44
The Aldol Reaction General Principles - Reaction can be effected under acidic or basic conditions • General Reactivity R O R O R OH H H + H with acid R O R O OH R R O R -H 2 O R O H base R O with base R O R O O R R O R -H 2 O R O base or H + R"CHO R O R' R O OH R" R" R' R'

The Aldol Reaction - Chemistry | A&S | SUchemistry.syr.edu/totah/che676/support/3b1/8-1.Aldol.pdfThe Aldol Reaction General Principles ! !! - Reaction can be effected under acidic

Embed Size (px)

Citation preview

The Aldol Reaction

General Principles ! ! !

- Reaction can be effected under acidic or basic conditions

• General Reactivity

R

O

R

O

R

OHH

H+H

with acid

R

O

R

O OH

R R

O

R-H2O

R

OH

base

R

O

with base

R

O

R

O O

R R

O

R

-H2O

R

O base or H+

R"CHO R

O

R' R

O OH

R" R"R' R'

The Aldol Reaction

General Principles ! ! !

• Hindered Enolates

- Equilibrium varies with counterion

O M

PhCHOO OH

M = Li MgBr

16%93%

O OM

The Aldol Reaction

Symmetrical Aldol ! ! !

• Self Condensation

H

O NaOHH2O, 4-5°C

H

O OH

CHO

CHO tBuOK (1 equiv)tBuOH

CHO

ONaOEtEtOH O OH

O HCl- H2O

O

The Aldol Reaction

Mixed Aldol ! ! !

• Equilibrium Conditions

CHO

CH3 CHOH

O

CH3

OH

H

O OH

H

O OH

H

O

CH3

OH

base

selfcondensation

mixedaldol

The Aldol Reaction

Mixed Aldol ! ! !

• Equilibrium Conditions

- one component is non-enolizable

- one component is more acidic than the other

H

O H

OKOHEtOH

H

O

+

H

O

H H

O K2CO30°C+

H

O

HO

O O O NaOHrt+

O O

The Aldol Reaction

Mixed Aldol ! ! !

• Equilibrium Conditions

- aldehyde + ketone (Claisen-Schmidt)

• Kinetic Conditions

O CHO

O KOHrt O

O

+

OR

H R'

O

OLiR

LDA O

RR'

OH

-78*C

The Aldol Reaction

Stereochemistry ! ! !

• Z-Enolate syn product

• E-Enolate anti product

R

O

R'R"

OHR

O

R'

+H R"

O

E

anti

generalizations 1. Z-enolates (thermodynamic) give predominately syn aldol products 2. E-enolates (kinetic) give predominately anti aldol products 3. diastereoselectivity is higher with Z-enolates

R

OR' +

H R"

O

R

O

R'R"

OH

Z

syn

The Aldol Reaction

Stereoselective Generation of Enolates ! ! !

conditions E : Z ratio

LDA 77 : 23

LTMP 86 : 14

LDA, HMPA 5 : 95

LTMP, HMPA 8 : 92

O baseTHF, -78°C

O O+

kinetic

thermodynamic

• ketones

The Aldol Reaction

Stereoselective Generation of Enolates ! ! !

• Ireland model

R MeO

O

LiN H

R

H Me O

LiN H

R

Me H

E-enolate Z-enolate

A1,2 strain1,3-diaxialinteraction

favored with bulky bases

The Aldol Reaction

Stereoselective Generation of Enolates ! ! !

• Ireland model

generalizations - Model breaks down in polar solvents no chair TS - Trends in selectivity work well in ketones so long as R is small

R1 R2 E : Z ratio

tBu Me 2 : 98

Me Ph 93 : 7

R1 R2O LDA

THF, -78°C R1

R2

O

R1 R2O

+

The Aldol Reaction

Stereoselective Generation of Enolates ! ! !

• esters

RO

O LDAsolvent, -78°C RO

O

RO

O+

E Z

• amides

Me2N

O LDAMe2N

O

Me2N

O+

3 : >97

R solvent E : Z ratio

Me THF 95 : 5

tBu THF 95 : 5

Me THF / HMPA 16 : 84

tBu THF / HMPA 15 : 85

tBu THF / DMPU 7 : 93

kinetic

thermodynamic

The Aldol Reaction

Aldol Stereochemistry – Zimmerman-Traxler model ! ! !

• Z-enolate syn aldol product

R

OMR1 +

H R2

O

R

O

R1R2

OH

R

OMR1

+

H R2

O

O OM

HH

O OM

R2H

R1

R2

R1

R

R

H

O OM

HH

R2

R1

R

R

O

R1R2

OH

syn(major)

O OM

R2H

R1

R

HR

O

R1R2

OH

anti(minor)

Favored

Disfavored

Z

The Aldol Reaction

Aldol Stereochemistry – Zimmerman-Traxler model ! ! !

• E-enolate anti aldol product

R

O

R1R2

OH

R

OM

R1+

H R2

O

R

OM

R1

+

H R2

O

O OM

HR1

O OM

R2R1

H

R2

H

R

R

H

O OM

HR1

R2

H

R

R

O

R1R2

OH

anti(major)

O OM

R2R1

H

R

HR

O

R1R2

OH

syn(minor)

Favored

Disfavored

E

The Aldol Reaction

Aldol Stereochemistry ! ! !

• M-O bond lengths

generalizations 1. Stereoselectivity generally higher with Z-enolates 2. Diastereoselectivity maximized when R / R2 are large 3. Diastereoselectivity increases as shorten M-O bonds

Li-O 1.92 – 2.00 Å

Mg-O 2.01 – 2.03 Å

Zn-O 1.92 – 2.16 Å

B-O 1.36 – 1.47 Å

Ti-O 1.62 – 1.73 Å

Zr-O 2.15 Å

The Aldol Reaction

Aldol Stereochemistry ! ! !

• M-O bond lengths

generalizations 1. Stereoselectivity generally higher with Z-enolates 2. Diastereoselectivity maximized when R / R2 are large 3. Also: diastereoselectivity increases as shorten M-O bonds

Li-O 1.92 – 2.00 Å

Mg-O 2.01 – 2.03 Å

Zn-O 1.92 – 2.16 Å

B-O 1.36 – 1.47 Å

Ti-O 1.62 – 1.73 Å

Zr-O 2.15 Å

• Diastereoselection B > Li > Na > K

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Boron enolates

R

OM PhCHOR

O

Ph

OH

R

O

Ph

OH+

R M syn : anti ratio

Ph Li 88 : 12

B(C4H9)2 >97 : 3

Et Li 80 : 20

B(C4H9)2 >97 : 3

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Z-Boron enolates

OB(Bu)2O Bu2BOTfiPrNEt2

OiPr

H Me

H

BO

iPrMe H

H

B OiPr

H Me

HBBu

Bu

BuBu

BuBu

small alkylgroup

iPr NiPr

Et

OTf

largebase

disassociatedanion

OBBu2iPr

H Me

Z-boron enolate

The Aldol Reaction

Aldol Stereochemistry ! ! !

• E-Boron enolates

OB(Cy)2O Cy2BClEt3N

OiPr

Me H

H

B OiPr

H Me

HB

large alkylgroups

Et NEt

Et

smallbase

boundanion

OBCy2iPr

Me H

E-boron enolate

Cl ClO

iPrH Me

HB

Cl

note kinetic deprotonation

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Boron enolates

boron aldols are NOT reversible!

OB(Bu)2 PhCHOR

O

Ph

OHO

OB(Cy)2 PhCHOR

O

Ph

OHO

Bu2BOTfiPrNEt2

(Cy)2BClEt3N

>97% (Z)

>99% (E)

syn >99%

anti >97%

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Chiral aldehyde

Ph

O

Ph

O OH

Ph

O OHor

H

OPh+

OMe

Ph Ph

OMe OMe

?

Ph

OM

+

OMO

H

Ph

Ph

O OH

OMO

H

H

H Ph

O OH

Favored

Disfavored

H

OPh

OMe

Ph

OMe

Ph H

PhO

MO

H

H

H

Ph

MeO

PhH

H

MeO

H Ph

H Ph

OMeOMO

H

PhH

MeO

HPh

H

OMe

major

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Chiral aldehyde

Ph

OM

+

OMO

H

Ph

Ph

O OH

OMO

H

H

H Ph

O OH

Favored

Disfavored

H

OPh

OMe

Ph

OMe

Ph H

PhO

MO

H

H

H

Ph

MeO

PhH

H

MeO

H Ph

H Ph

OMeOMO

H

PhH

MeO

HPh

H

OMe

OMO

H

H

H

Ph

H

MeO Ph

major

Ph

O OH

Ph

O OHorPh Ph

OMe OMe

?

The Aldol Reaction

Aldol Stereochemistry ! ! !

• Prochiral enolate and chiral aldehyde

O

O OHO OHor

H

OPh+

Me

PhPh

MeMe

O OHO OHor PhPh

MeMeA B C D

or

The Aldol Reaction

Asymmetric Aldol ! ! !

• Evans aldol

NHO

O

NHO

O

MePh

NHO

O

Bn

NHO

O

BnA B C D

- reaction is highly diastereoselective if R ≠ H (R = Me, dr is >300 : 1) - favors syn product - tolerates broad range of aldehydes - reliable - can access either antipode of aldol product by choice of oxazolidinone auxiliary

NO

OR

O

NO

OR

OnBu2BOTf, iPr2NEt

CH2Cl2, 0°CR'CHO

-78°C to rtNO

O O

R

OH

R'

BBu2

R ≠ H

The Aldol Reaction

Asymmetric Aldol ! ! !

• Evans aldol

- poor selectivity when R = H (dr = 1:1)

acetate aldol equivalent

NO

OSMe

O

NO

O O

SMe

OH

R' NO

O O OH

R'Ra(Ni)

dr = 60 : 1

NO

OH

O

NO

O OnBu2BOTf, iPr2NEt

CH2Cl2, 0°CR'CHO

-78°C to rtNO

O O OH

R'

BBu2

The Aldol Reaction

Asymmetric Aldol ! ! !

• Evans aldol

NO

OR

O

NO

OR

OnBu2BOTf, iPr2NEt

CH2Cl2, 0°CR'CHO

-78°C to rtNO

O O

R

OH

R'

BBu2

selectivity model

!

The Aldol Reaction

Asymmetric Aldol ! ! !

• Evans aldol

auxiliary cleavage

NO

O O OH

NO

O O

-78°C to rt

BBu2OHC R

RNO

O O OH

-78°C to rt

OHC RR

NO

O O OP

N

O OHMe(OMeNH•HCl

AlCl3LiOH

LiOOH, THFHO

O OP

HO

OP Ti(OBn)4

BnO

O OP

MeO

R

O OP

H

O OH

DIBALLiBH4

or LiAlH4

1. protect2. RMgX

(P = H)

The Aldol Reaction

Asymmetric Aldol ! ! !

• Anti aldol from Z-enolates

examples

H

O

H

OO PhH

O

PhH

OH

O

H

O

91% yield(dr = 44 : 1)

80% yield(dr = 6 : 1)

92% yield(dr = 28 : 1)

92% yield(dr = 21 : 1)

77% yield(dr = 16 : 1)

65% yield(dr = 30 : 1)

NO

O

Ph

MeO

NO

O

Ph

OMgCl2 (10 mol %)

R3N, TMSCl (1.2 equiv)R'CHO NO

O

Ph

O OH

R'

MgLn

Me

EtOAc, rt Me

The Aldol Reaction

Asymmetric Aldol ! ! !

• Anti aldol from Z-enolates

selectivity model

NO

O

Ph

MeO

NO

O

Ph

OMgCl2 (10 mol %)

R3N, TMSCl (1.2 equiv)R'CHO NO

O

Ph

O OH

R'

MgLn

Me

EtOAc, rt Me

OMgO

PhMe

HOH2

H2OBr

NO

O Bn

NO

O

Bn

O OH

PhMe

H

The Aldol Reaction

To This Point: ! ! !

• Type I Aldol: Metal Aldol Process

- run in presence of either stoichiometiric or catalytic base

XR

H R' XR

XR

XR

O O O OM

R'

OHO

R'

O

M

B M H B Mslow

The Aldol Reaction

Alternate Process: ! ! !

• Type II Aldol: Mukaiyama Aldol

O OTMS O OHLDA

TMSClTiCl4 (1.02 equiv)

PhCHO-78°C, CH2Cl2

then aq H+ workup

XR

H R' XR

XR

XR

O O O OM

R'

OO

R'

O

TMS

M Mslow

M

XR

O OM

R'X

TMS

TMS X

TMS

MX = Lewis acid

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• examples

H

OTMS

H

O OHTiCl4

-78°C, CH2Cl2Ph

OPhH

86%

O

LDATMSCl

Et3NTMSCl

OTMS

OTMS

PhCHOTiCl4

PhCHOTiCl4

O

O OH

Ph

Ph

OH

81%

58%

Lewis acids: TiCl4, BF3•OEt2, SnCl4, SnCl2

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• stereochemistry

selectivity models

O

R'HC

C

R R

M

R OTMS

O

R'HC

R

C R

MR

TMSOOMO

RR'

R

MeR

Closed TS Open TS

anti-periplanar syn-clinal

Metallate Aldol Mukaiyama Aldol

- complicated by fact that Mukaiyama aldol thought to proceed through open TS - less ordered - two competing open TS do not vary significantly in enegry

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• stereochemistry

selectivity models

O

R'HC

C

R R

M

R OTMS

O

R'HC

R

C R

MR

TMSOOMO

RR'

R

MeR

Closed TS Open TS

anti-periplanar syn-clinal

Metallate Aldol Mukaiyama Aldol

- complicated by fact that Mukaiyama aldol thought to proceed through open TS - less ordered - two competing open TS do not vary significantly in enegry

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• stereochemistry

R1H

TMSO

R1

O

R3

OH

R2R3

O

HR2 + R1

O

R3

OH

R2orLewis

acid

R1

O

R3

OH

R2

R1

O

R3

OH

R2

O

HR3C

C

H R2

M

R1 OTMS

O

HR3C

C

R2 H

M

R1 OTMS

O

HR3C

C

H R2

M

TMSO R1

O

HR3C

C

R2 H

M

TMSO R1

Z-enol ether E-enol ether

syn

anti

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• stereochemistry

tBu

TMSO

MeO

O

Ph

OH

MePh

O

HMe + BF3•OEt2

MeO

O

Ph

OH

Me

+

5 : 95

EtOMe

TMSO

MeO

O

Ph

OH

MePh

O

H+ TiCl4

MeO

O

Ph

OH

Me

+

2 : 1

EtO

TMSO

MeO

O

Ph

OH

MePh

O

HMe + TiCl4

MeO

O

Ph

OH

Me

+

3 : 1

The Aldol Reaction

Mukaiyama Aldol: ! ! !

• related processes

MeO

TMSO

MeO

O OHPh

OPh

94%

+ TiCl4

OTMS O

95%

TiCl4PhPh

OPh O

Ph+

H

TMSO

MeO Ph H Ph

O OMeMeO+

88%

TiCl4

Related Processes

Claisen Condensation: ! ! !

mechanism

EtO

O 1. NaOEt (1 equiv)2. H3O+ EtO

O O

EtO

O

R

O EtO

O

EtO

O OEt

EtO

O O

- EtO-NaOEt O

EtO

O O H3O+

EtO

O ONaOEt

EtOH

• self condensation

Related Processes

Claisen Condensation: ! ! !

• mixed Claisen

Ph

O 1. NaOEt (1 equiv)2. H3O+ Ph

O O+

EtO

O

MeO OMe

O

MeO

O

MeO

OMe

OMe

O

OMe

OMe

N+

H

HH O-

coccinellene

NaHDME

- useful for preparation of simple β-keto esters and diketones

EtO

O

EtO

O

Ph

O+

EtO Ph

O 1. tBuOK (excess), DMF2. H3O+

Related Processes

Claisen Condensation: ! ! ! • Dieckman condensation (intramolecular Claisen)

O O O O

CO2MeO

CO2MeMeO2C

NaOMe (xs);MeI

Me

EtO

O

O

1. NaOEt (xs)2. H3O+

O O

MeO2C

CO2Me

1. NaH, DME2. H3O+

O

MeO2C

Related Processes

Mannich Reaction: ! ! !

R HO O

H R1HN R"2

R

O NR"2

R'CF3CO2Hor pTsOH+ +

enolizablecarbonyl

non-enolizablecarbonyl

1° or 2°amine

β-aminocarbonyl

• tropanone

N

O

Me

CHO

CHOMe NH2

OR R

NMe OHN

OH+

(R = H)

Robinson J. Chem. Soc. 1917, 762.

Related Processes

Mannich Reaction: ! ! !

OH2C=O + Me2NH

CF3CO2H+

O

NMe2

O H

H

Me

N NMe

Me

H

HOHO H

H

Me

NMeH Me

H2C=OΔ, 20h

NBoc

NBn

Cl BrO

OMe

OTMS

CF3CO2H-78°C - rt

NBoc

NBn

BrO

MeO2C

R HO O

H R1HN R"2

R

O NR"2

R'CF3CO2Hor pTsOH+ +

enolizablecarbonyl

non-enolizablecarbonyl

1° or 2°amine

β-aminocarbonyl

Related Processes

Michael Reaction: ! ! !

Ph CO2Et EtO2C CO2Et NaOEtEtOH Ph

CO2Et

CO2EtEtO2C

+

Ph CO2Et EtO2C CO2EtNaOEtEtOH

Ph CO2Et

CO2EtEtO2C+

Michael 1887

NCN

EtOH, Δ

NCN H3O+

OCN

Related Processes

Michael Reaction: ! ! !

Michael acceptors (W) Michael donors

W = electron withdrawing group Nu = heteroatom or highly stabilized carbanion

R ,

O

OR ,

O

NR2 ,

OS R ,

OP OR

OOR

-NO2 , -CN , -SO2Ar , - PR3 -OH , -OR , SH , -SR , -NH2 , -NHR , etc.

R ,

O

OR ,

O

R

O

R

O

OR ,

O

RO

O

base: K2CO3, Et3N, piperidine, KOH, NaOH, KOtBu, NaH, etc.

W+ WNuNu H

base

Related Processes

Michael Addition ! ! !

• Examples

N

O

O O

K2CO3THF, Δ

N

O O

O

98%

OHI

O

O

MeO

CO2Me

Et3NO

I

O

O

MeO

CO2Me89%

NEtO CO2Et

MeEtO2C

NEtO CO2Et

EtO2C

O

NEtO CO2Et

HO

O

LDA;

O

1.2. EtOH

85%