14
Continuum mechanics I. Kinematics in cartesian coordinates Aleˇ s Janka office Math 0.107 [email protected] http://perso.unifr.ch/ales.janka/mechanics September 22, 2010, Universit´ e de Fribourg Aleˇ s Janka I. Kinematics Kinematics: description of position and deformation initial configuration x = x i e i x i . . . material coordinates deformed config. y = y i e i y i . . . spatial coordinates displacement u = y - x Two possibilities: Lagrange description: u(x)= y(x) - x Euler description: u(y)= y - x(y) e 3 e 2 e 1 x y dx y dy x u u+du x+dx y+dy Initial config. Deformed config. Aleˇ s Janka I. Kinematics

tensor de almansi

Embed Size (px)

Citation preview

Page 1: tensor de almansi

Continuum mechanicsI. Kinematics in cartesian coordinates

Ales Janka

office Math [email protected]

http://perso.unifr.ch/ales.janka/mechanics

September 22, 2010, Universite de Fribourg

Ales Janka I. Kinematics

Kinematics: description of position and deformation

initial configuration x = x iei

x i . . . material coordinates

deformed config. y = y iei

y i . . . spatial coordinates

displacement u = y − x

Two possibilities:

Lagrange description:u(x) = y(x)− x

Euler description:u(y) = y − x(y)

e3

e2e1

x

y

dx

y

dy

x

u

u+dux+dxy+dy

Initial config.

Deformed config.

Ales Janka I. Kinematics

Page 2: tensor de almansi

Material vs. spatial coordinates: deformation of a 1D rod

Let y1 = y1(x1, t) = [(x1)2 − 1] · t + x1.

Inversely, x1 = x1(y1, t) = 12t

(√1 + 4t(2t + y1)− 1

)

Ales Janka I. Kinematics

1. Lagrange description

x = x iei and y = y iei .

Choice: y = y(x)

Deformation gradient:

F ij (x) =

∂y i

∂x j= y i

,j

dx = dx iei

dy = dy iei =∂y i

∂x jdx jei

dy = dx j F ij (x) gi = dx j gj

e3

e1

e3

e2e1

x

y

dx

y(x)

dy

y(x+dx)

g2

g3

e2g1

^g

2

^g1

^g3

=

==

Initial config.

Deformed config.

Ales Janka I. Kinematics

Page 3: tensor de almansi

1. Lagrange description: how to measure deformation?

The ”edge” dx in initial configuration is deformed to dy

Convenient measure of deformation:

dy2−dx2 = (dx i gi )·(dx j gj)−(dx igi )·(dx jgj) = dx i dx j (gij−gij)

where gij = gi · gj and gij = gi · gj

are metric tensors (matrices)

Green strain tensor:

εij(x) =1

2(gij − gij)

εij(x) =1

2

(F k

i (x) F `j (x) gk` − gij

)

Ales Janka I. Kinematics

1. Lagrange descript.: Green strain tensor in displacement

u(x) = y(x)− x

u = ui gi

dy = dx + du

du =∂ui

∂x jdx j gi

dy =(dx i + ui

,j dx j)

gi

e3

e2e1

x

y

y(x)

y(x+dx)

dy

(x)u

(x)u du

u(x+dx)dx

x

x+dx

Initial config.

Deformed config.

Ales Janka I. Kinematics

Page 4: tensor de almansi

1. Lagrange descript.: Green strain tensor in displacement

(dy)2 =

(dx i + ui

,j dx j

)(dxk + uk

,` dx`

)gik

(dy)2−(dx)2 = ui,j dx j dxk gik + uk

,` dx` dx i gik + ui,j uk

,` dx j dx` gik

(dy)2−(dx)2 =(ui ,j + uj ,i + uk,i u

k,j

)dx i dx j

Green strain tensor in displacements:

εij =1

2

(ui ,j + uj ,i + uk,i u

k,j

)Green strain tensor in displacements in cartesian coordinates:

εij =1

2

(∂ui

∂xj+∂uj

∂xi+∂uk

∂xi

∂uk

∂xj

)Ales Janka I. Kinematics

1. Lagrange description: example 1 – rigid body motion

x

u

a

y

e3

e2

e1

Deformed config.

Initial config.

α

y1

y2

y3

=

cosα − sinα 0sinα cosα 0

0 0 1

·x1

x2

x3

+

a1

a2

a3

Ales Janka I. Kinematics

Page 5: tensor de almansi

1. Lagrange description: example 1 – rigid body motion

x

u

a

y

e3

e2

e1

Deformed config.

Initial config.

α

u1

u2

u3

=

cosα− 1 − sinα 0sinα cosα− 1 0

0 0 0

·x1

x2

x3

+

a1

a2

a3

ε11 =1

2

(u1,1 + u1,1 +

3∑k=1

uk,1uk,1

)

= cosα− 1 +(cosα− 1)2 + sin2 α

2= 0

Ales Janka I. Kinematics

1. Lagrange description: example 1 – rigid body motion

x

u

a

y

e3

e2

e1

Deformed config.

Initial config.

α

u1

u2

u3

=

cosα− 1 − sinα 0sinα cosα− 1 0

0 0 0

·x1

x2

x3

+

a1

a2

a3

ε12 =1

2

(u1,2 + u2,1 +

3∑k=1

uk,1uk,2

)

=− sinα + sinα

2+− sinα (cosα− 1) + sinα (cosα− 1)

2= 0

Ales Janka I. Kinematics

Page 6: tensor de almansi

1. Lagrange description: example 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

Initial configuration is bent into the deformed configuration

Principal strain of Green strain tensor (Lagrange formulation)?

Ales Janka I. Kinematics

1. Lagrange description: example 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

Wrong - this is Almansi strain (Euler formulation)!Ales Janka I. Kinematics

Page 7: tensor de almansi

1. Lagrange description: example 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

This is the correct Green strain (Lagrange formulation)Ales Janka I. Kinematics

1. Lagrange description: example 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

This is the correct Green strain (Lagrange formulation)Ales Janka I. Kinematics

Page 8: tensor de almansi

2. Euler description

x = x iei and y = y iei .

Choice: x = x(y)

Deformation gradient inverse:

F−1 ij =

∂x i

∂y j= x i

,j

dy = dy iei

dx = dx iei =∂x i

∂y jdy j ei

dx = dx j F−1 ij gi = dx j gj

e3

e2e1

x

y

dx

dy

(y)

y+dy

y

e1g1=

g2

e2

=

g1

~

g2

~

g3

~x(y+dy)

(y)x

e3g3 =

Initial config.

Deformed config.

Ales Janka I. Kinematics

2. Euler description: Almansi strain tensor

the deformed ”edge” dy corresponds to the undeformed dx

Difference of their (lengths)2:

dy2−dx2 = (dy igi )·(dy jgj)−(dy i gi )·(dy j gj) = dy i dy j (gij−gij)

where gij = gi · gj and gij = gi · gj

are metric tensors (matrices)

Almansi strain tensor:

Eij(y) =1

2(gij − gij)

Eij(y) =1

2

(gij − F−1 k

i F−1 `j gk`

)

Ales Janka I. Kinematics

Page 9: tensor de almansi

2. Euler description: Almansi strain tensor in displacement

u(y) = y − x(y)

u = ui gi

dx = dy − du

du =∂ui

∂y jdy j gi

dx =(dy i − ui

,j dy j)

gi

e3

e2e1

x

y

dy

(y)u

(y)u du

u(y+dy)dx

ydx

(y)

y+dy(y+dy)x

(y)x

Initial config.

Deformed config.

Ales Janka I. Kinematics

2. Euler description: Almansi strain tensor in displacement

(dx)2 =

(dy i − ui

,j dy j

)(dyk − uk

,` dy `

)gik

(dy)2−(dx)2 = ui,j dy j dyk gik + uk

,` dy ` dy i gik − ui,j uk

,` dy j dy ` gik

(dy)2−(dx)2 =(ui ,j + uj ,i − uk,i u

k,j

)dy i dy j

Almansi strain tensor in displacements:

Eij =1

2

(ui ,j + uj ,i − uk,i u

k,j

)Almansi strain tensor in displacements in cartesian coordinates:

Eij =1

2

(∂ui

∂yj+∂uj

∂yi− ∂uk

∂yi

∂uk

∂yj

)Ales Janka I. Kinematics

Page 10: tensor de almansi

3. Green and Almansi strain tensors: mutual relation

Green strain tensor:

εij(x) =1

2(gij − gij) =

1

2

(F k

i F `j gk` − gij

)εij =

1

2

(∂ui

∂xj+∂uj

∂xi+∂uk

∂xi

∂uk

∂xj

)Almansi strain tensor

Eij(y) =1

2(gij − gij) =

1

2

(gij − F−1 k

i F−1 `j gk`

)Eij =

1

2

(∂ui

∂yj+∂uj

∂yi− ∂uk

∂yi

∂uk

∂yj

)

Ales Janka I. Kinematics

3. Green and Almansi strain tensors: mutual relation

Relation between F ij = ∂y i

∂x j and F−1 jk = ∂x j

∂yk :

F ij · F−1 j

k =3∑

j=1

∂y i

∂x j

∂x j

∂yk=∂y i

∂yk= δik

by chain rule for the derivatives.

Hence:εk` = F i

k · Eij · F j`

Ales Janka I. Kinematics

Page 11: tensor de almansi

3. Green and Almansi strain tensors: matrix form

Deformation gradient matrix:

F =

∂y1

∂x1∂y1

∂x2∂y1

∂x3

∂y2

∂x1∂y2

∂x2∂y2

∂x3

∂y3

∂x1∂y3

∂x2∂y3

∂x3

=[F i

j

]and F−1 =

[F−1 i

j

]

Green and Almansi matrix for cartesian coords (gi = ei , gij = δij):

[εij ] =1

2

(FT F− I

)and [Eij ] =

1

2

(I− F−T F−1

)Mutual relations:

[εij ] = FT · [Eij ] · F and [Eij ] = F−T · [εij ] · F−1

Ales Janka I. Kinematics

3. Green and Almansi strain tensors: small deformations

If ui ,j � 1 then uk,i · uk,j is negligible:

εij =1

2

(∂ui

∂x j+∂uj

∂x i+∂uk

∂x i

∂uk

∂x j

)≈ 1

2

(∂ui

∂x j+∂uj

∂x i

)= eij

We can replace Green strain εij by the Cauchy strain eij

Advantage: Cauchy strain eij(u) is linear in u

Eij =1

2

(∂ui

∂y j+∂uj

∂y i− ∂uk

∂y i

∂uk

∂y j

)≈ 1

2

(∂ui

∂y j+∂uj

∂y i

)=

1

2

(∂ui

∂xk

∂xk

∂y j+∂uj

∂yk

∂xk

∂y i

)≈ 1

2

(∂ui

∂x j+∂uj

∂x i

)= eij

because xk = yk − uk and ui ,k · uk,` is negligible.NB: Green and Almansi simplify to the same Cauchy strain!

Ales Janka I. Kinematics

Page 12: tensor de almansi

4. Physical meaning of Cauchy strain in cartesian coords

dx dy

yx

e1

e2

e3

xyInitial config. Deformed config.

Special choices of the deformation mode:Let dx = dx1 e1 and dy = dy1 e1. Then:

dy2 − dx2 = (dy1)2 − (dx1)2 = 2 e11 (dx1)2

Hence (for small deformations dx1 + dy1 ≈ 2 dx1):

e11 =(dy1)2 − (dx1)2

2 (dx1)2=

(dy1 − dx1)(dy1 + dx1)

2 (dx1)2≈ dy1

dx1− 1

Meaning of ekk : relative elongation along ek

Ales Janka I. Kinematics

4. Physical meaning of Cauchy strain in cartesian coords

yx

e1

e2

e3

yx

dx2

dx1 dy1

dy2

Initial config. Deformed config.

θ

Special choices of the deformation mode:Let dx = dx1 + dx2 and dy = dy1 + dy2, dxk = dxk ek :

dy2−dx2 = (dy1)2+2 dy1 ·dy2+(dy2)2−(dx1)2−2 dx1 ·dx2−(dx2)2

= 2[e11 (dx1)2 + 2 e12 dx1 dx2 + e22 (dx2)2

]Hence (for small deformations ekk � 1 and θ is small):

e12 =θ

2

dy1

dx1

dy2

dx2≈ θ

2(1 + e11) (1 + e22)

≈ θ

2(1 + e11 + e22 + e11 e22) ≈ θ

2

Meaning of e12: half of shear angle θ in the plane (0, e1, e2)Ales Janka I. Kinematics

Page 13: tensor de almansi

4. Physical meaning of Cauchy strain in cartesian coords

yx

e1

e2

e3

yx

dx2

dx1 dy1

dy2

Initial config. Deformed config.

θ

Special choices of the deformation mode:Let dx = dx1 + dx2 and dy = dy1 + dy2, dxk = dxk ek :

dy1 · dy2 = 2 e12 dx1 dx2

= |dy1| · |dy2| cos(π/2− θ) ≈ dy1 dy2 sin θ ≈ dy1 dy2 · θHence (for small deformations ekk � 1 and θ is small):

e12 =θ

2

dy1

dx1

dy2

dx2≈ θ

2(1 + e11) (1 + e22)

≈ θ

2(1 + e11 + e22 + e11 e22) ≈ θ

2

Meaning of e12: half of shear angle θ in the plane (0, e1, e2)Ales Janka I. Kinematics

4. Physical meaning of Cauchy strain in cartesian coords

e1

e2

e3

yxdx3

dy3dy1

dy2dx2dx1

Initial config. Deformed config.

Volume before (dV ) and after (dV ) deformation (small deformations):

dV = dx1 dx2 dx3 dV ≈ dy1 dy2 dy3

Relative change of volume (for small deformations ekk � 1):

dV − dV

dV=

dV

dV− 1 ≈ dy1

dx1

dy2

dx2

dy3

dx3− 1

= (1 + e11)(1 + e22)(1 + e33)− 1 ≈ e11 + e22 + e33

Meaning of trace of eij : relative change of volume

Ales Janka I. Kinematics

Page 14: tensor de almansi

5. How to transform areas dS0 → dS?

Nanson’s relation:we know how to transform vectors:

dy i =∂y i

∂x jdx j

we know how to transform volumes:

dV = J·dV0 with J = det

[∂y i

∂x j

]

dx

e2

(x)ye3

e1

x

0dV

dy

dS

dS0

Initial config.

Deformed config.

dV

Idea: complete areas to volumes (for any dx, ie. any dy):

dSi dy i = dV = J · dV0 = J · dS0j dx j = J · dS0j∂x j

∂y idy i

Ales Janka I. Kinematics