29
The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway

The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

The combined parameter and state

estimation problemGeir Evensen and Laurent Bertino

Hydro Research Centre, Bergen, Norway,Nansen Environmental and Remote Sensing Center, Bergen, Norway

Page 2: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Combined parameter and state estimation

“Find the pdf of the parameters and the model solutionconditional on a set of measurements.”

Bayesian formulation.

Ensemble solutions.

Page 3: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Bayesian formulation

Model equations and measurements:

∂ψ

∂t= g(ψ,α) + q,

ψ|t0 = Ψ0 + a,

α = α0 +α′,

M(ψ,α) = d+ ε.

Bayes theorem becomes:

f(ψ,α,ψ0|d) ∝ f(ψ|α,ψ0)f(ψ0)f(α) f(d|ψ,α).

Page 4: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Gaussian priors

f(ψ,α,ψ0|d) ∝ exp

{

−1

2J [ψ,α]

}

,

J [ψ,α] =

(

∂ψ

∂t− g(ψ,α)

)T

•W qq •

(

∂ψ

∂t− g(ψ,α)

)

+ (ψ0 − Ψ0)T ◦W aa ◦ (ψ0 − Ψ0)

+ (α−α0)T ◦W αα ◦ (α−α0)

+ (d− M[ψ,α])TW εε(d− M[ψ,α]).

MLH solution, hard to solve and to compute error estimates.

Page 5: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Discretisation in time

.

-

t0 t1 t2 t3 t4 t5 t6 t7 tk

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψkψ0

dmd2 d3d1

ti(1) ti(2) ti(m)

djti(j)

ti

ψi

ti(3)

. . .

. . .

. . .. . .

. . . . . .

. . .

. . .

Page 6: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Assume

Model is first order Markov process.

f(ψ1, . . . ,ψk,α,ψ0) ∝

f(α)f(ψ0)

k∏

i=1

f(ψi|ψi−1,α).

Measurement errors are independent in time

f(d|ψ,α) =

m∏

j=1

f(dj |ψi(j),α).

Page 7: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Bayes for discrete state

Bayes theorem then becomes

f(ψ1, . . . ,ψk,α,ψ0|d) ∝ f(α)f(ψ0)

k∏

i=1

f(ψi|ψi−1,α)

m∏

j=1

f(dj |ψi(j),α),

Time

d_2d_1 d_m

Prediction

Update

Page 8: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Rewrite as:

f(ψ1, . . . ,ψk,α,ψ0|d) ∝ f(α)f(ψ0)

i(1)∏

i=1

f(ψi|ψi−1,α)f(d1|ψi(1),α)

i(2)∏

i=i(1)+1

f(ψi|ψi−1,α)f(d2|ψi(2),α) · · ·

i(m)∏

i=i(m−1)+1

f(ψi|ψi−1,α)f(dm|ψi(m),α)

k∏

i=i(m)+1

f(ψi|ψi−1,α)

Page 9: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Sequential processing of measurements

First update

f(ψ1, . . . ,ψi(1),α,ψ0|d1) ∝

f(α)f(ψ0)

i(1)∏

i=1

f(ψi|ψi−1,α)f(d1|ψi(1),α)

Second update

f(ψ1, . . . ,ψi(2),α,ψ0|d1,d2) ∝

f(ψ1, . . . ,ψi(1),α,ψ0|d1)

i(2)∏

i=i(1)+1

f(ψi|ψi−1,α)f(d2|ψi(2),α)

Page 10: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Summary

Independent measurements processed sequentially in time.

Sequence of inverse problems.

Solution of one sub-problem is prior for next.

Hard to solve using traditional variational methods.

Well suited for ensemble methods.

Time

Updates

d_3d_1 d_2

Page 11: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Variance minimizing analysis

Given

First guess, ψf , and prediction error covariance, C fψψ.

Measurements, d, and error covariance, Cεε.

The variance minimizing analysis is minimum of

J [ψa] =(

ψa −ψf)T

•C−1ψψ •

(

ψa −ψf)

+(

d− Mψa)TC−1εε

(

d− Mψa)

.

Page 12: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Analysis equations

Update of estimate

ψa = ψf +CfψψM

T(

MCfψψM

T +Cεε

)

−1(

d− Mψf)

Error covariance for update

Caψψ = Cf

ψψ −CfψψM

T(

MCfψψM

T +Cεε

)

−1MC f

ψψ

Page 13: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Ensemble methods

ES: Ensemble Smoother

EnKS: Ensemble Kalman Smoother

EnKF: Ensemble Kalman Filter

Ensemble representation for pdfs.

Ensemble prediction for time evolution of pdfs.

Linear ensemble analysis scheme:“Variance minimizing”.Assumes Gaussian pdf for model prediction.No resampling!

Page 14: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

The error covariance matrix

Define ensemble covariances around the ensemble mean

Cψψ =(

ψ −ψ) (

ψ −ψ)T

The ensemble mean, ψ, is the best-guess.

The error variance is defined by the ensemble spread.

The smoothness of members defines the covariance.

⇓Representation by a finite ensemble of model states.

Page 15: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Ensemble representation

Define ensemble matrix

A(x, ti) =

(

ψ1(x, ti) ψ2(x, ti) . . . ψN (x, ti)

α1(x, ti) α2(x, ti) . . . αN (x, ti)

)

.

Parameters augmented to model state.

The ensemble covariance becomes

Ceψψ(x1,x2, ti) =

A′(x1, ti)A′Ti (x2, ti)

N − 1.

Page 16: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Dynamical evolution of error statistics

Members evolve according to stochastic model dynamics

dψ = g(ψ,α)dt+ h(ψ)dq

dα = 0.

The pdf evolves according to Kolmogorov’s equation

∂f

∂t+∑

i

∂(gif)

∂ψi=

1

2

i,j

∂2f(

hQhT)

ij

∂ψi∂ψj.

Fundamental equation for evolution of error statistics.

May be solved using Monte Carlo methods.

Page 17: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Ensemble analysis equations

Define randomized measurements D = d+E.

Variance minimizing ensemble update becomes

Aa = A

+CeψψM

T(

MCeψψM

T +Cεε

)

−1(

D − MA)

= A

+A′(

MA′)T(

MA′(

MA′)T

+Cεε

)

−1(

D − MA)

...

= AX

⇒ Updated ensemble with correct mean and covariance!

Page 18: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

ES: The Ensemble Smoother

Computes the Bayesian update using linear ensemble equation

f(ψ1, . . . ,ψk,α,ψ0|d) =

f(ψ1, . . . ,ψk,α,ψ0)

m∏

j=1

f(dj |ψi(j),α),

Time

d_2d_1 d_m

Prediction

Update

Page 19: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

ES: Example with Lorenz equations

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

ES: Estimate

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

ES: Errors

Page 20: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

ES: summary

Gauss–Markov interpolation in space and time.

Creates an ensemble for the model evolution.

Assumes Gaussian pdf for model evolution.

Computes variance minimizing ensemble analysis.

Exact solution for linear problems.

Page 21: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

EnKS: The ensemble Kalman smoother

Bayes with sequential processing of data: First update is

f(ψ1, . . . ,ψi(1),α,ψ0|d1) ∝

f(α)f(ψ0)

i(1)∏

i=1

f(ψi|ψi−1,α)f(d1|ψi(1),α),

Time

Updates

d_3d_1 d_2

Page 22: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

EnKS solution

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

EnKS: Estimate

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

EnKS: Errors

Page 23: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

EnKS summary

ES and EnKS give identical results for linear models.

EnKS is superior to the ES with nonlinear models.Sequential processing of measurements introduces“Gaussianity”.Ensemble is kept close to the true state.

Page 24: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

EnKF: Ensemble Kalman Filter

Special case of EnKS.

Only update state at data times

EnKF forms a prior for the EnKS.

A prediction from EnKF and EnKS will be identical.

Time

Updates

d_3d_1 d_2

Page 25: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

EnKF solution

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

EnKF: Estimate

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

EnKF: Errors

Page 26: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Example

Scalar model

∂ψ

∂t= 1 − α+ q,

ψ(t = 0) = 3 + a,

α = 0 + α′,

M(ψ) = d+ ε.

True parameter value is α = 1.

Model operator is linear and independent of ψ.

Solved using EnKF, EnKS and Representer methods.

Exponential time correlation for model errors.

Page 27: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

State and parameter estimation

Time

Sol

utio

n

0 10 20 30 40 50

-4

-2

0

2

4

6

8

10

12

14 ObservationsEnKS solRepresenter solEnKS std dev

Page 28: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Estimate of parameter

Time

Par

amet

eres

timat

e

0 10 20 30 40 50

-2

-1

0

1

2

EnKS alphaEnKF alphaEnKF std devEnKS std dev

Page 29: The combined parameter and state estimation problem · The combined parameter and state estimation problem Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway,

Summary

www.nersc.no/∼geir/EnKF

Joint state and parameter estimation problem!

Bayesian formulation:Variational methods (multiple minima; MLH).

Hard to compute error statistics!Do not allow for sequential processing ofmeasurements!

Ensemble methods (Gaussianity assumption; mean).Provide estimate with error statistics.Allow for sequential processing of measuremets.· Introduces Gaussianity!· Advantage with nonlinear dynamics.