13
The Principle of Vinylogy: The Principle of Vinylogy: Potential and Applications in the Asymmetric Aldol/Mannich/Michael Reaction Domain Franca Zanardi Aldol/Mannich/Michael Reaction Domain Università degli Studi di Parma [email protected] Ischia Advanced School of Organic Chemistry Sant’AngeloIschia, Napoli September 2226, 2012 The Principle of Vinylogy Fuson, R. C. Chem. Rev. 1935, 16, 1-27 Fuson, R.C., 18951979 1828 1872/1873 1917 1935 Whöler 1838 Wurtz/Borodin 1887 Mannich 1928 Fuson IASOC2012 1838 Kane 1887 Michael 1928 Diels- Alder IASOC2012 The Principle of Vinylogy “It has long been recognized that, in a molecule containing a system of conjugated double linkages the influence of a functional group may sometimes conjugated double linkages, the influence of a functional group may sometimes be propagated along the chain and make itself apparent at a remote point in the molecule…” … the generalization takes the following form: When in a compound of type A– E 1 =E 2 or A–E 1 E 2 , a structural unit of type –(CH=CH) n – is interposed between A and E 1 the function of E 2 remains qualitatively unchanged, but that of E 1 may 1 2 1 be usurped by the carbon atom attached to A. The resulting compound will have the form of A(CH=CH) n E 1 =E 2 … and in a any given series of this type the members will differ from each other by one or more vinylene residues. It is proposed to term such a group of compounds a vinylogous series. The members of a vinylogous series will then be vinylogs of one another.” Vinylogous Series Henrich (1899, 1902); Blaise (1903); Prager (1905); Dieckmann (1908, 1914) Claisen, R.L. Chem Ber. 1926, 59, 144; Angeli, A. Atti Acad. Lincei 1926, 3, 371 Angeli, A., 18641931 Claisen, R.L., 18511930 …anomalies cease to be anomalous…

The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

The Principle of Vinylogy:The Principle of Vinylogy:Potential and Applications in the Asymmetric

Aldol/Mannich/Michael Reaction Domain

Franca Zanardi

Aldol/Mannich/Michael Reaction Domain

Università degli Studi di Parma

[email protected]

Ischia Advanced School of Organic ChemistrygSant’Angelo‐Ischia, NapoliSeptember 22‐26, 2012

The Principle of Vinylogy

Fuson, R. C. Chem. Rev. 1935, 16, 1-27

Fuson, R.C., 1895‐1979

1828 1872/1873 1917 1935Whöler

1838

Wurtz/Borodin

1887

Mannich

1928

Fuson

IASOC20121838Kane

1887Michael

1928Diels-Alder

IASOC2012

The Principle of Vinylogy

“It has long been recognized that, in a molecule containing a system ofconjugated double linkages the influence of a functional group may sometimesconjugated double linkages, the influence of a functional group may sometimesbe propagated along the chain and make itself apparent at a remote point inthe molecule…”

… the generalization takes the following form: When in a compound of type A–E1=E2 or A–E1E2, a structural unit of type –(CH=CH)n– is interposed between Aand E1 the function of E2 remains qualitatively unchanged, but that of E1 may1 f f 2 q y g , f 1 ybe usurped by the carbon atom attached to A. The resulting compound willhave the form of A(CH=CH)nE1=E2… and in a any given series of this typethe members will differ from each other by one or more vinylene residues. It isproposed to term such a group of compounds a vinylogous series. Themembers of a vinylogous series will then be vinylogs of one another.”

Vinylogous Series

Henrich (1899, 1902); Blaise (1903); Prager (1905); Dieckmann (1908, 1914)

Claisen, R.L. Chem Ber. 1926, 59, 144; Angeli, A. Atti Acad. Lincei 1926, 3, 371

Angeli, A., 1864‐1931Claisen, R.L., 1851‐1930

…anomalies cease to be anomalous…

g , , 4 93

Page 2: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

Vinylogous Series

Koenigs, W. Chem. Ber. 1901, 34, 4326

Angeli’s rule: “In ortho- and para-disubstituted benzenederivatives (A-C6H4-B), the substituents (A and B) reactas though the benzene ring were not present (as A B) ”as though the benzene ring were not present (as A-B).Angeli, A. Sammlung Prof. Ahrens, Stuttgart 1926, 28, 1

(Hyper)vinylogous (Hyper)alkynilogous (Hyper)phenylogous

Vinylogous Series in the Michael and Aldol Domains:the Acceptor‐to‐Donor Swapthe Acceptor to Donor Swap

Normal Vinylogous Hypervinylogousy g Hypervinylogousfunction

carbonyl

Nu

1,2

Nu Nu1,2 1,2

Nu

1,2n+4

Nu1,4/1,6…

Nu1,4

electrophilicity

B M B H B M B H

a1 a1,3 a1,3,…,2n+1

C-H acidity/

B-M - B-H B-M - B-H B-M - B-H

C H acidity/nucleophilicity

E

E

E

EE

E

d2 d2 4 d2 4 2n+2

lowcomplexity

high

d2 d2,4 d2,4,..2n+2

Vinylogy: a Domain as Wide as the Organic Synthesis

E E E EE E

E

E

E

EE

E

Normal Vinylogous Hypervinylogousfunction

•alkylation•amination•aldol addition/condensationM i h ddi i

•halogenation•Claisen condensation•Reformanski addition

h l dd

Focus

•Mannich addition •Michael addition

The Evolution of the Aldol‐Mannich Chemistry: Increasing Product ComplexityIncreasing Product Complexity

normal(many examples)

two stereocentersno double bonds(1,3-relationship)

vinylogous(several examples)

two stereocenters(several examples) one double bond

(1,5-relationship)

hypervinylogous(few examples)

two stereocentersseveral double bonds

(1,7, 1,9,…relationship)

Critical Issues:•enolate production and geometry•reactivity and chemoselectivityy y•regio‐ and stereocontrol• double‐bond(s) positioning and geometry

Page 3: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

The Evolution of the Michael Chemistry:Increasing Product ComplexityIncreasing Product Complexity

l two stereocentersnormal(many examples)

vinylogous

two stereocentersno double bonds(1,5-dicarbonyl)

two stereocentersy g(several examples) one double bond

(1,7-dicarbonyl)

hypervinylogous(few examples)

two stereocentersseveral double bonds(1,7, 1,9,…dicarbonyl)

hyper-hypervinylogous

(no examples)

two stereocentersmany double bonds

(1,7+2m+2n dicarbonyl)

Critical Issues:•enolate production and geometry•reactivity and chemoselectivity

Full mastery of these issuesgives the measure of the

l i f i l i h•reactivity and chemoselectivity•regio‐ and stereocontrol• double‐bond(s) positioning and geometry

evolution of vinylogy in thealdol/Mannich/Michael domains

RoutesRoutes to to PreformedPreformed, , MukaiyamaMukaiyama‐‐TypeType Extended Carbon Extended Carbon NucleophilesNucleophiles for Use in for Use in IndirectIndirect Vinylogous andVinylogous andpp y gy g

HypervinylogousHypervinylogous MethodologiesMethodologies

nucleophilepro-nucleophilestoichiometric HOMO-raising activation

base, R3SiX

From -enolizable -unsaturated carbonyls (and higher homologues)

base R SiXbase, R3SiX

O.C. 0.289 0.042 0.311 0.130E.S. 0.572 0.084 0.614 0.257

O.C. 0.302 0.090 0.230 0.219E.S. 0.592 0.177 0.451 0.429

O.C. 0.280 0.083 0.243 0.235E.S. 0.550 0.165 0.478 0.461

O.C.: HOMO orbital coefficients; E.S.: electrophilic susceptibility

Denmark, S.E. et al. ACIE. 2005, 44, 4682

FromFrom --enolizableenolizable --unsaturatedunsaturated carbonylscarbonyls (and (and higherhigher homologueshomologues))

Mukaiyama, T. et al. Chem. Lett. 1975, 1201

NaHMDS,TBSCl,

OOH

CO H17

O

N O

O

THF, -78°C

TBSO

N O

O90% OH9

O

O

OOH

CO2H

OH

17

KhafrefunginKobayashi, S. et al. JACS. 2004, 126, 13604; OL. 2007, 9, 849y , , , ; , ,

0.070.11 0.07

List, B. et al. ACIE. 2011, 50, 754

FromFrom --enolizableenolizable --unsaturatedunsaturated carbonylscarbonyls (and (and higherhigher homologueshomologues))

Yoshii, E. et al. Heterocycles 1976, 4, 1663; Takei, H. et al. Bull. Chem. Soc. Jpn. 1979, 52, 1953; Ricci,A.; Taddei, M. et al. Heterocycles 1982, 19, 2327; Boukouvalas, J. et al. Tele 1987, 28, 4037; Brown,D.W. et al. Tele 1987, 28, 985; Casiraghi, G.; Rassu, G. et al. Tele 1989, 30, 5325; Synlett 2009, 1525

The TAKEI-CASIRAGHI reaction

Organic Syntheses Based on Named Reactions, A.Hassner and I. Namboothiri Eds., Third Edition, 2011,Elsevier

OL 2011, 13, 4738

Page 4: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

FromFrom --enolizableenolizable --unsaturatedunsaturated carbonylscarbonyls (and (and higherhigher homologueshomologues))

EurJOC 2012, 466

Silva Santos, L. TeLe 2010, 51, 1770

FromFrom acetoacetatesacetoacetates

Reviews: Scettri, A. et al. Curr. Org. Chem. 2004, 8, 993; Denmark, S.E. et al. ACIE 2005, 44, 4682

Evans, D.A. et al. Tetrahedron 2008, 64, 4671

FromFrom deconjugateddeconjugated ((allylicallylic) ) carbonylscarbonyls//nitrilesnitriles

Denmark, S.E. et al. JOC 2007, 72, 5668

Denmark, S.E. et al. JACS 2012, 51, 3236

OtherOther modalitiesmodalities??

From 1 4-dicarbonyl equivalents lessons from Natural Products From 1,4 dicarbonyl equivalents…lessons from Natural Products

Hoye, T.R. et al. OL 2006, 8, 5191

Page 5: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

RoutesRoutes to to in Situin Situ‐‐GeneratedGenerated SubstoichiometricSubstoichiometric ExtendedExtendedCarbon Carbon NucleophilesNucleophiles for Use in Direct Vinylogous/for Use in Direct Vinylogous/HypervinylogousHypervinylogous

MethodologiesMethodologies

•Lessons from the past centuries

•Lessons from the past centuries

RoutesRoutes to to in Situin Situ‐‐GeneratedGenerated SubstoichiometricSubstoichiometric ExtendedExtendedCarbon Carbon NucleophilesNucleophiles for Use in Direct Vinylogous/for Use in Direct Vinylogous/HypervinylogousHypervinylogous

MethodologiesMethodologies

Review: Ramachary, D.B. et al. EurJOC 2012, 865

Melchiorre, P. et al. JACS 2011, 133, 15212

VMcR vsHVMcR!

Jørgensen , K.A. et al. JACS 2012, 134, 122943

RoutesRoutes to to in Situin Situ‐‐GeneratedGenerated SubstoichiometricSubstoichiometric ExtendedExtendedCarbon Carbon NucleophilesNucleophiles for Use in Direct Vinylogous/for Use in Direct Vinylogous/HypervinylogousHypervinylogous

MethodologiesMethodologies

Chen, Y.-C.; Deng, J.-G. et al. ACIE 2007, 46, 389

Page 6: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

RoutesRoutes to to in Situin Situ‐‐GeneratedGenerated SubstoichiometricSubstoichiometric ExtendedExtendedCarbon Carbon NucleophilesNucleophiles for Use in Direct Vinylogous/for Use in Direct Vinylogous/HypervinylogousHypervinylogous

MethodologiesMethodologies

Mukherjee, S. et al. Chem. Commun. 2012, 5193

RoutesRoutes to to in Situin Situ‐‐GeneratedGenerated SubstoichiometricSubstoichiometric ExtendedExtendedCarbon Carbon NucleophilesNucleophiles for Use in Direct Vinylogous/for Use in Direct Vinylogous/HypervinylogousHypervinylogous

MethodologiesMethodologies

ACIE 2012, 51, 6200

Five‐ and Six‐Membered Carbasugars: Retrosynthesis

X = O, NPG, S

X = O, NPG, S

Key‐steps sequence

1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 bonding

2. silylative cycloaldolization, C3‐C4 or C4‐C5 bonding

3. reductive or hydrolytic C5‐X or C6‐X bond fission

JOC. 2000, 65, 6307; JOC 2001, 66, 8070; EurJOC 2002, 1956;JOC. 2002, 67, 5338; JOC 2003, 68, 5881; JOC 2004, 69, 1625

Variable Synthesis of Hydroxylated Aminocyclopentane and Aminocyclohexane Carboxylic AcidsAminocyclohexane Carboxylic Acids

JOC. 2002, 67, 5338

Page 7: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

Medium‐Sized Aminocyclitols

Key‐steps sequence1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding2. Morita‐Baylis‐Hillman reaction, C5‐C6 diastereoselective bonding3. bilateral oxidative diol fragmentation4. intramolecular pinacol couplingp p g5. N1‐C7 hydrolytic fission

JOC 2006, 71, 225

Synthesis of Aminocyclitols

JOC 2006, 71, 225

Direct VMAR/VMMcRModalities of Pyrrolinone Donors

JOC 2008, 73, 5446

Tetrahedron 2008, 64, 11697

PyrrolePyrrole‐‐//FuranFuran‐‐BasedBased SilylSilyl DienolatesDienolates and Water:and Water:A A FFruitfulruitful RRelationshipelationship in VMAR/in VMAR/VMMcRVMMcR ProcessesProcessesu t uu t u e at o s pe at o s p // cc ocessesocesses

JOC 2010, 75, 8681

Page 8: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

PyrrolePyrrole‐‐//FuranFuran‐‐BasedBased SilylSilyl DienolatesDienolates and Water:and Water:A A FFruitfulruitful RRelationshipelationship in VMAR/in VMAR/VMMcRVMMcR ProcessesProcessesu t uu t u e at o s pe at o s p // cc ocessesocesses

One‐Pot Three‐Step Entry to Functionality‐Rich Pyrroles

Adv. Synth. Catal. 2011, 353, 1966y , ,

Catalytic, Asymmetric VMAR of Pyrrole‐ and Furan‐BasedSilyl DienolatesSilyl Dienolates

Optimized conditions: aldehyde (1.0 equiv); dienesubstrate (2.0 equiv); DIPEA (10.0 mol%); 0.25 Min CH2Cl2 at -78 °C; reaction time 20 h

Tele 2009, 50, 3428; Adv. Synth. Catal. 2010, 352, 2011

Substrate Scope for the Asymmetric VMAR of Pyrrole‐BasedSilyl DienolatesSilyl Dienolates

Tele 2009, 50, 3428; Adv. Synth. Catal. 2010, 352, 2011

Substrate Scope for the Asymmetric VMAR of Furan‐BasedSilyl DienolatesSilyl Dienolates

Tele 2009, 50, 3428; Adv. Synth. Catal. 2010, 352, 2011

Page 9: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

Proposed Transition State Models for the AsymmetricVMAR of Pyrrole/Furan Silyl DienolatesVMAR of Pyrrole/Furan Silyl Dienolates

Tele 2009, 50, 3428; Adv. Synth. Catal. 2010, 352, 2011

CatalyticCatalytic, , AsymmetricAsymmetric Vinylogous Vinylogous MannichMannich ReactionsReactions of of PyrrolePyrrole‐‐BasedBased SilylSilyl DienolatesDienolates with with NN‐‐ArylAryl IminesIminesy o ey o e BasedBased S yS y D e o atesD e o ates tt yy eses

Protocol A

R = mainly Aromatic

Protocol B

R = mainly Aliphatic

Conditions A:i-PrOH/H2O (1.5 equiv), undistilled THF 0 °C 16 h

Conditions B:MgSO4, i-PrOH/H2O, THF, 30 °C

JOC 2011, 76, 2248; JOC 2011, 76, 10291

undistilled THF, 0 °C, 16 h, in air

-30 C

SubstrateSubstrate Scope Scope forfor the the AsymmetricAsymmetric TwoTwo‐‐ComponentComponentVMMnRVMMnR ofof PyrrolePyrrole SilylSilyl DienolatesDienolates ((ProtocolProtocol A)A)yy yy (( ))

PPh2

N

t-Bu HN

OOMe

II

JOC 2011, 76, 2248

SubstrateSubstrate Scope Scope forfor the the AsymmetricAsymmetric ThreeThree‐‐ComponentComponentVMMnRVMMnR ofof PyrrolePyrrole SilylSilyl DienolatesDienolates ((ProtocolProtocol B)B)yy yy (( ))

N

t-Bu HNNH

SMe

ONH2

MeS

MeO

II (5 mol%) AgOAc (5 mol%)PPh2

OOMe

IIN

TMSO

+N

O

RCbz

Cbz

H R +

OMeMgSO4, i-PrOH/H2O, THF, -30 °C

II (5 mol%), AgOAc (5 mol%),

: >99:1

NH

SMeMeO

NH

SMeMeO

NH

SMeMeO

O SNH

SMeMeO

66% yield>95:5 dr anti:syn

79% yield>95:5 dr anti:syn

51% yield>95:5 dr anti:syn

N

OCbz

N

OCbz

N

OCbz

OTBS

66% yield89:11 dr

N

O CbzO

O

>95:5 dr anti:syn97:3 er (anti)

>95:5 dr anti:syn97:3 er (anti)

>95:5 dr anti:syn91:9 er (anti)

89:11 dr

JOC 2011, 76, 10291

Page 10: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

AsymmetricAsymmetric ThreeThree‐‐ComponentComponent VMMnRVMMnR of of PyrrolePyrrole SilylSilylDienolatesDienolates: : SkeletalSkeletal ElaborationElaboration

JOC 2011, 76, 10291

ProposedProposed CatalyticCatalytic CycleCycle forfor the the AsymmetricAsymmetric VMMnRVMMnRbetweenbetween PyrrolePyrrole SilylSilyl DienolateDienolate and and NN‐‐ArylAryl ImineImine AcceptorsAcceptorsbetweenbetween PyrrolePyrrole SilylSilyl DienolateDienolate and and NN ArylAryl ImineImine AcceptorsAcceptors

N Ar

HtBuOAc

N

PPh

Ph

O

N

MeO

Ag

OAc

SiMe3

Oi-PrOH

Ph

R HD N

O

PGH

JOC 2011, 76, 2248; JOC 2011, 76, 10291

CatalyticCatalytic, , AsymmetricAsymmetric HypervinylogousHypervinylogous MukaiyamaMukaiyamaAldolAldol ReactionsReactions ofof ExtendedExtended FuranFuran SilylSilyl EnolatesEnolatesAldolAldol ReactionsReactions ofof ExtendedExtended FuranFuran SilylSilyl EnolatesEnolates

Conditions: Furan substrate (100 mg),aldehyde (1.1 equiv), DIPEA (10.0mol%), 0.1 M in CH2Cl2, -78 °C, 12 h

OL 2011, 13, 4738

Scope Scope ofof the the CatalyticCatalytic, , AsymmetricAsymmetric BisBis‐‐VinylogousVinylogousMukaiyamaMukaiyama AldolAldol ReactionReaction ofof SilyloxyfuranSilyloxyfuran TrieneTrieneyy y yy y

NucleophilesNucleophiles

O

OHOH

Me Br

OH

Ph Br

OH

tBu Br

77% yield67:33 dr (Z:E)

98:2/99:1 er (Z,E)

O

O81% yield

61:39 dr (E:Z)>99:1/97:3 er (E/Z)

O

O

Me Br

75% yield56:44 dr (Z:E)

>99:1/95:5 er (Z:E)

O

O 83% yield>95:5 dr (Z:E)>99:1 er (Z)

O

O

tBu

OL 2011, 13, 4738

Page 11: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

FurtherFurther Scope Scope ofof the the CatalyticCatalytic, , AsymmetricAsymmetric HVMAR HVMAR ofofExtendedExtended FuranFuran NucleophilesNucleophilesExtendedExtended FuranFuran NucleophilesNucleophiles

0.11

0.15

0.17 0.18

0.11

0.15

0.17 0.17

0.09

0.11

0.13 0.14 0.14

0.22 0.32 0.15 0.21 0.23

Atomic Fukui Indices in red OL 2011, 13, 4738

Introducing 3‐Alkenyl Indole Dienolates:A Novel Progeny of Vinylogous Carbong y y g

Nucleophiles

(indirect executions)

(direct executions)

“While 3-alkylidene oxindoles are well known for their electrophilic reactivity at C- position, the

nucleophilic properties of the related dienolate-type intermediates at C- position in vinylogous

functionalization reactions is rarely disclosed”

SiCl4‐Assisted VMAR of Olefinic Indole Silyl DienolatesHO

NOTBS

+

R

SiCl4, DIPEA, DMF

CH2Cl2, 20° CO

ArCHO

H3CH3C

HOAr

PGR

NO

PGR

H3C H3C H3C H3C H3C

HO HO HO HO HONO2 NO2

Me

OMe

Yield = 60%< 1:99

Yield = 63%< 1:99

NO

MocN

O

MocCl

Yield = 68%< 1:99

Yield = 70%< 1:99

Yield = 50%< 1:99

NO

BnN

O

BnN

O

Bn

1:99dr(Z:E) = 99:1

1:99dr(Z:E) = 95:5

< 1:99dr (Z:E) = 95:5

1:99dr (Z:E) = 95:5

< 1:99dr(Z:E) = 99:1

Eur. J. Org. Chem. 2012, 466

Catalytic, Asymmetric VMAR of Olefinic Indole SilylDienolatesDienolates

Eur. J. Org. Chem. 2012, 466

Page 12: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

Direct, Enantioselective Vinylogous Michael Addition of3‐Alkylidene Oxindoles to Nitroolefins3 Alkylidene Oxindoles to Nitroolefins

Optimized conditions (PG = Boc, Moc):Nu:El molar ratio 1 2:1; 4 mL of toluene; NNu:El molar ratio 1.2:1; 4 mL of toluene;0.4 mmol scale; -15 °C for 24 h followed by12 h at RT

N

MeO

N

NHN

S

CF3H

CF3III

ACIE 2012, 51, 6200

Generality of the Direct, Organocatalytic Asymmetric VMcRof 3‐Alkylidene Oxindoles with Nitroolefins3 y

ACIE 2012, 51, 6200

Generality of the Direct, Organocatalytic Asymmetric VMcRof 3‐Alkylidene Oxindoles with Nitroolefinsof 3 Alkylidene Oxindoles with Nitroolefins

Me NO2

Br

Me NO2Me NO2

O2NO

Ph NO2

Br

NO

Moc

NO

MocNO

Moc94% yield90% yield 89% yield

Cl NO

Moc96% yield

16:1 d.r., >99% ee>20:1 d.r., >99% ee >20:1 d.r., >99% ee19:1 d.r., >99% ee

Me NO2NO2MeMe NO2

S

NO

Moc

Me NO2

NO

MocN

O

Moc

Me O2

79% yield10:1 d.r., 97% ee

72% yield10:1 d.r., >99% ee

95% yield18:1 d.r., >99% ee

ACIE 2012, 51, 6200

PossiblePossible ModelsModels ofof DualDual ActivationActivation ofof the the NucleophilicNucleophilicand and ElectrophilicElectrophilic ReactionReaction ComponentsComponents byby the the CinchonaCinchona‐‐and and ElectrophilicElectrophilic ReactionReaction ComponentsComponents byby the the CinchonaCinchona

ThioureaThiourea CatalystCatalyst

ACIE 2012, 51, 6200

Page 13: The Principle ofVinylogy VinylogousSeries - IASOC · 2015-10-21 · 1. vinylogous Mukaiyama‐aldol reaction, C1‐C2 diastereoselective bonding 2. Morita‐Baylis‐Hillman reaction,

Vinylogous and Hypervinylogous Aldol/Mannich/Michael Reactions: PerspectivesReactions: Perspectives

Whöler Wurtz/Borodin Mannich Fuson IASOC2012

50

Kane Michael Diels-Alder Mukaiyama

30

40

50

1018 16

2015

blications

2530354045

25 9 12

2 1 3

78

144

lications

0

10

20

18 19 18 15 17 18 18 1726 23

9

7 72 8 7 10 16

14

N°o

f pub

ENANTIO

DIASTEREO

0510152025

15 1610

19 1723 24 21 23 22

11

8 9

8

3 52 4

5

22

1 27

N°P

ubl

Vinylogous Michael

Vinylogous Mannich

Vinylogous Aldol

40

50

ations

Year

0

Year

0

10

20

30

3 3 3 4 3 3 9 12 14 11 9

22 23 17 19 21 2527 21

3227

14

N°o

f pub

lica

INDIRECT

DIRECT

YearChemRev 2011, 111, 3076-3154

Vinylogous and Hypervinylogous Aldol/Mannich/Michael Reactions: PerspectivesReactions: Perspectives

Whöler Wurtz/Borodin Mannich Fuson IASOC2012

Kane Michael Diels-Alder Mukaiyama

30

40

50

5 9 123

78

144

96ca

tions Vinylogous Michael

Vinylogous Mannich 20

30

40

50

7 78 7 10

18 16

2015

1918ub

lications

10

20

15 1610

19 1723 24 21 23 22 19

14 13

8 9

8

3 52

54

96

103

2 1

21 2

3 6

9

N°P

ublic

Vinylogous Mannich

Vinylogous Aldol

0

10

20

18 19 18 15 17 18 18 172623

15 12 11

7 72 8 7 18

12

N°o

f pu

ENANTIO

DIASTEREO

0

Year30

40

50

3227bl

ications

Year

0

10

20

3 3 3 4 3 3 9 12 14 11 11 10 142223 17 19 21 25

27 21 272320 11

N°o

f pub

INDIRECT

DIRECT

Year

2012*: first semester

Acknowledgments

Prof. Giovanni CasiraghiDr. Lucia Battistini

(Università di Parma) (ICB, CNR, Sassari)

Dr. Gloria RassuDr. Claudio CurtiDr. Andrea SartoriBeatrice RanieriL  D ll’A i

Dr. Luigi PinnaDr. Vincenzo ZambranoDr. Paola Burreddu

Luca Dell’AmicoProf.  Giorgio Pelosi (RX analyses)Prof. Marco Mor (DFT calculations)

Financial support: Ministero dell’Istruzione, dell’Università e della RicercaUniversità degli Studi di ParmaRegione Autonoma della SardegnaFondazione Banco di Sardegna