67
The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang Löffler, Kier Heeck, Frank Buters, David Newsom Hedwig Eerkens, Sven de Man, Fernando Luna, Matthew Weaver University of California Santa Barbara Leiden University

The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

The collapse of the quantum wave function

UBC Quantum Information: Quo Vadis? 14 November 2019

Dirk Bouwmeester,

Vitaliy Fedoseev, Wolfgang Löffler, Kier Heeck, Frank Buters, David Newsom

Hedwig Eerkens, Sven de Man, Fernando Luna, Matthew Weaver

University of California Santa Barbara Leiden University

Page 2: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Zurek (and others): The collapse of the

wave function (of a given system) follows

from standard quantum dynamics

Page 3: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

1932: John von Neumann: analysis of quantum measurements

Page 4: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Environment induced decoherence

~

Page 5: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Environment induced decoherence

~

Page 6: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

x1 x2

Page 7: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

y1=x1-x2 y2=x1+x2

Page 8: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

From: Zurek, Physics Today 61, 69 (2008)

Page 9: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

From: Zurek, Physics Today 61, 69 (2008)

Page 10: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

From: Zurek, Physics Today 61, 69 (2008)

Page 11: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

acts mainly on off-diagonal elements

From: Zurek, Physics Today 61, 69 (2008)

Page 12: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

From: Zurek, Physics Today 61, 69 (2008)

Page 13: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider the following model (Zurek and Unruh, PRD, 40 1071 (1989)).

From: Zurek, Physics Today 61, 69 (2008)

Page 14: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 15: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Two heroic experiments

Page 16: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Conclusion: The collapse is real (for the sub system). The collapse is the result of unitairy quantum evolution of the entire

system and leads to a reduced density matrix that mathematically has

the same form as a classical probability distribution.

Page 17: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Universe

Conclusion: The collapse is real (for the sub system). The collapse is the result of unitairy quantum evolution of the entire

system and leads to a reduced density matrix that mathematically has

the same form as a classical probability distribution.

Page 18: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Universe

Many worlds!

Conclusion: The collapse is real (for the sub system). The collapse is the result of unitairy quantum evolution of the entire

system and leads to a reduced density matrix that mathematically has

the same form as a classical probability distribution.

Page 19: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Vaidman’s watch

Yes

No

Photon

Many worlds!

Page 20: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Vaidman’s watch

Yes

No

Photon

Many worlds!

Any objections?

Page 21: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

'

But how to deal with superpositions

???

i Et

i Et

t

Penrose

R. Penrose, Wavefunction Collapse as a

Real Gravitational Effect

General Relativity and Gravitation 28, 581

(1996).

Page 22: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Consider an equal superposition

f and f’ are the acceleration 3-vectors of the free-fall motion in the two

space-times (f and f’ are gravitational forces per unit test mass).

Penrose postulate: at each point the scalar (|f-f’|)2 is a measure of

incompatibility of the identification. The total measure of

incompatibility (or “uncertainty) Δ at time t is:

This is the gravitational self energy associated to the superposition

Prediction: The superposition state is unstable and has a lifetime

of the order of

2

1

2

31f-f' d

4 G

G

x

E

GE

(see also GRW, Diosi, others)

Page 23: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 24: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

m~10-12kg,

ωc~1-10kHz

κ~1

m1=4.7x10-26kg

(Silicon nuclear mass)

2a)x:given(,1

5

62 1

xaGmmE

Page 25: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

m~10-12kg,

ωc~1-10kHz

κ~1

m1=4.7x10-26kg (Silicon nuclear mass)

Small problem: what is mass and what is the mass distribution of

a piece of material?

2a)x:given(,1

5

62 1

xaGmmE

Page 26: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

m~10-12kg,

ωc~1-10kHz

κ~1

m1=4.7x10-26kg (Silicon nuclear mass)

Small problem: what is mass and what is the mass distribution of

a piece of material?

2a)x:given(,1

5

62 1

xaGmmE

Page 27: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

2a)x:given(,1

5

62 1

xaGmmE

m~10-12kg,

ωm~1-10kHz

κ~1

m1=4.7x10-26kg (Silicon nuclear mass)

Take, a~10-15m size of nucleus, or take a~10-13m size of ground-

state wave function

Decoherence time ~1 ms, ~0.1-1s

Compare: For C60 experiments (Penrose) decoherence time is 1010s

Page 28: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 29: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Basic opto-mechanics

1577

Page 30: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Thermal mirror state, dissipation to thermal (bosonic) bath

† † † † † †

bath

2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 1 2 22

is mean thermal phonon number, at resonance with the mechanical resonator at T

....

21/

Final conclusion fo

B B

dec

d iH N b b b b b b N b b bb bb

dt

N

mk T x

-12

bath

bath

r ~ 1/ 2, Q~100,000, m=10 kg, T 1 ,

the decoherence time is 0.1ms.

Q's up to 1,000,000 for small mechanical resonators are possible,

T ~ 10 acceptable.

mK

mK

Qmechanical

Page 31: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 32: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Tbath~5mK

10kHz

Tcantilever~1μK

Q~200,000

L~5cm

Finesse~200,000

Mass~10-12kg

Single photon sources

and detectors, stable

lasers locked to cavity

Stability 10-14m (over ms)

Page 33: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

m

Needed for ground state cooling:

Work in side band resolved regime: ωm>γoptical, Finesse>20,000

Tbath~100mK (compatible with previous requirements F>105, Tbath~5mK)

Passive optical cooling of the mechanical mode

L

L m

L m

AA

Page 34: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Generation 1

Room temperature

vacuum

2007

Generation 2

Low temperature

vacuum 2009

Generation 3

Low temperature vacuum

& stable

2013

JPE

Leiden

Page 35: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Generation 1

Finesse: 2100

Mechanical Q:130.000

Generation 2

Finesse: 3000

Q: 400.000

10-100kHz

Generation 5

Finesse: 60.000

Q: 600.000

UCSB 2004

Page 36: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

2015-2017 Leiden

Page 37: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 38: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 39: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 40: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 41: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

The responds of the LCR circuit in (a) and

the damped harmonic oscillator in (b) can be

described by the same differential equation.

Use well-known electronic higher order low

pass filter designes and translate to

mechanics (design Kier Heeck).

M. de Wit, G. Welkers et al.

arXiv:1810.06847

Page 42: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang
Page 43: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

2015-2017 UCSB

Page 44: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

m

Needed for ground state cooling:

Work in side band resolved regime: ωm>γoptical, Finesse>20,000

Tbath~100mK (compatible with previous requirements F>105, Tbath~5mK)

Passive optical cooling of the mechanical mode

L

L m

L m

AA

Page 45: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Sideband resolved optical

cooling from room temperature

500 μm 100 μm

Page 46: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Sideband resolved optical

cooling from room temperature

500 μm 100 μm

Page 47: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Outside resonator causes problems during cooldown.

Solved by electrostatic feedback.

Page 48: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

2017

Cryostat

at 5K

Cryostat

at 100mK

Page 49: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

2017

Cryostat

at 5K

Cryostat

at 100mK

Page 50: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Three main technical complications:

1) Optomechanical coupling not strong enough.

2) Mechanical Q’s not high enough.

3) Optical heating.

Page 51: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

1. Initial proposal : entangle light

with a mechanical mode

2. Many technical challenges arise

from the scale difference between

photons and phonons.

3. New scheme: Still use

optomechanical systems but

entangling two mechanical

resonators.

New approach for creating and testing macroscopic superpositions

Page 52: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Two Tone Driving

ω

L. F. Buchmann & D. M. Stamper-Kurn, Phys. Rev. A (2015)

ω2 - ω1

Page 53: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Resonator 2

ω2/2π = 659 kHz

g2/2π = 1.1 Hz

Resonator 1

ω1/2π = 297 kHz

g1/2π = 0.8 Hz

1 mm 1 mm

Front Side Back Side

50 mm 0.5 mm

λ = 1064 nm

Page 54: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Single Shot Measurement of the Optomechanical

Swapping Interaction

Am

pli

tud

e

M.Weaver et al. Nature Comm.2017

M. Weaver, et al. PRA 2018

Page 55: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

New scheme for creating and testing macroscopic superpositions

Page 56: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Bending in DBR mirror and clamping of mirror

Complication 2

Page 57: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Investigate bending in DBR mirror and clamping of mirror (M. Weaver)

Mechanical quality factor stuck at max 1,000,000

Limitation caused by multilayer structures

Page 58: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Phononic crystals membrane (F. Luna): Q= 50,000,000 at room temp!

(following Y.Tsaturyan,…A. Schliesser, Nat. Nanotech. 12, 776 (2017))

Page 59: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Phononic crystals membrane (D. Newsom, F. Luna)

Mass and interaction enhancement

Page 60: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Phononic crystals membrane (D. Newsom, F. Luna)

Mass and interaction enhancement

Page 61: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Complication 3: STIRAP (Stimulated Raman Adiabatic Passage)

Page 62: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

STIRAP (Stimulated Raman Adiabatic Passage)

Page 63: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

STIRAP (Stimulated Raman Adiabatic Passage)

ω1 ω2

Page 64: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

STIRAP (Stimulated Raman Adiabatic Passage) P

honon p

opula

tion

Page 65: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

STIRAP (Stimulated Raman Adiabatic Passage)

Page 66: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

Three Main technical Complications:

1) Optomechanical coupling not strong enough.

Solution: entangle two or more mechanical modes

2) Mechanical Q’s not high enough.

Solution: use phononic photonic crysta membranes

3) Optical heating.

Solution: use STIRAP method

Page 67: The collapse of the quantum wave function...The collapse of the quantum wave function UBC Quantum Information: Quo Vadis? 14 November 2019 Dirk Bouwmeester, Vitaliy Fedoseev, Wolfgang

ω1 ω2

Currently installed in fridge