31
THE FIRST UNIT TERM PROJECT ADVANCED REINGORCED CONCRETE 13CIVL10H Submitted by: ABDELRHMAN OKASHA ABDULLAH SAAD AMGAD ALAA NOHA HANY April, 2014

Term Project

Embed Size (px)

DESCRIPTION

Term Project for Seismic design

Citation preview

Page 1: Term Project

THE FIRST UNIT

TERM PROJECT

ADVANCED REINGORCED CONCRETE

13CIVL10H

Submitted by:

ABDELRHMAN OKASHA

ABDULLAH SAAD

AMGAD ALAA

NOHA HANY

April, 2014

Page 2: Term Project

i

Contents LIST OF FIGURES ........................................................................................................................ ii

LIST OF TABLES ......................................................................................................................... iii

1.Project Summary .......................................................................................................................... 1

2.Assumptions ................................................................................................................................. 1

3.Axial Load Calculations .............................................................................................................. 1

4.Column Dimensions..................................................................................................................... 2

5.Columns and Shear walls Arrangement ....................................................................................... 3

6.Lateral Loads Calculations .......................................................................................................... 4

6.1Wind Load ............................................................................................................... 4

6.2 Seismic load .......................................................................................................... 11

7.Shear Walls Design .................................................................................................................... 18

7.1Shear Wall 1 .......................................................................................................... 18

7.2Shear Wall 2 .......................................................................................................... 22

References ..................................................................................................................................... 27

Page 3: Term Project

ii

LIST OF FIGURES

Figure 1 Plan View ......................................................................................................................... 3

Figure 2 Vertical cross section ........................................................................................................ 4

Figure 3 Elevation in X-direction ................................................................................................... 5

Figure 4 Bending moment diagram due to wind load in X-direction ............................................. 6

Figure 5 Shear force diagram due to wind load in X-direction ...................................................... 7

Figure 6 Elevation in Y-direction ................................................................................................... 8

Figure 7 Bending moment diagram due to wind load in Y-direction ............................................. 9

Figure 8 Shear force diagram due to wind load in Y-direction .................................................... 10

Figure 9 Bending Moment diagram due to seismic load along the building height. .................... 13

Figure 10 Shear Force diagram due to Seismic load along the building height. .......................... 14

Figure 11 The location of center of mass and center of rigidity ................................................... 15

Figure 12 Load- Capacity ratios for shear wall 1 ......................................................................... 21

Figure 13 Interaction diagram for shear wall 1 ............................................................................. 21

Figure 14 Load- Capacity ratios for shear wall 2 ......................................................................... 25

Figure 15 Interaction diagram for shear wall 1 ............................................................................. 25

Figure 16 Reinforced detailing of the shear walls. ....................................................................... 26

Page 4: Term Project

iii

LIST OF TABLES

Table 1 Moment due to wind load in X-directions ......................................................................... 6

Table 2 Shear force due to wind load in X-direction ...................................................................... 7

Table 3 Moment due to wind load in Y-direction........................................................................... 9

Table 4 Shear force due to wind load in Y-direction .................................................................... 10

Table 5 Building Description ........................................................................................................ 11

Table 6 Building Total Weight Calculations ................................................................................ 11

Table 7 Calculations of force/floor and accidental torsion due to seismic load ........................... 13

Table 8 inertia of the shear walls .................................................................................................. 15

Table 9 Total force on each shear wall due to seismic load ......................................................... 17

Table 10 Straining actions on each shear wall due to seismic load. ............................................. 17

Page 5: Term Project

1

1. Project Summary

The project objective is to locate the columns for a tall building, estimate the slab thickness

and locate the shear walls locations to resist the lateral forces due to earthquake and wind

loads. After locating of the shear walls it is required to calculate the lateral loads and

analyse the structure. Eventually, the design of lateral resisting elements should be

conducted then the reinforcement detailing should be presented.

Project

No. Soil Type

Building

Type

Building

Location Footprint Dimensions

4 Type A Commercial South Egypt 35X36

2. Assumptions

Fcu = 30 N/mm2

Fy = 400 N/mm2

(High grade steel).

Fy = 240 N/mm2 (horizontal steel).

L.L. = 5 KN/m2

(Commercial).

L.L. = 10 KN/m2 (Storage).

S.D.L. = 1.5 KN/m3

γ concrete = 25 KN/mm3

γ wall = 15 KN/mm3

Flat slab is used in all floors

Slab thickness =

=

= 220 mm

3. Axial Load Calculations

Dead load = 1.4 (F.C. + slab thickness* γ concrete) * No. of floors.

Dead load = 1.4 (1.5 + 25*0.22) *12 = 117.6 KN/m2.

Live load = 1.6 (L.L. comm.*No. of floors + L.L. storage * No. of floors).

Live load = 1.6 (5*11 + 10*1) = 104 KN/m2.

Page 6: Term Project

2

4. Column Dimensions

Interior Columns

D.L. = 117.6 * (7*6) = 4939.2 KN.

L.L. = 104 * (7*6) = 4368 KN.

Assume µst= 2 %

Ac =

=

= 645518.285 mm

2.

C1 (600*1100 mm).

Edge Columns

D.L. = 117.6 * (7*3) = 2469.6 KN.

L.L. = 104 * (7*3) = 2184 KN.

Assume µst= 2 %

Ac =

=

= 322759.14 mm

2.

C2 (600*550 mm).

Corner Columns

D.L. = 117.6 * (3.5*3) = 1234.8 KN.

L.L. = 104 * (3.5*3) = 1092 KN.

Assume µst= 2 %

Ac =

=

= 161379.57 mm

2.

C3 (300*550 mm).

Page 7: Term Project

3

5. Columns and Shear walls Arrangement

Figure 1 Plan View

Page 8: Term Project

4

6. Lateral Loads Calculations

6.1Wind Load

Pe = q Ce K

K = 1

q = 0.5 *10-3

(ρv2CtCs)

ρ = 1.25 Kg/m2

V = 36 m/sec (South Egypt)

Ct = 1 (topography coefficient)

Cs = 1 (<60 m)

q = 0.5 *10-3

(1.25*362*1*1) = 0.81 KN/m

2.

Vertical Cross Section

Pe (compression) = 0.81*0.8*1 = 0.648 KN/m2.

Pe (suction) = 0.81*0.5*1 = 0.405 KN/m2.

Figure 2 Vertical cross section

Page 9: Term Project

5

Wind Forces in X-direction (compression)

F1 = 0.648*2.75*35 = 62.37 KN.

F2 = 0.648*3.5*35 = 79.38 KN.

F3 = 0.648*3*35 = 68.04 KN.

F4 = 0.648*1.5*35 = 34.02 KN.

Wind Forces in X-direction (suction)

F5 = 0.405*2.75*35 = 38.2725 KN.

F6 = 0.405*3.5*35 = 49.6125 KN.

F7 = 0.405*3*35 = 42.525 KN.

F8 = 0.405*1.5*35 = 21.2625 KN.

Figure 3 Elevation in X-direction

Page 10: Term Project

6

Overturning Moment Calculations

Table 1 Moment due to wind load in X-directions

SLAB

NO.

HEIGHT

(m)

COMPRESSION

(KN)

SUCTION

(KN)

TOTAL

(KN) Moment (KN.m)

1 4 62.37 38.2725 100.6425 402.57

2 8 79.38 49.6125 128.9925 1031.94

3 11 68.04 42.525 110.565 1216.215

4 14 68.04 42.525 110.565 1547.91

5 17 68.04 42.525 110.565 1879.605

6 20 68.04 42.525 110.565 2211.3

7 23 68.04 42.525 110.565 2542.995

8 26 68.04 42.525 110.565 2874.69

9 29 68.04 42.525 110.565 3206.385

10 32 68.04 42.525 110.565 3538.08

11 35 68.04 42.525 110.565 3869.775

12 38 34.02 21.2625 55.2825 2100.735

Over turning moment at the base 26422.2

Figure 4 Bending moment diagram due to wind load in X-direction

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000

Bu

ildin

g h

eig

ht

(m)

B.M.D (KN.m)

Bending Moment Along the building height

Page 11: Term Project

7

Shear Force Calculations

Table 2 Shear force due to wind load in X-direction

SLAB

NO.

HEIGHT

(m) COMPRESSION

(KN)

SUCTION

(KN)

TOTAL

(KN)

Force/Shear wall

(W2)

1 4 62.37 38.2725 100.6425 50.32125

2 8 79.38 49.6125 128.9925 64.49625

3 11 68.04 42.525 110.565 55.2825

4 14 68.04 42.525 110.565 55.2825

5 17 68.04 42.525 110.565 55.2825

6 20 68.04 42.525 110.565 55.2825

7 23 68.04 42.525 110.565 55.2825

8 26 68.04 42.525 110.565 55.2825

9 29 68.04 42.525 110.565 55.2825

10 32 68.04 42.525 110.565 55.2825

11 35 68.04 42.525 110.565 55.2825

12 38 34.02 21.2625 55.2825 27.64125

Total base shear 1280.0025

Figure 5 Shear force diagram due to wind load in X-direction

0

5

10

15

20

25

30

35

40

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00

Bu

ildin

g h

eig

ht

(m)

Shear Force (KN)

Shear Force Along the building height

Page 12: Term Project

8

Wind Forces in Y-direction (compression)

F1 = 0.648*2.75*36 = 64.15 KN.

F2 = 0.648*3.5*36 = 81.648 KN.

F3 = 0.648*3*36 = 69.98 KN.

F4 = 0.648*1.5*36 = 34.99 KN.

Wind Forces in Y-direction (suction)

F5 = 0.405*2.75*36 = 40.095 KN.

F6 = 0.405*3.5*36 = 51.03 KN.

F7 = 0.405*3*36 = 43.74 KN.

F8 = 0.405*1.5*36 = 21.87 KN.

Figure 6 Elevation in Y-direction

Page 13: Term Project

9

Overturning Moment Calculations

Table 3 Moment due to wind load in Y-direction

SLAB

NO.

HEIGHT

(m) COMPRESSION

(KN)

SUCTION

(KN)

TOTAL

(KN) Moment (KN.m)

1 4 64.15 40.095 104.245 416.98

2 8 81.648 51.03 132.678 1061.424

3 11 69.98 43.74 113.72 1250.92

4 14 69.98 43.74 113.72 1592.08

5 17 69.98 43.74 113.72 1933.24

6 20 69.98 43.74 113.72 2274.4

7 23 69.98 43.74 113.72 2615.56

8 26 69.98 43.74 113.72 2956.72

9 29 69.98 43.74 113.72 3297.88

10 32 69.98 43.74 113.72 3639.04

11 35 69.98 43.74 113.72 3980.2

12 38 34.99 21.87 56.86 2160.68

Over turning moment at the base 27179.124

Figure 7 Bending moment diagram due to wind load in Y-direction

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000

Bu

ildin

g h

eig

ht

(m)

B.M.D (KN.m)

Bending Moment Along the building height

Page 14: Term Project

10

Shear Force Calculations

Table 4 Shear force due to wind load in Y-direction

SLAB

NO.

HEIGHT

(m) COMPRESSION

(KN)

SUCTION

(KN)

TOTAL

(KN) Force/Shear wall (W1)

1 4 64.15 40.095 104.245 52.1225

2 8 81.648 51.03 132.678 66.339

3 11 69.98 43.74 113.72 56.86

4 14 69.98 43.74 113.72 56.86

5 17 69.98 43.74 113.72 56.86

6 20 69.98 43.74 113.72 56.86

7 23 69.98 43.74 113.72 56.86

8 26 69.98 43.74 113.72 56.86

9 29 69.98 43.74 113.72 56.86

10 32 69.98 43.74 113.72 56.86

11 35 69.98 43.74 113.72 56.86

12 38 34.99 21.87 56.86 28.43

Shear at the base 1317.263

Figure 8 Shear force diagram due to wind load in Y-direction

0

5

10

15

20

25

30

35

40

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00

Bu

ildin

g h

eig

ht

(m)

Shear Force (KN)

Shear Force Along the building height

Page 15: Term Project

11

6.2 Seismic load

Calculate the total building weight W= D.L+ α L.L

Table 5 Building Description

TYPE No./Floor DIEMENSIONS

Slab 1 35 36

Shear walls 4 0.4 4.5

C1 14 0.6 1.1

C2 22 0.6 0.55

C2 4 0.3 0.55

For commercial buildings α=0.5, while for storage floor α=1.

Building total weight = 129018 KN.

Table 6 Building Total Weight Calculations

Floor Height α Live

Load

Dead Load Floor

Weight Slab Shear

wall C1 C2 C3 S.D.L. TOTAL

1 4 0.5 5 277.2 28.8 36.96 29.04 2.64 1890 11256 11258.5

2 4 0.5 5 277.2 28.8 36.96 29.04 2.64 1890 11256 11258.5

3 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

4 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

5 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

6 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

7 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

8 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

9 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

10 3 0.5 5 277.2 21.6 27.72 21.78 1.98 1890 10647 10649.5

11 3 1 10 277.2 21.6 27.72 21.78 1.98 1890 10647 10657

12 3 0.5 2 277.2 21.6 27.72 21.78 1.98 1890 10647 10648

Total Weight (KN) 129018

Page 16: Term Project

12

T = Ct*H3/4

= 0.05*(38)3/4

= 0.76 sec.

Soil type A

γ = 1.2

S =1

Tb = 0.05

Tc = 0.25

Td = 1.2

Tc < T <Td

Sd(t) = ag* γ*S*(2.5/R)*(Tc/T) ξ

Sd(t) = 0.1g*1.2*1*(2.5/5)*(0.25/0.76)*1 = 0.0197g.

Minimum limit for Sd(t) = 0.2*ag*γ = 0.2*0.1*1.2 = 0.024g.

Sd(t) = 0.0197g < Sd(t) minimum limit = 0.024g.

Therefore, Sd(t) = 0.024g.

Fb = Sd(t)*λ*(W/g).

Fb = 0.024g*0.76*1*(W/g) = 0.01824*W.

The base shear due to seismic load, Fb = 0.01824 W.

Fb = 0.01824*129018= 2353.288 KN.

Distribute the base shear on the floor levels using the equation, Fi= Fb*

Page 17: Term Project

13

Table 7 Calculations of force/floor and accidental torsion due to seismic load

Floor Height Cum. Height Floor Weight Force/Floor Ty Tx

1 4.00 4.00 11258.5 38.62 69.51 67.58

2 4.00 8.00 11258.5 77.23 139.02 135.15

3 3.00 11.00 10649.5 100.45 180.81 175.79

4 3.00 14.00 10649.5 127.84 230.12 223.73

5 3.00 17.00 10649.5 155.24 279.43 271.67

6 3.00 20.00 10649.5 182.63 328.74 319.61

7 3.00 23.00 10649.5 210.03 378.05 367.55

8 3.00 26.00 10649.5 237.42 427.36 415.49

9 3.00 29.00 10649.5 264.82 476.67 463.43

10 3.00 32.00 10649.5 292.21 525.99 511.37

11 3.00 35.00 10657 319.83 575.70 559.71

12 3.00 38.00 10648 346.96 624.52 607.17

Total Weight 129018.00

Base Shear 2353.29

Figure 9 Bending Moment diagram due to seismic load along the building height.

0

5

10

15

20

25

30

35

40

0 10000 20000 30000 40000 50000 60000 70000

Bu

ildin

g h

eig

ht

(m)

B.M.D. (KN)

Bending Moment Along the building height

Page 18: Term Project

14

Figure 10 Shear Force diagram due to Seismic load along the building height.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

Bu

ildin

g h

eig

ht

(m)

S.F.D (KN)

Shear Force Along the building height

Page 19: Term Project

15

Horizontal forces on each shear wall

Shear walls are symmetric in both directions X and Y axis. Therefore, the center of rigidity

and the center of mass lies on the same point and torsional moment does not exist.

Figure 11 The location of center of mass and center of rigidity

Moment of inertia = b*H3/12

Table 8 inertia of the shear walls

Wall No. Length (m) Thickness (m) Inertia (m4)

1 4.5 0.4 7.63

2 4.5 0.4 7.63

Page 20: Term Project

16

Torsional moment equals to Mt= Fb* (emin)

Torsional Moment Calculation for Floor 1:

Y-direction: Mt= 38.62*(0.05*36) = 69.516 KN.m.

X-direction: Mt= 38.62*(0.05*35) = 67.585 KN.m.

The torsional moment applies a shear force on the shear wall cross section. The shear force

will be calculated according to this equation:

Fx =

Fx for wall 1=

*7.63*12 = 1.59 KN.

Fx for wall 2=

*7.63*10.5 = 1.4 KN.

Fy =

Fy for wall 1 =

*7.63*12 = 1.64 KN.

Fy for wall 2=

*7.63*10.5 = 1.44 KN.

The shear force on the shear walls is calculated according to this equation,

Shear force/shear wall = shear force/floor *

Shear force/shear wall = 38.62 *

= 19.31 KN.

After obtaining the forces due to torsion need to get the resultant forces applied on shear

walls, Torsion forces + Horizontal Force from base shear

Therefore, total force on wall 1 = 1.64+19.31 = 20.95 KN,

& total force on wall 2 = 1.4+19.31 = 20.71 KN.

Page 21: Term Project

17

Table 9 Total force on each shear wall due to seismic load

Floor

#

Torsion Force Shear Force Total Force/Shear wall

(Force/Shear wall)

Y-dir.

(Force/Shear wall)

X-dir.

(Force/Shear wall)

Y-dir.

(Force/Shear wall)

X-dir.

(Force/Shear wall)

Y-dir.

(Force/Shear wall)

X-dir.

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 W1 W2

1 1.64 1.44 1.59 1.40 19.31 0.00 0.00 19.31 20.95 1.44 1.59 20.70

2 3.28 2.87 3.19 2.79 38.62 0.00 0.00 38.62 41.90 2.87 3.19 41.41

3 4.27 3.73 4.15 3.63 50.22 0.00 0.00 50.22 54.49 3.73 4.15 53.85

4 5.43 4.75 5.28 4.62 63.92 0.00 0.00 63.92 69.35 4.75 5.28 68.54

5 6.59 5.77 6.41 5.61 77.62 0.00 0.00 77.62 84.21 5.77 6.41 83.23

6 7.76 6.79 7.54 6.60 91.32 0.00 0.00 91.32 99.07 6.79 7.54 97.92

7 8.92 7.81 8.67 7.59 105.01 0.00 0.00 105.01 113.94 7.81 8.67 112.60

8 10.09 8.82 9.81 8.58 118.71 0.00 0.00 118.71 128.80 8.82 9.81 127.29

9 11.25 9.84 10.94 9.57 132.41 0.00 0.00 132.41 143.66 9.84 10.94 141.98

10 12.41 10.86 12.07 10.56 146.11 0.00 0.00 146.11 158.52 10.86 12.07 156.67

11 13.59 11.89 13.21 11.56 159.92 0.00 0.00 159.92 173.50 11.89 13.21 171.47

12 14.74 12.90 14.33 12.54 173.48 0.00 0.00 173.48 188.22 12.90 14.33 186.02

Table 10 Straining actions on each shear wall due to seismic load.

Floor Height Cum.

Height

Total Force Bending Moment Shear Force

W1 W2 W1 W2 W1 W2

1 4.00 4.00 20.95 20.70 33835.22 33439.65 1276.61 1261.68

2 4.00 8.00 41.90 41.41 33751.43 33356.84 1255.66 1240.98

3 3.00 11.00 54.49 53.85 33416.26 33025.59 1213.76 1199.57

4 3.00 14.00 69.35 68.54 32816.86 32433.19 1159.27 1145.72

5 3.00 17.00 84.21 83.23 31845.92 31473.61 1089.92 1077.18

6 3.00 20.00 99.07 97.92 30414.29 30058.71 1005.71 993.95

7 3.00 23.00 113.94 112.60 28432.80 28100.38 906.63 896.03

8 3.00 26.00 128.80 127.29 25812.27 25510.49 792.69 783.43

9 3.00 29.00 143.66 141.98 22463.54 22200.91 663.90 656.14

10 3.00 32.00 158.52 156.67 18297.44 18083.52 520.24 514.16

11 3.00 35.00 173.50 171.47 13224.81 13070.19 361.72 357.49

12 3.00 38.00 188.22 186.02 7152.20 7068.58 188.22 186.02

Page 22: Term Project

18

7. Shear Walls Design

7.1 Shear Wall 1

Obtain the straining actions on the wall form the above analysis.

D.L. = (117.6*(6*5.5) + (1.4*0.4*4.5*38*25)) = 6274.8 KN.

L.L. = 104*(6*5.5) = 3432 KN.

Normal Force = 6274.8+3432 = 9706.8 KN.

Q = 1317.26 KN.

M = 33835.22 KN.m.

a) Section Assumption:

Assume that the concrete section of wall 1 = 4500*400 mm

b) Vertical Reinforcement Assumption:

According to the code limitation,

Asv(min) = 0.4% Ac

The maximum limit for the vertical reinforcement is 4% Ac.

Therefore, assume that Asv = 2% Ac = (2/100)*(4500*400) = 36000 mm.

Then, design and check on the assumed dimensions and reinforcement.

Page 23: Term Project

19

c) Moment of Resistance Calculations:

Mr = 0.5 Asv L*(

)* (1+

)*(1-

).

L = 4500 mm.

t = 400 mm.

P = 9706.8 KN.

C/L=

=

= 0.436.

W=

(

)

=

(

)

= 0.347.

a =

=

= 0.269.

Mr = 0.5 (36000)* 4500*(

)* (1+

)*(1-0.436) = 28199.71118 KN.m.

Use diameter 28 uniformly distributed along the shear wall

Since, M applied > M resistance

Then, obtain additional Area steel concentrated on the boundaries.

Madd = Mapp-Mr = 33835.22-28199.7 = 5635.48 KN.m.

Area Steel additional =

= 3951.714724 mm2.

Then take As additional 6 Ф 28for both sides

Finally, recheck the area steel vertical compared to area concrete,

Area steel total = 36000+3951.71 = 39952.71 mm2.

Reinforcement ratio =

= 0.022

Therefore, reinforcement ratio = 2.2 % AC < Area steel max = 4% AC.

Page 24: Term Project

20

d) Axial Force Check:

Pu = 0.8*(0.35*Fcu*Ac*(1- (

)2))

As the K= 1.0 from the boundary condition of the shear wall (hinged- hinged) for typical

floors.

Pu = 0.8*(0.35*30*4500*400*(1- (

)2)) = 14289.43 KN.

The applied axial force = 1317.26 KN < Pult = 14289.43 KN.

Therefore, the wall is safe in axial.

e) Applied Shear Force Check:

qumax = 0.9α√

+µst*

= 0.9*0.25*√

+

*

= 1.201 N/ mm

2.

The applied shear stresses qu =

=

= 0.7318 N/mm

2.

Need to calculate shear strength of the shear wall, qcu = 0.24*√

= 1.07 N/mm

2.

qu < qcu

Therefore, use area steel horizontal minimum 5 Ф 8/m at spacing 200 mm.

Page 25: Term Project

21

Checking the capacity of shear wall 1 using interaction diagram

Figure 12 Load- Capacity ratios for shear wall 1

Figure 13 Interaction diagram for shear wall 1

Page 26: Term Project

22

7.2 Shear Wall 2

Obtain the straining actions on the wall form the above analysis.

D.L. = (117.6*(6*8) + (1.4*0.4*4.5*38*25)) = 8038.8 KN.

L.L. = 104*(6*8) = 4992 KN.

Normal Force = 8038.8+4992 = 13,030.8 KN.

Q = 1280 KN.

M = 33439.65 KN.m.

a) Section Assumption:

Assume that the concrete section of wall 2 = 4500*400 mm

b) Vertical Reinforcement Assumption:

According to the code limitation,

Asv(min) = 0.4% Ac

The maximum limit for the vertical reinforcement is 4% Ac.

Therefore, assume that Asv = 2% Ac = (2/100)*(4500*400) = 36000 mm.

Then, design and check on the assumed dimensions and reinforcement.

Page 27: Term Project

23

c) Moment of Resistance Calculations:

Mr = 0.5 Asv L*(

)* (1+

)*(1-

).

L = 4500 mm.

t = 400 mm.

P = 13030.8 KN.

C/L=

=

= 0.5.

W=

(

)

=

(

)

= 0.347.

a =

=

= 0.36.

Mr = 0.5 (36000)* 4500*(

)* (1+

)*(1-0.5) = 28666.73 KN.m.

Use diameter 28 uniformly distributed along the shear wall

Since, M applied > M resistance

Then, obtain additional Area steel concentrated on the boundaries.

Madd = Mapp-Mr = 33439.65-28666.73 = 4772.92 KN.m.

Area Steel additional =

= 3346.825915 mm2.

Then take As additional 6 Ф 28 for both sides

Finally, recheck the area steel vertical compared to area concrete,

Area steel total = 36000+3346.82 = 39346.83 mm2.

Reinforcement ratio =

= 0.022

Therefore, reinforcement ratio = 2.2 % AC < Area steel max = 4% AC.

Page 28: Term Project

24

d) Axial Force Check:

Pu = 0.8*(0.35*Fcu*Ac*(1- (

)2))

As the K= 1.0 from the boundary condition of the shear wall (hinged- hinged) for typical

floors.

Pu = 0.8*(0.35*30*4500*400*(1- (

)2)) = 14289.43 KN.

The applied axial force = 13030.8 KN < Pult = 14289.43 KN.

Therefore, the wall is safe in axial.

e) Applied Shear Force Check:

qumax = 0.9α√

+µst*

= 0.9*0.25*√

+

*

= 1.201 N/ mm

2.

The applied shear stresses qu =

=

= 0.71 N/mm

2.

Need to calculate shear strength of the shear wall, qcu = 0.24*√

= 1.07 N/mm

2.

qu < qcu

Therefore, use area steel horizontal minimum 5 Ф 8/m at spacing 200 mm.

Page 29: Term Project

25

Checking the capacity of shear wall 2 using interaction diagram

Figure 14 Load- Capacity ratios for shear wall 2

Figure 15 Interaction diagram for shear wall 1

Page 30: Term Project

26

Eventually, shear wall 1 and 2 have the same concrete section and steel reinforcement.

Figure 16 Reinforced detailing of the shear walls.

Page 31: Term Project

27

References

1. Egyptian code for loads, ECP 201-2012.

2. Egyptian code for structural detailing, ECP 203-2003.

3. Egyptian code of practice for designing concrete structures, ECP 203-2007.

4. MacGregor, J. G., Bartlett F. M. Reinforced concrete: mechanics and design.