

-0

7

1.0

: .

- -*

.-

- - - .

- 1

25

ll

.CS

7

. 1

2.7

09

-1

.55

2

? -3

.37

1

.O

:X

. *

13

6

1.1

13

0

0.8

51

25

0

.26

77

5

0.

55

1

.0 :

* 1

39

In

s1

40

2

a6

20

4

-0

e7

06

45

-1

.44

1

.0 :

. *

j?e

-

O~

FS

CO

CE

-0

1

-0..

22

93

9

--0. 32939 - - - -

0.6

7 -

---_

1

.0 :--

. - -

- *

.

13

9

1 e

76

70

1

.@3

0S

-

0.1

55

4

-0.5

5

1.0

:

* 1

40

C

.41

60

0

0.2

45

53

0

.17

04

2

0.3

5

1.0

:

. *

14

1

10

11

10

0

.83

30

1

0

.27

7F

e

0.5

7

1.0

:

. * 1

42

l.

07

to

- 1

.04

65

0

.25

52

96

-01

0

.0

5

1.0

:

- _-

_ _

__ _

_ _ _

_

- _ _ _-

---

- --

.

- *

14

3

C.3

00

00

-0

.40

22

9E

-01

0

.34

02

3

0.6

9

1.0

:

. * 1

64

9

.47

80

0

0.4

17

76

o

.ec

za

0-1

-01

0.

12

1

.0

i 1

65

1

.34

10

1

.26

85

3 -

14

25

4

0 -

29

1

.0 .

* .

* -

14

6 f J

.E

5S

l

J -

41

4 .

0.

160-7

1

0*

2_

9.

-

. *

14

7

1.3

43

0

1.2

58

5

0.5

90

52

1.

20

1

.0 :

. *

14

3

2.3

55

0

2.3

1 53

0.8

07

21

E-0

1

0 -

16

1

.O :

*.

1

49

0

.14

33

0

0.3

67

92

-0

.21

P9

2

-0.4

5

1.0

:

-1

50

2

.05

70

-_

1

.89

07

0

.1

66

3 1

0

-34

1.0

:

- ---

?- -

----

---.

-

-

-.-

-- :--

----

-

. * 1

51

C

.4S

4O

O

0.4

40

1 2

0.5

38

32

6-0

1

0 0

11

1

.0 :

*.

1

52

I

.~

F;

~o

1

.33

55

- 0

. i

ec

si

-0

.27

1.

o :

. *

1

1.4

27

0

1.1

47

3

0.2

7

90

7

0 a

57

1

.0 :

27

6

1.

C6

50

1

.07

42

-0

.13

22

7F

-01

-0

-0

3

1 .O

:

* 2

77

2

.28

30

2

.30

49

-0

.2

ie7

5~

-o

i -0

.04

1

.0 :

* 2

78

2

0.3

76

--.

21

-3

42

-0

.95

63

4

-1.9

5

1.0

:

* -

_- -

----

--.-

--

-- I

27

9

1.3

SO

O

1.2

82

4

0.1

0

75

5

0.2

2

1.0

:

. *--

28

0

4.2

24

0

4.5

65

7

-0.3

41

6F

- 0

.70

1

.0 :

* 2

81

0

.63

50

0

0.3

86

87

0

-2

48

1 3

0

.51

1.0

:

C

PP

2

3,4

77

0

3.2

11

4

0.-

22564

:f :%-"

0_

_

. *

28

3

0.7

23

30

0

.30

76

0

8.3

25

40

1

.0

i *

28

4

1.6

C3

0

1.6

57

0

-0.4

R9

54

E-0

1

-0.1

0

1 .O

.

* 2

85

2

.34

30

2

.83

95

- 0

.4S

55

3

-1.0

2

1rO

:

* - 2

96

0

.63

00

0

0 e

67

20

6

-0.4

20

59

E-0

1

-0 e

09

1.0

i

---

---

--- ---

- -. *.

--

-

22

7

0.e

52

00

"-

0.

71

64

6

0.1

3

55

4

0.2

8

1 .O

.

- -*-

- 2

88

1

.53

90

1

.36

89

0

.22

Ci2

0

.45

1.0

:

* 2

P9

1

3.5

08

1

8 a

59

0

-5 -0

82

1

-10

.3

6

M

1.0

: X

29

0

1.2

50-0

0

.4P

4-7

2

OL50569_

1 %

64

1

a0 :

. *

29

1

3.5

15

0

35

a6 7

4

0.4

76

1E

-01

0.

10

i;-0

:

. * 2

42

0

.35

60

0

-0.2

35

63

0

.50

16

3

I .2

1

1.0

C

3:

* H

2

93

2

.43

30

2

.7E

62

- 0

.27

72

2

-0.5

7

1.0

:

e

--

29

4

0.5

35

00

-

-*

0

.12

45

7

0.4

10

43

0.8

4

1.0

:

- .--

--

* m

; --

-:

---------n

- 2

F5

1

.18

30

1

.18

45

-0

.1

54

69

E-0

2

-0

a00

1 .O

.

29

5

1.6

77

0

1.8

41

1

-0.1

64

11

-0

.33

1

.0 :

*.

rj

24

7

0.4

57

00

0

~1

67

39

0

.28

96

1

0.5

9

1.0

:

* 2G

e

Q 7

57

0C

1.

27-3

4

- 0.5_!6

40

-1

cQ

5

1 *-k--.:-

* .

P

--

29

9

i;if

io

1.6

86

3

-0.2

13

30

-0

.44

1

.0 :

*.

u

13

.44

2

-0.6

12

30

-1

-2

5

1 .O

:

* 3

00

1

2.P

30

3

01

1

.57

40

1

.32

36

C.

3E

C4

4

0.7

1

1.0

:

* -

* - 3

02

3

.50

50

3

.62

16

-0

.1

16

56

-0

-2

4

1.0

!

A

- *-

*.

-"-

.-..-

--. -

C3

10

3

D.

E17O

G

0.5

17

1

0

C.9

90

02

E-0

1

0.2

0

--

*-

1

.0 :

, *

--- V

3

04

2

.69

20

2

.f6

74

0

.24

58

4Z

-01

0.

C5

1.0

. *

3

3C

S

0e

6F

30

0

0.5

05

32

-0

.12

32

4E

-01

-0

-0

3

1.0

*

IT -

_?

_~

~L

~~

YO

1.

2

94

2

-OL

95

2_

07

F-O

1

-0.1

9

1.0

:

* -

30

7

1 .3

03

0

1 .E

d8

4

0.1

E1

60

0.

31

1

.0 :

* PI

3C

8

0.4

27

00

0

.54

27

4

-0.2

15

74

-0

.44

1 .O

:

* Y

30

9

0.6

32

30

0

.56

23

7

C. 6

46

34

E-

01

0.1

4

1.0

:

. * --

- 3

10

1

.43

30

--.-

1

.35

00

-

0.7

30

29

E-0

1

0.1

5

- -- 1

.0 :

----

**-

- 3

11

1

?.F

26

1

3.2

63

0

.66

31

4

1.3

5

1.0

:

0

C

31

2

1.9

61

0

2.0

43

4

- C.r!2

40@

.Z-0

1

-0.

17

1

.0

i *

31

3

3.S

49

0

3.9

33

7

0.1

42

04

E-0

1

0 -

03

1

.0 .

* I

lU

..

o.

8

2lo

C

1.1

57

7

-0

. 3

2=

1 1

-0

?_

66

__

_-

1 .O

i

* 3

15

3

.09

30

2

77

44

3

0.3

45

24

0.

70

1

.0 .

* 3

1 0

.49

33

0

0.5

33

24

-0

.55

23

9E

-01

-0

e

l 1

1.0

:

C.

31

7

1.2

69

0

1.

12

07

C.

14

73

2

0.3

0

1.0

:

' .

*

1 -8

68

9

0.7

91

34

~-0

1

0.1

6

- 1.0

I

. *

----

3

18

1

.94

30

--

_-_

--

-----.

; --%

-- --

-.

. -

-

31

9

C.5

36

00

0

.35

20

3

0.1

8

39

7-

0.3

8

' 1.0

.

32

0

0.4

21

00

0

.46

95

2

- 0.4

EF

il&

-Ol

-0.

10

1

.0 :

*.

22

1

1.7

64

0

1 a

59

03

0

-1

73

70

0

.35

1.0

:

* 3

22

10.7

7_5

:

'd

--

14

.11

2

0155 2

55

1

.35

1

.0 '

t 3

23

1

.93

70

2

.17

~0

- 0

.18

?B

7

- m-

m~

rk

-

* .

C

32

4

4.1

87

0

3.9

37

5

0.2

49

54

0

.51

1.0

:

C

:

ta

32

5

1.0

63

0

1.0

55

0

0.

12

4e

4F

-01

0.0

3

10

0 i

* 0

--

32

5 - 3

.15

00

-. -

3.0

10

3

0 -

1 3

07

0

0.2

7

1.0

.

--- -- --

-.- .

* 3

27

O

.EC

EO

O

0.4

87R

O

0.2

01 9

7E

-01

0

-0

4

1.0

i

* -;---

32

8

1.2

61

0

1.3

05

5

-0.3

E4

7E

E-0

1

-0.

07

1

.0 .

* . :

m*

3

29

2.

O

SO

O

2 .0

22

9

'3.6

70

57

6-0

1

0.1

4

1.0

i

. * 3

50

0

.55

60

0

0.55456

00

,1_

-49

4E

-02

3

2-0

0

1

0-3

- *

33

1

.0.4

07

30

-0

.16

41

5

0.5

71

15

1.

16

1.0

.:

. *

33

2

1.8

01

0

1.6

67

5

0.1

3

13

7

0 -

27

1.0,

.. 0

* 3

33

14.3

13

14

.46

0

-0.

14

93

4

-n--

an

--

. -

-

- -

- -

- .

- - - --

- - - -

' d l

3 oic . .I

11 d O I P

.I

.............................. ..j.. .............. I.. ...........

-0 Con I ...a,. I.. ....

QF

GIn

hl

01

F

FR

2

2

75

.3

0R

.?

I7

-09

1

RF

CT

nh

l 0

2

FF

R

72

7

5

1.5

64

I

.1 H&

1l

.a

R FG

I nh

l 0

3

FF

R

73

7

5

9.9

61

1

0.5

06

.5

45

- 5.7-

d

Rc

GIn

N

04

F

FR

2

7

75

2

.73

5

7.7

65

R

FG

Inh

l 0

5

FF

H

22

7

5

1.8

80

7

.04

( 4

EG

IllN

0

6

FF

R

22

7

5

.49

2

-37

0

RF

GT

nN

0

7

FF

R

27

7

5

1.1

40

.Y

2h

R

FG

lnM

O

R F

FY

7

2

75

1

.34

1

1.I

H9

,1

57

1

1.7

Q

FG

lllM

0

9

FF

R

22

7

5

8 .2

76

.7

6h

.0

10

3.

6,

RF

GT

flN

1

0

FF

R

22

7

5

.A1

6

1.0

03

-1

R7

- 7

7.9

- R

FG

IllN

1

1

FF

R

22

7

5

-

.69

R

.ha

5

' .0

03

.4

.- -

-

Tll

TA

L

Fn

R

FF

H

27

7

5

21

.?I

1

71

-3

07

.0

9h

- .5

- 4

4

RF

GIn

hl

01

F

FR

2

3

75

-

- 4

FG

Inh

l 0

2

FF

H

23

7

5

RF

GIn

N

03

F

FR

2

3

75

R

FG

InN

0

4

FF

R

23

7

5

2.9

28

7

.99

P

. 070

- 7

.4-

r 4

FC

.I~

hI

05

F

FR

2

3

75

1

.79

7

1 .X

/,h

.0

51

- 7.

R-

QF

GIW

O

h

FF

R

23

7

5

.34

8

.I1

2

.73

5

67

.5

4F

GIn

N

07

F

FR

2

3

75

-

---

.96

6

1.0

5P

.0

97

- 3

.5-

. -

-- --

R

FG

InN

0

8

FF

R

23

7

5

1.2

86

1

.nY

F

.19

8

1'5.

4 -

M

Q F

G I I11\

I 0

9

FF

R

23

7

5

-25

1

.I7

6

.I7

5

L9

.Q

X

X

RF

GIn

hl

10

F

FH

7

7

75

1

.57

7

.961

, ,5

63

3

6.3

H

R

FG

Inh

l 11

FF

R

23

7

5

.63

2

.67

h

. OOh

-9

GI

H

Tn

Tb

L

Fn

R

FF

R

27

7

5

21

.77

7

Nk

(>lI

lN

01

C

-tH

2

4

15

.7

7?

.'4

79

. n57

- 7.

L-

QF

GIn

N

02

F

FR

2

4

75

1

.36

4

1.8

90

.5

7 6

- 3

8 .A

-

RF

GIn

U

03

F

ER

2

4 7

5

ll .R

20

li

f.rh

'i

1 .0

55

R

.4

- -

- - -

- -

- - -

RF

GT

nN

0

4

FF

H

74

75

7

.27

0

3.7

L.4

.0

14

- . L-

RE

GIn

N

05

F

FR

2

4 7

5

2.1

43

7

.14

5

.On

h-

-3-

4F

GIf

lM

Oh

F

FR

7

4

75

.4

50

. f)

r? 1

-7

31

- 5

1 -2-

RF

GI(

lh1

0

7

FF

R

74

75

1 ,1

746

1.7

55

.7

it9

- 70

.11-

Q

FG

InN

O

R

FG

R

24

7

5

1.5

16

1

.17

4

.I8

7

17

.3

RF

GIf

lN

09

F

FR

2

4 7

5

,14

2

.55

0

.?O

R-

60

. #

- --

R

FG

Tn

hl

10

F

EY

7

4 7

5

3.0

37

l .Y

('t

,17

1

6.'

- R

FG

IOh

l 11

FF

R

24

7

5

.59

6

.H7

1

.77

7-

4h.L

;-

Tfl

TA

L

FOR

F

FR

2

4

75

2

5.3

16

7

5.L

71

.1

55

- . 6-

*

*.

RE

A

Fn

RE

CA

ST

FO

D

AT

E

7 .0

R

FG

InN

0

8

FF

R

25

7

5

1.8

14

1 ,F

T!F

,0

36

Rp

GIn

v

09

F

FS

2

5

75

.4

05

.5

75

.0

30

7

.L

RE

GII

lN

10

F

F9

2

5

75

2

.31

5

1.9

11

-3

44

I/+

.+

I

11

FF

R

25

7

5

,76

3

.7f>

0

.003

-4

YF

GIn

hl

01

F

FR

2

6

75

.5

7 1

.5

f~i

.07

4

1.7

?

FG

Inh

l 0

2

FF

H

76

7

5

1.4

10

1.1

7

1

-05

7

1 , CI

--

- -

RF

CIn

N

03

F

FR

2

6

75

1

1.7

33

1

1.5

69

.l

b4

I

.4

QF

GIQ

N

04

F

FR

7

6

75

3

.04

3

3.276

.19

7-

h.

3-

RF

Grn

N

05

F

FR

2

6

75

1

.77

3

1 .H

I 0

.03

7-

7.1-

RF

CIn

N

Oh

F

FR

2

6

75

.4

17

,1

75

.7

97

.

7P

.(

YF

GII

lM

07

F

FR

2

6

75

1

.05

7

.98

9

.Oh

?.

6.

C!

QF

GIn

N

08

F

FR

7

6 7

5

- --

1

.67

5

- 1

.77

7

.09

8-

5.4

- --. - .

RE

GIC

lhl

09

F

FH

2

6

75

.2

95

.3

?3

.0

3Y

- 1

7.4

-

RF

GIn

N

10

F

FR

7

6 7

5

2.0

03

7

. IC

Jfi

.1

97

- 3 .h

-

QF

GIn

N

11

FF

R

26

7

5

.71

9

.76

4

.05

0-

-7 1)

-

RF

GIn

hl

01

F

FS

2

7

75

.4

92

./~74

. Ohh

1

3.e

QF

GIO

N

02

F

FH

2

7

75

1

.50

8

l.lh

l?

.33

9

77

.&

RE

GIn

N

03

F

FR

2

7

75

1

0.0

80

1

1.7

37

1

.65

7-

lh.4

-

RF

GIn

N

04

F

FR

2

7

75

2

.85

2

2.7

94

.0

53

1

.-3

4F

GIn

N

05

F

FR

2

7

75

1

.75

4

. 1

.77

7

.O1

9-

1.1

-

ilF

GIn

N

06

F

FR

2

7

75

.3

58

.7

95

. 06

3

17

.6

RF

GIn

Ll

07

F

FR

2

7

75

1

.03

9

1.0

11

.0

08

, il

1.6

35

il

FG

InN

0

8

FE

H

27

7

5

1.5

72

.I I

?-

7 ."

- R

EG

InN

0

9

FF

R

27

7

5

.29

1

.71:

6 .0

05

1.

7

QF

GIf

lN

10

F

FR

7

7

75

2

.07

3

1.7

59

.3

14

1

5.1

KF

GIC

IN

11

FF

R

27

7

5

.72

2

-5

76

.1

9h

7

1.1

7?

./1

11

,7

43

- 7

.2-

Ic t

Tfl

TA

L

Fn

R

FF

R

27

7

5

22

.69

1

RF

GIW

0

1

FF

R

28

7

5

.66

3

. 1. ,I /,

.I7

9

7 7.

RF

Gln

N

07

F

FS

2

8

75

1

.10

5

1 .I

t 86

ll

L.6

-

SF

GIn

N

03

F

FR

2

8

75

1

0.7

71

1 0 ./.

46 .7

75

7.6

sE

GIn

N

04

F

FR

2

8

75

2

.A3

8

7.7

p4

.0

54

1 .)

1.8

41

1 .7

/.P

.00

5

RF

GIC

IN

05

F

FH

2

8

75

4.'

QF

GIn

N

Oh

F

FR

7

A

75

.L

O7

.7/.

9

.I h

0

2,

.i

RF

GIC

lN

07

F

FH

2

8

75

.9

88

.6

7&

.?

h'

36,.

RF

GIn

N

08

F

ES

2

8

75

1

.24

5

1 .h

?2

.I 6

'7-

1h

.f -

FF

R 7R

75

.7

?7

.7

43

-0

61

- 7

h.i-

R

FG

IIlh

l 0

9

FF

H

78

7

5

1.5

54

1

.v<

ib

-7

44

- 7

7-

1 -

KF

GIn

N

10

R

FG

IOh

l 11

FF

R

78

7

5

.71

4

61

1~

.

.17

0

1 f-

./'

EXHIBIT 11 (Cont'd) Page 71

d + d . 4 C O C O I

Z Z Z Z C C C C

- - , - . - I

w lnLT.u I-I-I-I-

N N N O O O C C

d N m 4 o o c c

Z Z Z l C C C C c . , - . , - . C

e c c c U L L U U

Z Z Z Z Z Z Z C C C C C C I C

RE

GIO

N

01

JO

N

24

7

5

1 a

71

7

1 .7

01

.O

lb

1 .?

RF

GIO

N

02

J

llN

7

4 7

5

.5h

7

.?L

C

.71

h

1d

.I.

4F

GIf

lhl

03

.~

llh

l 2

4

75

2

.77

1

3 . :ic

j 6

.37

5-

13

.--

QF

GID

N

04

J

llh

l 2

4

75

1

.44

2

1.07

'5

,41

8

79

. (1

YF

GIn

hl

05

J

llN

2

4

75

.h

55

. hl

i7

.05

3

H.l

RF

GIn

hj

Oh

J

lIN

2

4

75

.0

4h

.(I72

.OL

4 3

0.4

J

llN

2

L

75

.6

0h

.5

4 5

. 061

1

0.1

-

4F

GIn

N

07

S

EG

Tn

N

09

J

IIN

2

4

75

.h

77

.5

0C

.I

77

7

0.3

RF

GIi

lN

09

.1

IIN

24

7

5

.05

7

. Oh6

,00

9-

15.H

-

RF

GII

lN

10

J

llN

2

4

75

2

.06

6

1 .A

H5

.

.I8

1

R. R

4F

GIf

lN

11

Jllh

l 2

4

75

.9

72

.7

HO

.I

97

13

.52

RF

GIf

lN

01

Ji

lhl

75

7

5

1.2

33

1 .L

73

.1

90

- 1

5.4

-

SF

GII

3N

0

2

Jll

N

25

7

5

.56

l .i;

7P

.7b

7-

47

. h-

rlF

GIn

hl

03

J

llN

2

5

75

3

.40

8

1.0

10

.3

7H

1

1.1

Q

FG

Tn

N

04

Jl

JN

25

7

5

1.1

57

1 . ~

(J

G

.70

7-

15

.0-

~'

r~

fn

fd

0

5

JIlY

2

5

75

.h

77

.H

? I

-159-

73

.7-

ilF

GIO

hl

Oh

J

lIN

2

5

75

.O

R4

.I5

0

. 066

- 7

8.6

- .7

71

. hH

4

.OH

7 1

1.7

~

FG

I~

I~

I 07

JI

IN

25

7

5

- --

R

FG

InN

0

8

JIl

N

25

7

5

.6

14

.h

H6

.0

72

- 1

1.7

- 4

FG

ION

0

9

JII

N

25

7

5

.07

3

. 06 3

'

.03

0

' 4

1.1

Q

FG

IO~

I 10

J~

IN

2

5

75

1 .

~6

4

2 . o 3

o . 16

6-

n.4

- 9

FG

ION

11

Jll

N

25

7

5

a7

12

.7

H1

.O

h9-

3.7-

RF

GIn

N

01

J

llN

76

75

1

.2R

R

1.7

f>4

. 0 1

9

I .5

RE

GIn

N

02

J

llN

2

6

75

,5

75

.h

98

.1

6'-

. 7

0.5

-

SF

GIn

N

03

JI

IN

26

7

5

3.7

43

7

.75

L

.(-Ill-

.?-

- . - .- - -

RFG

Tflh

l 0

L

JIJh

I 2

6

75

1 .h

33

1

.53

7

.lo

1

6.7

RF

GIn

M

05

Jl

lhl

26

7

5

.75

1

.74

4

.04

1-

5.L-

R

FG

InN

O

h

Jllh

l 2

6

75

.C

77

. 0i

.h

. OOL

5.

h

RF

GIn

N

07

J

IlM

Z

h

75

.7

R5

. *( 5

4

.0b

Y-

H.Q

- R

FG

Tn

hl

OR

.Illh

i 2

6 7

5

.70

6

.7Z4

-07

3-

3.a

- Q

FG

InN

0

9

.lllh

l 2

6

75

.n

71

. 0%

5

,01

4-

1J

.I-

-.

RF

GIn

N

10

J

llN

2

6 7

5

1.7

07

1 .

~R

P

,76

1-

16

. &

-

QF

GIf

lhl

11

JI1"

f 2

6

75

.6

77

-((47

. Oh5.

. 1

C.7

-

RE

GIO

N

01

.

JII

N

27

7

5

1.4

56

1

.30

3

.I5

3

10

.~

Y

FG

lnN

0

7

JlJh

l 2

7

75

.4

52

. [L ~

i ( ,

.II?

P-

* . /.-

RF

GIn

hI

03

J

llN

7

7

75

4

.h5

9

to

f /t

1

, 4,)

d

I....

>

QF

GIf

lN

04

J

tlN

2

7

75

1

.55

9

1.7

11

.I

74

- 1

1 -

3-

YF

GiF

lN

05

J

llN

2

7

75

1

.00

4

. V 17

.03?

7.3

RF

GIO

N

Oh

J

lIN

2

7 7

5

.lh

5

.I7

7

.04

7

7f-

. 1

QE

GIO

N

07

J

ilN

2

7

75

-7

68

,

. ye;/.

.G

tt{-

7

.2-

=G

IIlN

0

9

Jll

hl

27

7

5

,07

3

.0/!-

7 .0

76

3

5.6

Z

GII

lN

10

J

IIN

2

7

75

1

a6

83

1

.77

r .0

45

- 7

.7-

=G

I I3M

11

Jll

N

27

7

5

,81

2

. 7 01

1

.I0

8

13

.7

!

Tn

TA

L

Fn

R

Jll

N

27

7

5

11

.73

1

17

.6)4

3

.h4

8

4.3

**

-

~~

1n

r.

l 01

Jl

lhl

28

7

5

FG

lnN

0

2

Jll

N

28

7

5

FG

InN

0

3

JlI

N

28

7

5

FG

IIIN

0

4

JlI

N

78

7

5

FG

I ntd

0

7

JIIN

3

8

75

,6

94

.9

57

.2

58

- 3

7.7

- F

C.[

fjh

~

OR

Jll

hl

7R

75

- -

.h1

9

. h hP

.04

9-

7.3

- F

GIn

N

09

J

llN

2R

7

5

.04

4

.07

P

.Olh

3

h.L

FG

Iflhl

1

0

Jll

N

2R

75

5

3 1

.e

l7

.78

1-

57

.4-

FG

Inh

l 11

Jll

N

2R

75

.4

86

.5

31

.0

45

- 9 -

3-

FG

Tn

hl

01

J

llN

2

9

75

.7

84

.7

5C

.0

34

4.

3 F

GIr

lN

07

J

IIN

7

9

75

-0

74

.O

W4

.0 1

0-

11

.5-

-

-

:FG

Iilh

l 0

3

JII

N

29

7

5

1.7

20

1

.hH

C

.04

0

7.3

!FG

IflM

0

4

JIIN

2

9

75

.b

99

.8

4h

.1

45

- 7

0.7

- .

- - . ---

- -

1F

GIO

W

05

JI

IN

29

7

5

-71

0

.40

0

-31

0

43

.7

IFG

IIlN

0

6

Jll

hl

29

7

5

.lo

2

.I7

6

.02

4-

23

.5-

IEG

TfI

N

07

J

llN

7

9

75

.4

4R

.4

ht

.01

7-

7.7-

-?F

GlO

N 09

Jll

N

29

7

5

,36

0

.3 H

Y

,07

9-

Q.1

- ?

FG

InN

0

9

Jll

N

29

7

5

a0

51

.0

97

.0

4h

- .

90

.7-

i?F

GIn

N

10

JO

N

29

7

5

- -

.5h

5

.43

h

.I7

9

77

.p

- - -

- - -

-- - - -

-

RF

GIO

N

11

Jll

N

29

7

5

.62

1

. h 04

.0

17

7.

7

- S

FG

IllN

0

1

Jll

hl.

30

75

.6

22

.7

17

. n

~5

-

15

.7-

YF

GIn

N

02

J

llN

3

0 7

5

.0 1

4

-13

9

.17

5-

RY

7.3

- Q

FG

InA

l 0

3

Jll

N 3i)

75

2

.07

6

7.7

35

.7

41

3.7

RF

CIn

W

04

J

llN

3

0

75

.7

42

.h

71

.1

171

9 .

A

RF

ClI(

lh1

0

5

Jrl

N

30

75

,6

08

.A

+

I . O

L3

- .

7.1-

K

FG

InM

0

6

JO

N

30

75

.O

R5

. 03C

.0

55

6

4.7

-

.

9F

GIn

N

07

J

IlN

3

0

75

.4

30

.3

97

.I

38

3

7.1

4

FG

Iflh

l 0

8

.JllN

3

0 7

5

.27

8

.?

Gi

. ('7

7

76

.7

SF

GIn

N

09

J

llb

l 3

0 7

5

.Oh

0

. 0 7 r9

.040

hh

.'f

RF

GT

nN

1

0

Jll

N

30

75

1 .O

O?

.L

JC

,~

. iln

4

P

4F

GIn

N

11

Jll

N

30

75

. h 1

4

.hl

g

I!,?

f,

1 &-. . +