35
Testing the Dark Energy Paradigm Piran@60 Ofer Lahav University College London - Collaborating with Tsvi - Brief History of Dark Energy - The Dark Energy Survey and Euclid - The Next Paradigm Shift?

Testing the Dark Energy Paradigm Piran@60

  • Upload
    alaina

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Testing the Dark Energy Paradigm Piran@60. Ofer Lahav University College London. - Collaborating with Tsvi Brief History of D a rk Energy The Dark Energy Survey and Euclid The Next Paradigm Shift?. Less-extreme papers with Tsvi. Treyer et al. (1998) XRB LSS - PowerPoint PPT Presentation

Citation preview

Page 1: Testing the Dark Energy Paradigm Piran@60

Testing the Dark Energy Paradigm

Piran@60

Ofer Lahav University College London

- Collaborating with Tsvi - Brief History of Dark Energy - The Dark Energy Survey and Euclid- The Next Paradigm Shift?

Page 2: Testing the Dark Energy Paradigm Piran@60

Less-extreme papers with Tsvi

Treyer et al. (1998) XRB LSS

Scharf et al. (2000) the XRB dipole

(1990)

(1997)

Page 3: Testing the Dark Energy Paradigm Piran@60

The Chequered History of theCosmological Constant

* The old CC problem:Theory exceeds observational limits on by 10120 !

* The new CC problem:Why are the amounts of Dark Matter and Dark Energy so similar?

Page 4: Testing the Dark Energy Paradigm Piran@60

Dark Energy Pre-SNIa

• Peebles (1984) advocated Lambda

• APM result for low matter density (Efstathiou et al 1990)

• Baryonic fraction in clusters (White et al. 1993)

• The case for adding Lambda (Ostriker & Steinhardt 1995)

• Others…

Page 5: Testing the Dark Energy Paradigm Piran@60

The Dark Energy problem: 10, 90 or 320 years old?The weak field limit of GR:F = -GM/r2 + /3 r

X *

Lucy Calder & OLA&G Feb 08 issuehttp://www.star.ucl.ac.uk/~lahav/CLrev.pdf (revised)

“I have now explained the TWO principle cases of attraction…which is very remarkable” Isaac Newton, Principia (1687)

Page 6: Testing the Dark Energy Paradigm Piran@60

“Evidence” for Dark Energy

Observational data• Type Ia Supernovae • Galaxy Clusters• Cosmic Microwave Background• Large Scale Structure• Gravitational Lensing• Integrated Sachs-Wolfe

Physical effects: • Geometry • Growth of StructureBoth depend on the Hubble expansion rate:

H2(z) = H20 [M (1+z) 3 + DE (1+z) 3 (1+w) ] (flat)

Page 7: Testing the Dark Energy Paradigm Piran@60

Standard rulers

Page 8: Testing the Dark Energy Paradigm Piran@60

Baryonic Acoustic Oscillations

SDSS Luminous Red GalaxiesDensity fluctuations

CMB WMAPTemperature fluctuations

Comving distance Harmonic l

z=0.5 z=1000

Page 9: Testing the Dark Energy Paradigm Piran@60

The Integrated Sachs-Wolfe Effect

gravitational potential traced by galaxy density

potential depth changes as cmb photons pass through

In EdS the potential is constant with time, hence no ISW effect.

An effect is expected in a universe with DE, and it can be detected

by cross-correlating the CMB with galaxy maps (Crittenden et al).

Page 10: Testing the Dark Energy Paradigm Piran@60

Cross-correlation of WMAP and 2MASS

Rassat, Land, OL, Abdalla (2006); Francis & Peacock (2009)

CCF consistent with no correlation, as well as with < 0.89 (95% CL)

Page 11: Testing the Dark Energy Paradigm Piran@60

Probing the Geometryof the Universe with

Supernovae Ia

‘Union’ SN Ia sample (Kowalski et al. 2008)

Page 12: Testing the Dark Energy Paradigm Piran@60
Page 13: Testing the Dark Energy Paradigm Piran@60

In 3 Dimensions

Massey et al. 2007

Page 14: Testing the Dark Energy Paradigm Piran@60

Spectroscopic Surveys

CfA

SDSS

2dFGRS

Page 15: Testing the Dark Energy Paradigm Piran@60

Deviations from standard GR?

Bean (2009) using Cosmos2007Soon with Cosmos2009

Lensing sensitive to the sum of potentials

Page 16: Testing the Dark Energy Paradigm Piran@60

The Future of the Local Universem =0.3

LCDMa = 1 (t= 13.5 Gyr)

OCDMa = 1 (t= 11.3 Gyr)

LCDMa = 6 (t= 42.4 Gyr)

OCDMa = 6 (t= 89.2 Gyr)

Hoffman, OL, Yepes & Dover 0705.4477

Page 17: Testing the Dark Energy Paradigm Piran@60

Galaxy Surveys2010-2020

Photometric surveys: DES, Pan-STARRS, HSC, Skymapper, PAU, LSST, Euclid (EIC), JDEM(SNAP-like), …

Spetroscopic surveys: WiggleZ, BOSS, BigBOSS, hetdex, WFMOS/Sumire, Euclid (NIS), JDEM (Adept-like), SKA, …

Page 18: Testing the Dark Energy Paradigm Piran@60

Photometric redshifts

• Probe strong spectral features (e.g. 4000 break)

• Template vs. Training methods

z=3.7z=0.1

Page 19: Testing the Dark Energy Paradigm Piran@60

MegaZ-LRG

• Input: 10,000 galaxies with spectra

• Train a neural network

•ANNz, Collister & Lahav 2004

• Output: 1,000,000 photo-z•Collister, Lahav et al. 2007

•Update using 6 photo-z methods *Abdalla et al. 2009

3 (Gpc/h)3: the largest ever galaxy redshift survey!

Photoz scatter of 0.04

Page 20: Testing the Dark Energy Paradigm Piran@60

1.5M LRGs (“MegaZ”) photo-z code comparison

SDSS

HpZ+BC

Le PHARE

Zebra

ANNz

HpZ+WWC

Abdalla, Banerji, OL & Rashkov0812.3831

Page 21: Testing the Dark Energy Paradigm Piran@60

Neutrino mass from MegaZ-LRG

Thomas, Abdalla & OL (2009) 0911.5291

Total mass < 0.3 eV (95% CL)

Page 22: Testing the Dark Energy Paradigm Piran@60

The Dark Energy http://www.darkenergysurvey.org

Page 23: Testing the Dark Energy Paradigm Piran@60

Dark Energy Science ProgramFour Probes of Dark Energy• Galaxy Clusters

• clusters to z>1• SZ measurements from SPT• Sensitive to growth of structure and geometry

• Weak Lensing• Shape measurements of 300 million galaxies • Sensitive to growth of structure and geometry

• Large-scale Structure• 300 million galaxies to z = 1 and beyond• Sensitive to geometry

• Supernovae• 15 sq deg time-domain survey• ~3000 well-sampled SNe Ia to z ~1• Sensitive to geometry

Plus QSOs, Strong Lensing, Milky Way, Galaxy Evolution

Page 24: Testing the Dark Energy Paradigm Piran@60

DES Forecasts: Power of Multiple Techniques

FoM factor 4.6 tigther compared to near term projects

w(z) =w0+wa(1–a) 68% CL

Page 25: Testing the Dark Energy Paradigm Piran@60

The DES Collaborationan international collaboration of ~100 scientists from ~20 institutions

US: Fermilab, UIUC/NCSA, University of Chicago,LBNL, NOAO, University of Michigan, University of Pennsylvania, Argonne National Laboratory, Ohio State University, Santa-Cruz/SLAC Consortium

Observatorio Nacional, CBPF,Universidade Federal do Rio de Janeiro, Universidade Federal do Rio Grande do Sul

Brazil Consortium:

UK Consortium:UCL, Cambridge, Edinburgh, Portsmouth, Sussex, Nottingham

Spain Consortium:CIEMAT, IEEC, IFAE

CTIO

Page 26: Testing the Dark Energy Paradigm Piran@60

DES Organization

SupernovaeB. NicholJ. Marriner

ClustersJ. MohrT. McKay

Weak LensingB. JainS. Bridle

Galaxy ClusteringE. GaztanagaW. Percival

Photometric RedshiftsF. CastanderH. Lin

SimulationsA. KravtsovA. Evrard

TheoryW. HuJ. Weller

Strong LensingE. Buckley-GeerM. Makler

Galaxy EvolutionR. WechslerD. Thomas

QSOsR. McMahonP. Martini

Milky WayB. SantiagoB. Yanny

11 Science Working Groups

Over 100 scientistsfrom the US, UK, Spain and Brazil

Page 27: Testing the Dark Energy Paradigm Piran@60

The Dark Energy Survey (DES)• Proposal:

– Perform a 5000 sq. deg. survey of the southern galactic cap

– Measure dark energy with 4 complementary techniques

• New Instrument:– Replace the PF cage with a

new 2.2 FOV, 520 Mega pixel optical CCD camera + corrector

• Time scale:– Instrument Construction

2008-2011• Survey:

– 525 nights during Oct.–Feb. 2011-2016

– Area overlap with SPT SZ survey and VISTA VHS

Use the Blanco4m Telescope at the Cerro TololoInter-American Observatory (CTIO)

Page 28: Testing the Dark Energy Paradigm Piran@60

The 5 lenses are now being polished

C2

Polishing & coating coordinated by UCL (with 1.7M STFC funding)

C1

Page 29: Testing the Dark Energy Paradigm Piran@60

DES Collab. Mtg., OSU, Nov. 8, 2008 Huan Lin

29

A single simulated DECam pointing (= tile = hex)

DECam Focal Plane

62 2kx4k Science CCDs(520 Mpix)

1 GB per single 3 deg2 pointing

Image Level Simulations

Page 30: Testing the Dark Energy Paradigm Piran@60

Neutrino mass from DES:LSS & Planck

Lahav, Kiakotou, Abdalla & Blake(0910.4714)

Input: M =0.24 eV

Output: M =0.24 +- 0.12 eV (95% CL)

Page 31: Testing the Dark Energy Paradigm Piran@60

Total Neutrino Mass DES vs. KATRIN

M< 0.1 eV M < 0.6 eV

t

Page 32: Testing the Dark Energy Paradigm Piran@60

Galactic Plane

Deep~40 deg2

Wide Extragalactic20,000 deg2

Euclid Imaging SurveysWide Survey: Extragalactic sky (20,000 deg2 = 2 sr)

• Visible: Galaxy shape measurements to RIZAB ≤ 24.5 (AB, 10σ) at 0.16” FWHM, yielding 30-40 resolved galaxies/amin2, with a median redshift z~ 0.9

• NIR photometry: Y, J, H ≤ 24 (AB, 5σ PS), yielding photo-z’s errors of 0.03-0.05(1+z) with ground based complement (PanStarrs-2, DES. etc)

• Concurrent with spectroscopic survey

Deep Survey: 40 deg2 at ecliptic poles

•Monitoring of PSF drift (40 repeats at different orientations over life of mission)

•Produces +2 magnitude in depth for both visible and NIR imaging data.

Possible additional Galactic surveys:

•Short exposure Galactic plane•High cadence microlensing extra-solar planet surveys could be easily added within Euclid mission architecture.

Page 33: Testing the Dark Energy Paradigm Piran@60

Euclid - impact on Cosmology

Euclid Imaging will challenge all sectors of the cosmological model:

• Dark Energy: wp and wa with an error of 2% and 13% respectively (no prior)

• Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

• Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity

• Gravity: test GR by reaching a precision of 2% on the growth exponent (dlnm/dlnam

)

Uncover new physics and Map LSS at 0<z<2: Low redshift counterpart to CMB surveys

Δwp ΔWa ΔΩm ΔΩΛ ΔΩb Δσ8 Δns Δh DE FoM

Current+WMAP 0.13 - 0.01 0.015 0.0015 0.026 0.013 0.013 ~10

Planck - - 0.008 - 0.0007 0.05 0.005 0.007 -

Weak Lensing 0.03 0.17 0.006 0.04 0.012 0.013 0.02 0.1 180

Imaging Probes 0.018 0.15 0.004 0.02 0.007 0.0009 0.014 0.07 400

Euclid 0.016 0.13 0.003 0.012 0.005 0.003 0.006 0.020 500

Euclid +Planck 0.01 0.066 0.0008 0.003 0.0004 0.0015 0.003 0.002 1500

Factor Gain 13 >15 13 5 4 17 4 7 150

Page 34: Testing the Dark Energy Paradigm Piran@60

What will be the next paradigm shift?

• Vacuum energy (cosmological constant)?• Dynamical scalar field?

– w=p/– for cosmological constant: w = -1

• Manifestation of modified gravity?• Inhomogeneous Universe?

• What if cosmological constant after all?• Multiverse - Landscape?• The Anthropic Principle?

Page 35: Testing the Dark Energy Paradigm Piran@60

THE END