44
1/30 The Cumulant Analysis of Flow Harmonic Fluctuations in Heavy Ion Collisions Seyed Farid Taghavi In collaboration with: Navid Abbasi, Davood Allahbakhshi, Ali Davody and Mojtaba Mohammadi Najafabadi Institute For Research in Fundamental Sciences (IPM), Tehran, Iran arXiv: 1702.XXXXX IPM Workshop on Particle Physics Phenomenology Bahman 1395

The Cumulant Analysis of Flow Harmonic Fluctuations in Heavy …particles.ipm.ir/conferences/2017/IWPPP/pdf/Taghavi.pdf · 2017. 2. 19. · Navid Abbasi, Davood Allahbakhshi, Ali

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 1/30

    The Cumulant Analysis of Flow HarmonicFluctuations in Heavy Ion Collisions

    Seyed Farid Taghavi

    In collaboration with:

    Navid Abbasi, Davood Allahbakhshi, Ali Davodyand Mojtaba Mohammadi Najafabadi

    Institute For Research in Fundamental Sciences (IPM), Tehran, Iran

    arXiv: 1702.XXXXX

    IPM Workshop on Particle Physics PhenomenologyBahman 1395

  • 2/30

    Outline

    Event-by-Event fluctuation in Heavy Ion Experiment

    From Initial states to Final Hadrons

    Flow Harmonics

    The Cumulants of Flow Harmonics Distribution

    Results

  • 3/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Figure from: Sorensen, arXiv: 0905.0174

  • 4/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Monte Carlo Glauber Model[Holopainen, et al, 2011]

    I A simple and powerful model for heavy ion collision initialstate based on the Glauber model [Glauber, 1959].

    I Nucleons are considered free and distributed byWoods-Saxon distribution,

    ρ(r) = ρ0

    (1

    1 + exp[ r−r0

    a

    ]) ,inside the nucleus. The r0 is the nuclear radius and a iscalled the skin depth.

    I For 197Au: r0 = 6.38 fm; a = 0.535 fm.I For 207Pb: r0 = 6.62 fm; a = 0.546 fm.

  • 4/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Monte Carlo Glauber Model[Holopainen, et al, 2011]

    I A simple and powerful model for heavy ion collision initialstate based on the Glauber model [Glauber, 1959].

    I Nucleons are considered free and distributed byWoods-Saxon distribution,

    ρ(r) = ρ0

    (1

    1 + exp[ r−r0

    a

    ]) ,inside the nucleus. The r0 is the nuclear radius and a iscalled the skin depth.

    I For 197Au: r0 = 6.38 fm; a = 0.535 fm.I For 207Pb: r0 = 6.62 fm; a = 0.546 fm.

  • 4/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Monte Carlo Glauber Model[Holopainen, et al, 2011]

    I A simple and powerful model for heavy ion collision initialstate based on the Glauber model [Glauber, 1959].

    I Nucleons are considered free and distributed byWoods-Saxon distribution,

    ρ(r) = ρ0

    (1

    1 + exp[ r−r0

    a

    ]) ,inside the nucleus. The r0 is the nuclear radius and a iscalled the skin depth.

    I For 197Au: r0 = 6.38 fm; a = 0.535 fm.I For 207Pb: r0 = 6.62 fm; a = 0.546 fm.

  • 5/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    207Pb, r0 = 6.62 fm, a = 0.546 fm

    Target

    I The nucleons collide if

    |~rti −~rpj | ≤√σNNinel/π. → Participants

    I σNNinel = 6.4 mb at√

    SNN = 2.76 TeV

  • 5/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    207Pb, r0 = 6.62 fm, a = 0.546 fm

    Target Projectile

    b = 4.5 fm

    I The nucleons collide if

    |~rti −~rpj | ≤√σNNinel/π. → Participants

    I σNNinel = 6.4 mb at√

    SNN = 2.76 TeV

  • 5/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    207Pb, r0 = 6.62 fm, a = 0.546 fm

    Target Projectile

    b = 4.5 fm

    I The nucleons collide if

    |~rti −~rpj | ≤√σNNinel/π. → Participants

    I σNNinel = 6.4 mb at√

    SNN = 2.76 TeV

  • 5/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    207Pb, r0 = 6.62 fm, a = 0.546 fm

    Target Projectile

    b = 4.5 fm

    I The nucleons collide if

    |~rti −~rpj | ≤√σNNinel/π. → Participants

    I σNNinel = 6.4 mb at√

    SNN = 2.76 TeV

  • 6/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Smearing the Participants

    I Using the location of participants, we can find the energydensity profile. We use a 2D Gaussian distribution as thesmearing function,

    ρ(x, y) ∝ 12πσ2

    Npart∑i=1

    exp[−(x− xi)

    2 + (y− yi)2

    2σ2

    ]

    I For σ = 0.6 fm,

    I READY FOR HYDRODYNAMICS

  • 6/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Smearing the Participants

    I Using the location of participants, we can find the energydensity profile. We use a 2D Gaussian distribution as thesmearing function,

    ρ(x, y) ∝ 12πσ2

    Npart∑i=1

    exp[−(x− xi)

    2 + (y− yi)2

    2σ2

    ]I For σ = 0.6 fm,

    I READY FOR HYDRODYNAMICS

  • 6/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Smearing the Participants

    I Using the location of participants, we can find the energydensity profile. We use a 2D Gaussian distribution as thesmearing function,

    ρ(x, y) ∝ 12πσ2

    Npart∑i=1

    exp[−(x− xi)

    2 + (y− yi)2

    2σ2

    ]I For σ = 0.6 fm,

    I READY FOR HYDRODYNAMICS

  • 6/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Smearing the Participants

    I Using the location of participants, we can find the energydensity profile. We use a 2D Gaussian distribution as thesmearing function,

    ρ(x, y) ∝ 12πσ2

    Npart∑i=1

    exp[−(x− xi)

    2 + (y− yi)2

    2σ2

    ]I For σ = 0.6 fm,

    I READY FOR HYDRODYNAMICS

  • 7/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    Event-By-Event FluctuationsBefore studying the hydro evolution. . .

    207Pb,√

    SNN = 2.76 TeV, b = 4.5 fm

    · · ·

    · · ·

    #1 #2 #3

  • 8/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    How to Quantify the Initial State Systematically[PHOBOS Collaboration, 2007], [Teaney, Yan, PRC, 2011]

    Dipole Asymmetry, ε1Eccentricity, ε2Triangularity, ε3

    ...

    εn,x+iεn,y ≡∫

    rdrdϕρ(r, ϕ) rn′einϕ∫

    rdrdϕρ(r, ϕ) rn′,

    n′ =

    {3 if n = 11 if n ≥ 2

    .

    Ψ2

    Ψ3

    ε2,x =〈x2 − y2〉〈x2 + y2〉

    , ε2,y =2〈x y〉〈x2 + y2〉

    .

  • 9/30

    Event-by-Event fluctuation in Heavy Ion Experiment

    From Initial states to Final Hadrons

    Hydrodynamic Evolution

    Freeze OutInitial State

    Observation InDetector

    The initial state evolves by hydrodynamic equations,

    ∂µTµν = 0

    whereTµν = (�+ P)uµuν + Pηµν + τµν

    τµν = −ηs∆µα∆νβ(∂αuβ + ∂βuα)−(ζ −

    23ηs

    )∆µν∂αuα

    ∆µν = ηµν + uµuν , ηµν = diag(−1, 1, 1, 1).

  • 10/30

    From Initial states to Final Hadrons

    From Initial states to Final Hadrons

    −→Hydrodynamic Evolution

    Σµ

    I After cooling down the produced plasma, it hadronises.I The hadron spectrum is obtained by Copper-Frye equation:

    EdNd3p

    =

    ∫pµdΣµ

    (2π)3f (x, p).

    The f (x, p) could be for example Boltzmann distribution,

    f (x, p) ∝ exp[

    pµuµ

    T

    ]

  • 11/30

    From Initial states to Final Hadrons

    Final Particle Distribution is A Picture of The Initial State

    A naive estimation of Cooper-Frye result

    Σµ

    Fluid Patch

    Freeze Out Hyper Surf. I pµdΣµ → Sum the outgoingand subtract the ingoingparticles.

    I Consider uµ ∼ (1− δ, vx, vy, 0)

    I exp[

    pµuµ

    T

    ]= exp

    [−u0√|~p|2+m2+~p·~v

    T

    ]I The exp[· · · ] maximize for ~p ‖ ~v

    and larger |~v|.

    The Faster Fluid Patch, The More Particle Emission

  • 12/30

    From Initial states to Final Hadrons

    Final Particle Distribution is A Picture of The Initial State

    Faster

    Faster

    Faster

    Faster

    Faster

    More Particles

    More Particles

    More Particles

    More Particles

    More Particles

  • 13/30

    From Initial states to Final Hadrons

    The Picture Of Final State on the Detector

    =# + # + · · ·

  • 14/30

    Flow Harmonics

    Flow Harmonics, n-Particle Correlation Functions[Borghini, Dinh, Ollitrault, 2000]

    I Fourier analysis of azimuthal distribution of emittedparticles.

    1N

    dNdφ

    = 1 +∞∑

    n=1

    2vn cos [n(φ− ψn)] ,

    vneinψn ∝ 〈einφ〉 ∝∫

    dφ dNdφ einφ.

    I In a single event, ψn is fixed. Therefore if we shiftφ→ φ+ ψn then vn ∝

    ∫dφdNdφ e

    inφ.I We will use also the following notation,

    vn,x = vn cos(ψn), vn,y = vn sin(ψn)

    I The number of particles are not enough to find ψn. The ψncan not be observed experimentally.

  • 15/30

    Flow Harmonics

    Flow Harmonics, n-Particle Correlation Function[Borghini, Dinh, Ollitrault, 2000]

    I In different events

    Ψ2

    Ψ2

    Ψ2Ψ2

    I The quantity ein(φ1−φ2) is invariant under shift φi → φi + ψnwhere φ1 and φ2 are the azimuthal angle of two particles ina single event.

    I We also havedN

    dφ1dφ2=

    (dNdφ1

    )(dNdφ2

    )+ fc(φ1, φ2).

  • 16/30

    Flow Harmonics

    Flow Harmonics, n-Particle Correlation Function[Borghini, Dinh, Ollitrault, 2000]

    I The correlations between particles produced from thedecays such as ρ→ ππ contributes to the fc(φ1, φ2) whichis a non-flow correlation.

    I If fc(φ1, φ2) is negligible then∫dφ1dφ2

    (dN

    dφ1dφ2

    )ein(φ1−φ2) ≈

    (∫dφ1

    (dNdφ1

    )einφ1

    )(∫dφ2

    (dNdφ2

    )e−inφ2

    )

    ∝ v2nI Define 2-particle correlation function

    cn{2} = 〈ein(φ1−φ2)〉single then many events

    I Thenv2n{2} = cn{2}

  • 17/30

    Flow Harmonics

    Flow Harmonics, n-Particle Correlation Function[Borghini, Dinh, Ollitrault, 2000], [Borghini, Dinh, Ollitrault, 2001]

    I It is shown that

    v2n{2} = cn{2}, v4n{4} = −cn{4}, v6n{6} = cn{6}/4, · · ·where

    cn{2} = 〈ein(φ1−φ2)〉, cn{4} = 〈ein(φ1+φ2−φ3−φ4)〉−2〈ein(φ1−φ2)〉2, · · ·I At each order, the non-flow effects are more suppressed.I What is the fine structure in v2{2k} and v3{2k}.

    0 10 20 30 40 50 60 70 800

    1

    2

    3

    4

    5

    6

    7

    8

    % Most Central

    (%

    )2

    v

    {2}2v

    {4}2v

    {6}2v

    5 10 15 20

    3v

    0

    0.05

    0.1

    {EP}3v{2}3v{4}3v

    ATLAS = 2.76 TeVNNsPb+Pb

    | < 2.5η, |-1bµ = 7 intL

    0-25%

    [GeV]T

    p5 10 15 20

    0

    0.05

    0.1

    25-60%STAR

  • 18/30

    The Cumulants of Flow Harmonics Distribution

    Heavy Ion Collision Event Generator, iEBE-VISHNU[Shen, Qiu, Song, Bernhard, Bass, Heinz, 2014]

    I The full process is too complicated and numericalcalculations are needed.

    superMC Initial

    condition generator

    VISHNew Hydrodynamics

    simulator

    iSS Particle emission sampler

    binUtilities Spectra and

    flow calculator

    osc2u prepare UrQMD

    ICs

    UrQMD Hadron

    rescattering simulator

    multiple

    M initial conditions

    freeze-out surface info

    Particle space-time and

    momentum info

    Particle space-time and momentum info

    Finished all events?

    no

    yes

    EbeCollector Collect data into SQLite database zip results and store to results folder

    Hydrodynamic!simulator

    zip results and store in results folder

    (multiple times)

  • 19/30

    The Cumulants of Flow Harmonics Distribution

    Event Generation

    I Pb-Pb collision in√

    SNN = 2.76 TeV: 7000 to 14000 forcentralities between 0 to 80% (b ∼ 0 to b ∼ r0).

    I η/s = 0.08, τ0 = 0.6 fmI superMC: MC-Glauber

    MC-Glauber for 50-55% centralities

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ε2,x ε3,x ε4,x

    ε 2,y

    ε 3,y

    ε 4,y

    dNevents/dεn,xdεn,y

  • 20/30

    The Cumulants of Flow Harmonics Distribution

    How to Quantify the Initial State Systematically II

    Reminder of Notations From Statistics #1:Consider the distribution ρ(x) of a random variable x,

    I Moment: µ′r(x) = 〈xr〉.

    I Central Moment: µr(x) := 〈(x− 〈x〉)r〉.• Translational Invariance: µr(x + c) = µr(x).

    I Cumulant: κr(x) obtained from the following generatingfunction

    log〈eλ x〉 =∞∑

    r=1

    κrλr

    r!

    • Translational Invariance: κr(x + c) = κr(x) for n ≥ 2.• For Gaussian distribution, κr = 0 for r ≥ 3.

  • 20/30

    The Cumulants of Flow Harmonics Distribution

    How to Quantify the Initial State Systematically II

    Reminder of Notations From Statistics #1:Consider the distribution ρ(x) of a random variable x,

    I Moment: µ′r(x) = 〈xr〉.I Central Moment: µr(x) := 〈(x− 〈x〉)r〉.

    • Translational Invariance: µr(x + c) = µr(x).

    I Cumulant: κr(x) obtained from the following generatingfunction

    log〈eλ x〉 =∞∑

    r=1

    κrλr

    r!

    • Translational Invariance: κr(x + c) = κr(x) for n ≥ 2.• For Gaussian distribution, κr = 0 for r ≥ 3.

  • 20/30

    The Cumulants of Flow Harmonics Distribution

    How to Quantify the Initial State Systematically II

    Reminder of Notations From Statistics #1:Consider the distribution ρ(x) of a random variable x,

    I Moment: µ′r(x) = 〈xr〉.I Central Moment: µr(x) := 〈(x− 〈x〉)r〉.

    • Translational Invariance: µr(x + c) = µr(x).I Cumulant: κr(x) obtained from the following generating

    function

    log〈eλ x〉 =∞∑

    r=1

    κrλr

    r!

    • Translational Invariance: κr(x + c) = κr(x) for n ≥ 2.• For Gaussian distribution, κr = 0 for r ≥ 3.

  • 21/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    • For Gaussian distribution, κr = 0 for r ≥ 3.

    • Cumulants in terms of moments,

    κ1 = 〈x〉,

    κ2 = 〈x2〉 − 〈x〉2,κ3 = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3,

    ...

    • Gram-Charlier A series,

    p(ξ) ≈ 1√2πκ2

    exp[−(ξ − κ1)2

    2κ2]

    ×

    (1 +

    κ3

    3!κ3/22H3(

    ξ − κ1√κ2

    ) +κ4

    4!κ22H4(

    ξ − κ1√κ2

    )

    ),

  • 21/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    • For Gaussian distribution, κr = 0 for r ≥ 3.• Cumulants in terms of moments,

    κ1 = 〈x〉,

    κ2 = 〈x2〉 − 〈x〉2,κ3 = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3,

    ...

    • Gram-Charlier A series,

    p(ξ) ≈ 1√2πκ2

    exp[−(ξ − κ1)2

    2κ2]

    ×

    (1 +

    κ3

    3!κ3/22H3(

    ξ − κ1√κ2

    ) +κ4

    4!κ22H4(

    ξ − κ1√κ2

    )

    ),

  • 21/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    • For Gaussian distribution, κr = 0 for r ≥ 3.• Cumulants in terms of moments,

    κ1 = 〈x〉,

    κ2 = 〈x2〉 − 〈x〉2,κ3 = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3,

    ...

    • Gram-Charlier A series,

    p(ξ) ≈ 1√2πκ2

    exp[−(ξ − κ1)2

    2κ2]

    ×

    (1 +

    κ3

    3!κ3/22H3(

    ξ − κ1√κ2

    ) +κ4

    4!κ22H4(

    ξ − κ1√κ2

    )

    ),

  • 22/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution• The expansion coefficients are

    ? Skewness:γ1 =

    µ3

    κ3/22

    =κ3

    κ3/22

    γ1 < 0 γ1 = 0 γ1 > 0? Kurtosis:

    K =µ4κ22

    =κ4κ22

    + 3 → γ2 = K − 3

    γ2 < 0 γ2 = 0 γ2 > 0

  • 23/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ε2,x ε3,x ε4,x

    ε 2,y

    ε 3,y

    ε 4,y

    I We use a 2D cumulant analysis.

    I The generating functional is

    log〈eξxkx+ξyky〉 =∑

    m,n=0

    kmx kny

    m!n!Amn.

    I We define the normalized cumulants as follows

    Âmn =Amn√Am20An02

  • 23/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ε2,x ε3,x ε4,x

    ε 2,y

    ε 3,y

    ε 4,y

    I We use a 2D cumulant analysis.I The generating functional is

    log〈eξxkx+ξyky〉 =∑

    m,n=0

    kmx kny

    m!n!Amn.

    I We define the normalized cumulants as follows

    Âmn =Amn√Am20An02

  • 23/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0.6− 0.4− 0.2− 0 0.2 0.4 0.6

    0.6−

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ε2,x ε3,x ε4,x

    ε 2,y

    ε 3,y

    ε 4,y

    I We use a 2D cumulant analysis.I The generating functional is

    log〈eξxkx+ξyky〉 =∑

    m,n=0

    kmx kny

    m!n!Amn.

    I We define the normalized cumulants as follows

    Âmn =Amn√Am20An02

  • 24/30

    The Cumulants of Flow Harmonics Distribution

    Cumulant Analysis of the Initial and Flow Distribution

    I Similar to 2D distribution for εn,x and εn,y, there is adistribution for vn,x and vn,y.

    I Ê(n)kl → normalized cumulants from εnI V̂(n)kl → normalized cumulants from vn

    For n = 2, 3, The Hydrodynamic Response is Almost Linear[Teaney, Yan, PRC, 2011], [Luzum, Ollitrault, . . .]

    v̂n ' κnε̂nI From Homogeneity of cumulants: V(n)pq ' κp+qn E(n)pq ,

    therefore,

    V̂(n)pq ' Ê (n)pq

  • 25/30

    Results

    iEBE-VISHNU Output, For n = 2

    [Ollitrault,PRC,2016]

  • 26/30

    Results

    iEBE-VISHNU Output, For n = 3

  • 27/30

    Results

    iEBE-VISHNU OutputI We learned

    • For n = 2Â(2)10 ∼ O(1),

    Â(2)30 , Â(2)40 , Â

    (2)04 ∼ O(10

    −1).

    • For n = 3Â(3)40 ∼ Â

    (3)04 ∼ O(10

    −1)

    The rest are approximately zero.

    The n-Particle Correlations, cn{2k} are A(n)kl where the effectof ψn is Integrated Out, Therefore,by using the simplifications studied above

    The V̂(n)pq can be written in terms of vn{2k}.

  • 28/30

    Results

    Connection With Experimental Observation

    For n = 2:

    V̂(2)30 '−66√

    2(21v2{6} − 22v2{8})2(v2{6} − v2{8})[v22{2} − (21v2{6} − 22v2{8})2

    ]3/2V̂(2)40 ' V̂

    (2)04 '

    8(21v2{6} − 22v2{8})3(v2{4} − 12v2{6}+ 11v2{8})[v22{2} − (21v2{6} − 22v2{8})2

    ]2If we can ignore V̂(2)40 ' V̂

    (2)04 then we

    find [Ollitrault,PRC,2016]

    V̂(2)30 '−6√

    2v22{4}(v2{4} − v2{6})[v22{2} − v

    22{4}

    ]3/2and a constraint

    v2{4} = 12v2{6} − 11v2{8}

    ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

    ■■■■■

    ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

    ○ hydro◼ ATLAS

    0 20 40 60 80-1.0-0.50.0

    0.5

    centrality [%]

    γ1expt

  • 29/30

    Results

    Kurtosis of the Third Flow Harmonics

    For n = 3:

    V̂(3)40 ' V̂(3)04 ' −2

    (v3{4}v3{2}

    )4

    0 20 40 60 80

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    0 20 40 60 80

    0.4−

    0.2−

    0

    0.2

    0.4

    0.6

    A04 A40

    %Centrality%Centrality

    HydroInitialATLAS

    HydroInitialATLAS

  • 30/30

    Results

    Thank You!

    Event-by-Event fluctuation in Heavy Ion ExperimentFrom Initial states to Final HadronsFlow HarmonicsThe Cumulants of Flow Harmonics DistributionResults