71
Universidad Nacional Del Altiplano ESCUELA PROFESIONAL DE INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA TECNOLOGÍA DE MATERIALES I PUNO – PERÚ 2015

Tecnología de Materiales 2015-II

Embed Size (px)

DESCRIPTION

texto

Citation preview

Page 1: Tecnología de Materiales 2015-II

Universidad Nacional Del Altiplano

ESCUELA PROFESIONAL DE

INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

TECNOLOGÍA DE MATERIALES I

PUNO – PERÚ

2015

Page 2: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 1 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

MATERIALES DE ALBAÑILERÍA

AGLOMERANTES

Con el término de aglomerantes, se conocen a los

materiales usan para unir otros, condición en que permanecen más ó

menos establemente en las circunstancias usuales de resistencia a las fuerzas y cambios de temperatura. Se les diferencia de los aglutinantes

en que los materiales unidos por éstos, presentan alguna

inestabilidad; tipo característicos de los aglutinantes es el asfalto.

Y E S 0

Definición.-

Yeso vivo ó simplemente yeso, es el producto resultante de

la deshidratación parcial ó total del mineral llamado piedra de yeso,

yesera ó algez. El yeso vivo reducido a polvo y amasado con agua

recupera su agua de cristalización, o sea que se cristaliza,

endureciéndose ó fraguando

Características de la piedra de yeso.-

Es una roca sedimentaria, formada principalmente por

sulfato de calcio y cristalizada con dos moléculas de agua; su fórmula química Es: Ca S04, 2(H20), ó sea un bihidrato cálcico.

Este mineral puede ser rayado con la uña, es de estructura

lamelar-granular, y de color blanco, gris o rojizo. Se encuentra con

impurezas constituidas por arcilla, arenisca, caliza, azufre, cloruro de

sodio y lignita, principalmente. A medida que es mas impuro, el color

pasa al gris obscuro, pardo o amarillo. En la naturaleza se encuentra también el sulfato de calcio cristalizado,

anhidro, y entonces se llama anhidrita (Ca SO4).

Otra variedad del yeso es la selenita, en la cual el yeso se

encuentra en cristales grandes, discernibles, separados individualmente, de estructura lamelar.

El alabastro es una piedra de yeso semejante al mármol

blanco y de granulación cristalina. Se usa principalmente en estatuaria.

Se diferencia del mármol en que se puede rayar con la uña. Nuestra

piedra de Huamanga, es un alabastro.

Clases de yesos vivos.-

Los principales, usados en la industria, son los siguientes,

clasificados en dos grupos de acuerdo con la temperatura de cocción:

Page 3: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 2 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

1º Obtenidos por cochura de la piedra de yeso a temperatura inferior a

200° C.

Yeso de París, que es el más puro de los manufacturados; molidos

en polvo impalpable. Muy blanco. Es usado para modelos de

arquitectura y escultura, en medicina osteológica, etc. En su

composición química es un semihidrato ca1cico: “Ca S04, 1/2(H20).

Estuco o escayola, es un yeso de Paris molido menos finamente.

Yeso de empastados, que es el usado en las construcciones, Tiene

algunas impurezas naturales, principalmente arcillas y a veces se le agregan ciertas sustancias para retardar la fragua’. Es muy plástico.

2°. Obtenidos por cochura de la piedra yesera a temperatura superior a

200º

Yeso para pisos, manufacturados deshidratando completamente la piedra yesera. Son de fragua lenta. Se emplean en Europa,

principalmente. Yeso al alumbre, al bórax, etc. Se obtienen agregando a la piedra

yesera el producto que les da el nombre a esta clase pertenecen las pastas industriales denominadas “Mármol artificial”, “Cemento Kene”, “Cemento Paros”, etc.

Canteras.- se trabajan por cortes a cielo abierto, ó por galerías, la

extracción de la piedra se facilita con el empleo de explosivos de baja

potencia tales como las pólvoras y dinamitas de poco porcentaje.

Preparación de los yesos, Comprende tres etapas principales:

a) Trituración de roca, b) Cocción; y c). Pulverización. Pero el orden en que se realizan estas tres operaciones depende del sistema de cocción

como se va a ver.

a) Trituración de la roca.- Se puede efectuar en chancadoras tipo

Dodge, tipo Blake, molinos de campana, de acuerdo a la dureza de la roca por triturar, de la fuerza motriz disponible, del volumen de la instalación, etc.

b) Cocción.- tiene por objeto la deshidratación de la piedra yesera y

se puede hacer: l° por huayronas; 2° por caldera ó kilns y 3° por hornos rotatorios.

1° En el Perú, a todos lo hornos rústicos se le denomina

huayronas, voz derivado del quechua, idioma en el que huayra significa

viento.

Las huayronas para yeso están formadas por paredes

Page 4: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 3 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

rusticas de albañilería. Son hornos rectangulares de unos 5.00 x 4.00

m, de sección, y de 3.50 m. de alto; a 0.90 ó l.00 m. del piso llevan una

parrilla constituida por barras de hierro; el espacio bajo la parrilla es el hogar; y la parte que queda sobre la parrilla se llama laboratorio, ó

lugar donde se realizan las transformaciones químicas. El horno lleva

un techo ligero, y está provisto además de las poternas necesarias para

atender al funcionamiento del hogar y la carga y descarga del horno.

el petróleo. Como combustible se emplean la leña, el carbón de piedra o

Los trozos de rocas por cocer, se disponen en el laboratorio,

en forma de bovedillas, dejando espacios entre los trozos, a fin de que por ellos puedan circular las llamas y los gases de la combustión. En promedio y segun. las dimensiones del horno, la carga fluctúa entre 20

y 30 toneladas.

2° - Las calderas, como su nombre

lo indica, son grandes pailas cilíndricas, de diámetro variable

entre 2.50 y 2.00m.; de fiero forjado;

de 1/4" á 3/8” de espesor, Están

provistas de un mecanismo constituido por un árbol vertical, en

el que se disponen paletas

destinadas en su rotación a remover el material durante la cocción Esta

caldera va colocada sobre un hogar, y de acuerdo con las patentes de los fabricantes, lleva dispositivos o camisas para impedir la radiación

del calor y también otros para que las llamas y gases de la combustión envuelvan la caldera.

3°- Los hornos rotatorios, Son cilindros metálicos, de 1.50 m. de diámetro, en promedio, y de unos 10.00 m. de longitud, dispuesto inclinados de manera que en su interior las piedras se deslice

suavemente hacia la boca, de salida. Como en el caso de las calderas, el hogar y diversos dispositivos rodean el cilindro para su calentamiento.

Descritos así sumariamente los métodos de cocción se

comprende porque en el sistema de huayronas se tritura la roca

después de la quema, mientras que en los otros dos sistemas, la

sistema de trituración se hace antes de la cocción.

Page 5: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 4 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

c) Pulverización.- Después de la cocción, el yeso es reducido

a polvo; forma en que se entrega al consumidor, La

pulverización se hace por

medio de los molí nos

llamados de tipo chileno, y también por molinos de bolas

Fragua del Yeso, La fragua es la propiedad que tienen todos los aglomerantes por la cual, amasados con proporción conveniente de agua, forman, en un tiempo más o menos variable, pero relativamente

corto, una masa sólida dotada de coherencia suficiente para ser aprovechada con determinados fines.

La fragua del yeso vivo es un proceso complejo que se inicia

desde el momento en que se vierte agua para amasarlo, ‘y que pasa

sucesivamente por los fenómenos de disolución, transformación

química, saturación, y finalmente, cristalización. Estos fenómenos se

producen sobre fracciones parciales de la masa, en primer lugar, y

después toda ella queda comprometida en esas etapas.

Debe llamarse la atención sobre otros dos fenómenos

concurrentes con la fragua del yeso; el primero es que ésta se produce

con un aumento de temperatura, que puede alcanzar hasta 20°, o sea

desprendimiento de calor; y el segundo, que el yeso aumenta de

volumen al fraguar.

La fragua del yeso se puede retardar agregándole algunos

productos orgánicos tales como glicerina, harinas, azúcar, alcohol,

sangre y cola de carpintero. En la industria se usa un retardador a base de pelos, soda cáustica y cal viva; la soda cáustica reduce el pelo a cola, y La cal actúa como un secante.

Como acelerador de la fragua se emplean el alumbre y la

sal de cocina.

Usos de la pasta de yeso –

En el Curso llamamos pasta a la mezcla de un aglomerante

con agua; pero esta mezcla debe tener cierta consistencia, porque

cuando el agua esta en gran exceso, entonces, se produce lo que se llama Lechada.

Page 6: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 5 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

El empleo mas importante, en construcción, de la pasta de yeso esta en los estucados de los muros y techos a cielo-rasos estos estucados se conocen con los nombres de empastados o enlucidos.

Se usa generalmente, en la construcción de tabiques

estructuras similares, formados por encunados de Caña de Guayaquil,

o de tirillas madera, Debe advertirse que como el yeso oxida el hierro

para asegurar la caña o material similar, deben emplearse clavos de

encañar, que son clavos galvanizados, o clavos de zinc.

El yeso con el calor despide vapor de agua, o agua y por

esta razón se le considera como material incombustible, utilizándose en rellenos de bóvedas y de cajas de seguridad. El desprendimiento d e vapor de agua se aumenta agregándole alumbre.

Como el soporte ó materiales de cuerpo, se pueden usar la

viruta y el aserrín de madera, fibras vegetales y pelos. Estos materiales

agregados al yeso, no le quitan su propiedad de ser incombustible y le dan en cambio, cualidades de aislante acústico, y de opacidad o de absorción de ruidos.

Información para presupuestos, En la redacción de presupuestos se pueden emplear los siguientes datos.

Cielo raso de caña de Guayaquil con

Yeso consumido por m2

estucado de yeso puro……………………………… 15 Kg.

Empastado de cielo raso con yeso pu- ro. Superficie de techo aligerado………………….... 13 Kg. Empastado con pasta de yeso puro,

aplicado sobré tarrajeo primario ó enfoscado. Espesor 5mm. . . . ……………………… 7 Kg.

Especificaciones técnicas.-

La generalidad de los yesos limeños poseen las siguientes

características. Molturación o grado de finura: pasan la malla 14. No menos del 40% ni

mas del 75% pasa la malla 100.( la resistencia a la tracción del yeso aumenta proporcionalmente a su grado de finura).

Volumen en seco: 1.2 m3 por 1.000 Kg. de yeso vivo. Tiempo de fragua: de 16 a 20 minutos. Volumen de agua: El necesario para preparar la pasta, en el 60% de volumen del yeso vivo.

Volumen de pasta: 95% del volumen del yeso vivo.

Page 7: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 6 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Resistencias. La generalidad de los pliegos de especificaciones, prescriben que la resistencia mínima debe ser la de. 8 kg/cm2, a la tensión, a 1os 24 horas; y de 16kg/cm2. a los siete días, para yesos

cocidos en calderas.

Como resistencia a la compresión se suele considerar la de

80 kg/cm2, para el yeso de construcción; y de 180 kg/cm2. para el de pisos.

Mercado.-

E1 yeso se vende en costales de 2 qq. Cada uno, o sea de

pesos de 90 a 92 kg.; y también en bolsas de 35 y de 40Kg. cada una. Historia.-

El yeso es uno de los aglomerantes mas antiguos conocidos

por la humanidad, Se le empleo en Egipto, en la construcción de las

Pirámides. Fue usado por los griegos, los romanos y lo árabes.

Los antiguos peruanos lo llamaban pachach, Lo obtenían

pulverizando groseramente las piedras yeseras cocidas, y cerniéndolo en

trozos de géneros. No lo empleaban en empastados de muros o techos;

sino mezclado con grava formaban una especie de concreto que les

servía para rellenar muros formados por das paredes de adobe.

Yacimiento.-

Las primeras canteras de yeso que se explotaron en Lima,

por los españoles, estaban hacia el camino de Ancón, en Repartición, y

Comas; pero hoy ya no se les trabaja. Otras canteras que no se trabajan

actualmente son las del cerro Agustino, las de la Isla de San Lorenzo, y

las muy importantes de chicla, en la línea del F.C. Central, a 129 km.

de Lima, y de donde se ha suministrado piedra yesera en gran

abundancia a la capital.

En el día, las mejores y las más copiosas se encuentran en

la caleta de Pucusana, aproximadme a 70 km. Al sur de Lima los yacimientos consisten en sulfato de calcio en sus dos formas clásicas el

hidrato de yeso y el anhídrido ó anhidrita, aunque industrialmente carezca de valor la anhidrita siempre se usa, mezclado con el producto hidratado, en la manufactura del yeso comercial.

En muchas partes del territorio nacional se encuentran

yacimientos de piedra yesera, pudiéndose mencionar entre ellos los de

Maco en la provincia de Tarma, y los de Iscuchaca, en el F.C. dc

Huancayo a Huancavelica.

Page 8: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 7 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

CAL Definición.-

Cal es el producto resultante de la descomposición, por el

calor, de las rocas calizas, que son carbonatos cálcicos ó carbonatos de calcio.

Si las calizas son puras y se calientan a 900°, se verifica la

siguiente reacción:

Ca CO3 + calor ≈ CO2 + Ca O

Es decir que el carbonato cálcico se descompone, originado

anhídrido carbónico y óxido de calcio o cal viva. El anhídrido carbónico es gaseoso y se escapa con los humos de la combustión, quedando, pues como residuo de la combustión sino el óxido de calcio.

Descripción. -

Las piedras de cal o calizas naturales, casi nunca se encuentran puras, ó sea en la. forma de carbonato cálcico, sino

acompañadas de otros cuerpos extraños, principalmente arcilla, magnesia, hierro, azufre álcalis y materias orgánicas, comunicándole a la cal, proveniente de aquellas, determinadas características.

El carbonato cálcico se presenta, en la naturaleza en

multitud de formas, siendo, muy abundante, Se le conoce con los

siguientes nombres:

Aragonito, Espato de Islandia,

Calcita, Estalactitas y estalagmitas,

Caliza, Mármol,

Creta, Piedra litográfica, etc., etc.

La cal viva es una sal blanca, amorfa, muy inestable, pues

posee gran avidez por el agua. Reacciona con el agua en la forma siguiente:

Ca O + H20 - Ca (OH)2 + calor

Produciéndose hidróxido cálcico o cal apagada. La temperatura a que da

Lugar esta reacción es de unos 160º.

El hidróxido cálcico es un cuerpo sólido, blanco, amorfo, pulverulento, algo soluble en el agua, Disuelto en agua forma lo que se llama agua de cal.

Page 9: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 8 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Clasificación de la cal.-

Las distintas clases de cal se pueden agrupar en la forma

siguiente :

Por la acción del agua en:

Cal viva

Cal apagada, ya descrita.

Por su grosura:

Cal grasa, que se obtiene de una caliza que contiene hasta

5% de arcilla. Esta cal al apagaras forma una pasta ligosa y untuosa al tacto, lo que ha dado origen a su nombre.

Cal árida, que procede de calizas que aún teniendo menos

de 5% de arcilla contienen además óxido de magnesio en proporción superior al 10%.

Por sus características químicas:

Cal dolomítica, cuando la proporción de óxido de magnesio

cs superior al 25%.

Cal hidráulica, que es la proveniente de la calcinación de

calizas que tienen más del 5% de arcilla y que da un producto que

además de los caracteres que poseen las cales grasas, puede endurecerse y consolidarse bajo el agua.

Por refinamiento industrial:

Cemento grappier, formado por trozos sumamente

calcinados obtenidos después del apagado de la cal hidráulica, lo cuales son molidos constituyendo un material de cementación gracias al

silicato de cal que contienen, en grado mayor o menor.

Cemento Lafarge, usado en EE. UU., siendo un producto

similar al anterior.

de cal: En el mercado limeño se encuentran las siguientes clases

blanco. De Obra.- La más barata, contiene impurezas y de color no

Fina- De color blanco, por la ausencia de impurezas.

Page 10: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 9 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Tamizada.- Excenta de grumos o granos gruesos.

Cal Hidráulica.- Preparada para endurecerse en presencia del agua.

Blanca fina.-. Usada en la preparación de revestimientos

decorativos

Cal viva.- Ya descrita.

La cal se vende en bolsas de 15, 30 y 46 kg.; y en cilindros

metálicos, de 20 kg. Caracteres.-

Es usual caracterizar una cal por lo que se llama su índice

hidráulico, que es la relación de la sílice y alumina, a la cal magnesica, de que está formada:

1= Si 02 + A12 O3

Cao + MgO

Las distintas clases de cales y los cementos se ordenan en

la forma, siguiente: de acuerdo con índice hidráulico y la proporción de

arcilla contenida en la caliza primitiva:

Material

Cal grasa ó magra

Índice

Hidráulica

0.10

% de

arcilla

5.0 Cal débilmente hidráulica 0.15 8.0

Cal medianamente hidráulica 0. 30 14.0 Cal propiamente hidráulica 0.40 19.0

Cal eminentemente hidráulica 0.50 22.0 Cal, límite o cemento lento 0.65 27.0 Cal rápido 1.20 40.0

Calcinación de la cal.-

1.- por huayronas, pilas o montón - En una zona de terreno igualado,

Se practica una excavación rectangular de 1.00 m. de lado, aproximadamente, y otro tanto de profundidad; este hueco que va a servir de hornillo se conecta al exterior, fuera

de la pila de que vamos a hablar enseguida,

por una zanja.

Sobre la excavación y haciendo de

ella centro, se forma la pila ó montón

Page 11: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 10 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

constituido por capas alternadas de piedra y combustible, que puede ser carbón vegetal, leña ó ramas. Se levanta así un de tronco de cono unos 4.00 á 5.00 m. de diámetro en la base; 3.00 á 4.00 m. en la

coronación y de unos 3.00 m. de altura. Esta pila se cubre Por una capa de arcille mojada, arena y paja de unos 6 cm. de espesor, en total, y que tiene por objeto evitar la pérdida excesiva de calor.

Antes de construir la pila se echa combustible en la zanja y

en el hornillo; y después de construido el montón, se enciende el

conjunto por medio del combustible arrojado ala zanja; el fuego se

trasmite poco a poco a todo el conjunto.

La calcinación dura mas o menos una semana, y se conoce

que ha terminado por el aspecto de los gases que se desprenden, exentos de humo.

Una vez enfriado el montón y desecho, es necesario separar

a mano los trozos de cal, de las cenizas.

2.- Por hornos intermitentes.- Se

realiza en construcciones especiales de

ladrillos ó adobe, que constan de 3

partes: el hogar, el cuerpo del horno, y la boca, chimenea ó tragante. Tienen. 5.00

m. de altura, aproximadamente y son de

sección circular.

Se forma una bóveda sobre

el hogar con las piedras más gruesas, y

el resto del cuerpo se llena con caliza

triturada. El combustible suele ser leña y

a veces guano. La calcinación dura de tres a cuatro días, y se aprecia que ha terminado por el descenso que

sufre el material, en el cuerpo del horno. 3.- Por hornos continuos.- Están formados por construcciones de

albañilería, que afectan la disposición de dos conos invertidos, unidos por sus bases. En estos ‘hornos en la parte inferior, además del hogar, se dispone de una

abertura para extraer la piedra de cal a medida que es calcinada.

Como estos hornos son mas perfectos, casi siempre van

revestidos interiormente con ladrillos refractarios.

Apagado de la cal.-

En Ingeniería Civil: la cal se usa apagada, es decir,

hidratada. Como ya hemos manifestado esta hidratación se realiza con

Page 12: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 11 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

un fuerte desprendimiento de calor, que a veces llega a l60º, y se

produce además un ruido característico, consistente en una especie de silbido ó crepitar agudo.

Teóricamente el apagado de la cal viva sólo requiere un

Volumen De agua equivalente a 35% del peso de la cal.

En la práctica se emplea mayor cantidad de agua que la indicada, y es usual que los albañiles apaguen un volumen de cal con

1-1/2 á 2 volúmenes de agua.

siguientes: El apagado de, la cal se puede hacer por los métodos

1.- Apagado Espontáneo.- Es el que se realiza por el contacto natural de la cal

con 1a humedad ó vapor de agua del aire

atmosférico. Para facilitar esta acción se extiende simplemente la cal sobre una

superficie plana, resguardada de la lluvia.

Para el apagado completo es necesario

exponer la Cal unos tres meses. El sistema tiene el inconveniente de que la

cal absorbe, además anhídrido-carbónico,

y se carbonata un poco, circunstancia dañina qué comprenderemos mejor al ocuparnos de la fragua de la cal.

2.- Apagado por aspersión.- Se humedece la cal con una regadera ó

con un pu1verizador, extendiéndola previamente sobre una superficie,

en capas, que son sucesivamente regadas.

3.- Apagado en obra.- El procedimiento empleado generalmente al pié de obra consiste en formar una pila ó cono de arena, en cuyo eje se practica una especie de cráter, en el que se arrojan los trozos de cal

viva. Luego se vierte sobre la arena un volumen de agua a tres veces el de la cal.

Otro sistema también muy usual en los trabajos de

albañilería, en echar la cal viva con suficiente cantidad de agua en cubetas ó pozas impermeables, y después de apagada pasarla por

mallas ó tamices, con el objeto de separar los trozos duros ó impurezas.

En estos casos se acostumbre apagar la cal siete días antes

de emplearla con argamasa, y 30 días antes, cuando se le va a usar en revoques.

Page 13: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 12 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

En algunos países solo se permite usar la cal que ha llegado viva al pie de obra; pero la experiencia demuestra que no hay inconveniente en emplearla apagada, trasportada en forma de polvo a

los trabajos, ó sea que se ha apagado antes, pudiendo este plazo de preparación alcanzar hasta un período de seis meses.

Obtención de las piedras calizas.-

Como en el caso del yeso, la explotación de las canteras se puede hacer por, Cortes a cielo abierto, ó por galerías. El tamaño de los trozos de roca depende del sistema de calcinación; y por consiguiente

según sea éste, será también el método, de explotación de la cantera, y el uso de la clase de explosivo.

Empleo de la Cal.-

Se usa también en muchas industrias, y así la minería

consuma alrededor de las cuatro quintas partes de la cal producida en

nuestro país; y de esa cantidad cerca de la mitad es usada como

fundente, en la Oroya.

Especificaciones.-

Las usuales son: el grado de finura, determinada en la

pasta; el rendimiento, en pasta, de la cal apagada. En cuanto a las

resistencias o propiedades mecánicas exigidas, se prescriben para la cal

en forma de morteros, por lo que las estudiaremos en el capitulo

correspondiente a estos.

Para la determinación de la finura de una cal dada, se prepara una pasta con ella y lavándola a chorro de agua sobre una

malla 20; mas del 15% de la masa, debe quedar detenida sobre la malla.

En cuanto al rendimiento, se considera que una buena cal

apagada debe dar pasta en la proporción de 2.4 kg. de pasta por cada kilo de cal.

Mercado.-

La cal se vende entre nosotros, prácticamente viva. Se

fabrica de dos clases una ordinaria, llamada cal de obra, que se vende a

costales de 80 kg.; otra de grano más fino, y de color blanco uniforme se

llama cal fina, y vendida en sacos de 60 kg.

Page 14: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 13 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

También se vende en algunas ciudades del país, en sacos de fanegas con 72 kg. de peso, por saco.

Historia.-

La cal fue conocida en el periodo histórico que se

denominan corrientemente “la antigüedad”; pero la cal hidráulica solo fue descubierta a principios del sigo XIX.

En el Perú, a la piedra de cal se le llamaba iscu, y 1os

aborígenes la obtenían quemando las calizas por el método del montón

ó huaironas, que hemos revisado; también para obtener cal quemaban conchas y moluscos, con leña y paja.

En quechua, chancara quiere decir “montaña de caliza”.

Los antiguos peruanos mezclaban la cal con arena ó con

arcilla para obtener morteros que empleaban para revestimientos ó tarrajeos para construir muros rústicos de piedra no labrada.

Loa hornos de cal se comenzaron a usar en Lima muy poco

después de fundada la ciudad en 1535; y ya en 1549 se encontraba en

pleno funcionamiento uno de estos hornos establecido, en las

vecindades del Cerro que, años después, se llamo’ San Cristóbal.

En los primeros años de la Republica la cal que se

consumía en Arequipa procedía de una cantera llamada “Calera”, en la quebrada del Yura. Es una piedra porosa con aspecto de estar formada

por tubitos pequeños y delgados; es de color blanco sucio.

En la misma época, la cal consumida en Trujillo, provenía

de canteras vecinas a Asocopa, donde también se hallaban instalados

los hornos para la quema de la piedra. Esta piedra es de un color gris

azulado, y se quemaba en pequeños hornos de leña. La cal apagada no

solo se trasportaba a Trujillo, sino también a Malabrigo, y algunas veces

hasta el Callao.

Yacimientos.-

Los calcáreos son muy abundantes en nuestro territorio, y

es prácticamente posible encontrarlos muy cerca del lugar donde se les necesite.

Unos pocos de los yacimientos y canteras más conocidas

son las siguientes.

En los alrededores de Lima:

Page 15: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 14 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Comas, El pino, Monterrico chico, San Francisca, E1 Agustino Valdivieso.

Los alrededores de Arequipa:

Pacsi vitor

Charcani sumbay

Socosani socabaya

En los alrededores de Chiclayo:

Hacienda cuculí, hacienda sultur.

CAL HIDRÁULICA

Como ya hemos expresado, La cal hidráulica aquella que, además de las características de la cal grasa, que se endurece en el aire,

posee la de fraguar ó solidificar bajo el agua, ó en un medio húmedo. A

todos los materiales que poseen esta última propiedad se les denomina

hidráu1icos, en ingeniería, para distinguirlos de los otros que se llaman

aéreos.

Se explica la fragua hidráulica de esta cal, estableciendo que

en la cocción, en primer lugar, se produce una evaporación del agua de

cantera; hasta los 700º empiezan a descomponerse los silicatos que forman las arcillas, y a los 900º se descompone el carbonato cálcico. A

temperatura más elevada reaccionan los productos resultantes: oxido

de cal, anhídrido silícico y alúmina, formándose unos silicatos y

aluminatos, cuyo conjunto constituye el aglomerante que se ha llamado cal hidráulica.

Lo que diferencia una cal de otra, esta pues en que la

hidráulica se obtiene por cocción a mayor temperatura, y además, como

condición indispensable, en que las calizas que se emplean para fabricar la cal hidráulica contienen apreciable porcentaje de arcilla.

La calcinación y el apagado de la cal hidráulica se realizan

en todo, semejante al de la cal grasa; pero con la circunstancia de que se llevan a cabo con la mayor prolijidad y refinamiento técnico, por

tratarse de un producto más fino.

De los residuos de la calcinación de las calizas, que dan

cales hidráulicas, ó sea de aquellos trozos que no se reducen a polvo, y que están formados por productos prácticamente vitrificados, se

preparan los cementos grappier; para los cuales se pulverizan

Page 16: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 15 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

conveniente tales residuos. Estos cementos tienen también propiedades hidráulicas.

Precursores en la fabricación de cal hidráulica.-

A mediados del siglo XVII, el ingeniero inglés Jhon Smeaton tuvo que

resolver el problema de encontrar un aglomerante que pudiera emplearse en la construcción del que mas tarde, fue el celebrado faro de

Eddistone, pues la cal que se conocía en esa época no poseía

condiciones hidráulicas. Después de una serie de experimentos descubrió que las calizas impuras, con proporción pequeña de arcilla,

calcinadas en la forma que se usaba por entonces, producían una cal

viva que, apagada, endurecían bajo el agua. Con ella construyo el faro mencionado.

Poco después, Parker aprovechando los descubrimientos

de Smeaton, y calcinando las margas del Tamesis, obtenían una cal hidráulica a la que denomino cemento romano.

Por la misma época, Vicat realizó en Francia trabajos de

investigación muy meritorios, sobre las cales hidráulicas, y en 1816

construyo el primer puente con el llamado cemento romano, sobre el rió

Dordoña.

Se había llegado así, en el desarrollo industrial de la

humanidad, a las etapas preliminares que condujeron al descubrimiento cemento portland.

PUZOLANAS Definición.-

Son las sustancias, naturales o artificiales, que reducidas a

polvo, y amasadas con la cal, le proporcionan a, ésta, propiedades

hidráulicas. Descripción y caracteres.-

Las puzolanas naturales son tobas volcánicas, es decir,

polvos, cenizas ó barros de origen eruptivo que han tomado la consistencia de rocas deleznables. Son, en cuanto a su composición

química, silicatos alumínicos hidratados, análogos a las arcillas

vitrificadas ó cristalizadas. las rocas presentan un color gris

amarillento, rojizo ó verdoso.

Page 17: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 16 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Para emplearlas, se pulverizan simplemente las rocas originarias y se añaden a la cal en proporciones, determinadas principalmente por la experiencia.

Las puzolanas artificiales, se preparan calcinando arcillas o

pizarras, a temperatura que va de 600° á 900°. El producto de la

calcinación se pulveriza y se emplea en forma similar a las puzolanas naturales.

Uso de las puzolanas.-

El principal, en Ingeniería Civil, esta en la propiedad ya

expresada de dar hidraulicidad a las cales; pero también se le emplea

para preparar algunos productos como el poozolith, que estudiaremos mas adelante. En los casos en que se necesita una harina mineral, también se emplean las puzolanas; y por último, con ellas se fabrica el

llamado cemento puzolánico. Historia.-

La palabra puzolana se deriva de Puzzuoli, nombre de un

yacimiento de esta roca, emplazado en la bahía, de Nápoles, en las

vecindades del volcán Vesubio. Este yacimiento fue explotado en la antigüedad por los griegos y los romanos. Además de estos, conocieron

las propiedades de las puzolanas otros pueblos antiguos como la India,

Egipto, etc.

Entre las numerosas obras en las cuales loa romanos

emplearon la puzolana se pueden mencionar: la cloaca máxima, el Panteón de Agripo y los puentes de Neron en Ancio y el de Claudio en Ostia.

puzolánico. Las catacumbas romanas estaban perforadas en un macizo

CEMENTO PORTLAND Definición. -

Cemento Portland, es el producto resultante de la

pulverización muy fina de Clinkers (ó clinquers) obtenidos calcinando a

fusión incipiente una mezcla rigurosamente homogénea de materiales

calcáreos y arcillosos; al clinker no se le agrega ningún producto

después de calcinado con excepción de agua y yeso, pudiendo estar este

ultimo, a su vez, calcinado o no.

El clinker es, pues, una escoria, pero no se le da este

nombre porque la idea de escoria presupone un residuo secundario de

Page 18: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 17 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

la calcinación, mientras que el clinker es el objeto primordial de esta. El clinker se presenta en la forma de pequeñas esferas hasta de 2 cm. de diámetro, de un color gris-negruzco.

Descripción.-

El cemento Portland es un polvo de color gris, más ó menos

verdoso, de gran valor como material estructural, a consecuencia de

alcanzar dureza pétrea después de ser amasado con agua; es también

un aglomerante hidráulico por excelencia.

Caracteres.-

Los últimos estudios acerca de la composición química del

cemento Portland, parecen indicar que un buen clinker, bien quemado,

tiene la siguiente composición;

Silicato tricálcico 3 CaO, SiO2 36.0 %

Silicato bicálcico 2 CaO, SiO2 33.0 % Aluminato tricálcico 3 CaO, Al2O3 21.0 %

Otros componentes ----- 10.0 %

---------------- 100.0 %

Bajo el rubro de otros componentes se comprende:

Oxido de fierro Fe203

Magnesia Mg0

Azufre en forma de S03

Oxido cálcico, en Ca0

Calcinación insuficiente

Para apreciar la bondad de la composición química de un,

cemento es usual compararlo con la composición teórica perfecta, expresada por la fórmula de Eckel:

1.0 = 2.8(Si02) + 1.1(Al203) + 0.7(Fe203) 1.0(Ca0) + 1.4(Mg0)

Page 19: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 18 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Clases de cementos.-

Cemento Portland, ya descrito. Cuando se le quiere precisar se le llama, en el Curso, cemento Portland normal.

Supercemento ó cemento de endurecimiento rápido.- Es

un cemento Portland que por su composición química se endurece más velozmente que el Portland normal.

Cemento aluminoso ó fundido.- Obtenido por la fusión de

una mezcla de caliza y bauxita.

Cemento blanco.- Fabricado con materias primas casi

exentas de hierro, que es el mineral que da el color gris al Portland.

Cemento romano.- Material antiguo, de características

hidráulicas, que se describe al hacer la historia de las cales

hidráulicas.

Cemento natural.- El obtenido de rocas que tienen la

porción de cal y arcilla conveniente para la obtención de un cemento similar al Portland.

Cemento de escorias.- El preparado con los residuos de los

hornos metalúrgicos, especialmente los de hierro.

Cemento puzolánico.- Obtenido pulverizando una mezcla,

de dos a cuatro partes de puzolana con una parte de cal hidratada.

Materias primas.-

Las principales materias primas empleadas para la

fabricación del cemento y sus denominaciones inglesas, son las

siguientes:

a) Materiales calcáreos.-

Calizas arcillosas (cement rocks) llamadas a veces “rocas de cemento”. En algunas regiones de España se les conoce por “Piedras

romanas”.

Calizas (limestones), siendo las apropiadas aquellas que

tienen un 90% de carbonato cálcico y pequemos porcentajes de alúmina, óxido de fierro, carbonato de magnesio, azufre y varios álcalis.

Margas (marls), que son rocas blandas que constituyen

depósitos generalmente en el lecho de lagos extinguidos o inexistentes.

Page 20: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 19 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Pueden ser margas calizas, cuando contienen carbonato cálcico; y

margas dolomíticas, cuando presentan carbonato Cálcico - magnésico.

Creta ó tiza (chalk), que es una variedad de carbonato cálcico, roca suave formada por residuos de organismos microscópicos; contiene también pequeños porcentajes de sílice, alúmina y magnesio.

b) Materiales arcillosos.-

Arcillas exfoliables estratificadas (shales), que son rocas compuestas principalmente de alúmina, sílice y oxido de fierro.

Arcillas desagregadas (decayed shales), caracterizadas por

poseer mayor cantidad de agua de cantera, pizarras (slates).

Productos industriales.-

Escorias de altos hornos (blast furnace slags), formada por silicatos fusibles, originados durante la reducción de minerales de

fierro en los altos hornos, por la combinación del material fundente (calizas) con la materia terrosa o ganga del mineral.

Álcalis residuales (álkali wastes), precipitados de

carbonatos de calcio obtenidos en la preparación industrial de la soda cáustica por el método Leblanc.

La mezcla de estas materias primas se puede hacer en las

siguientes formas, que se indican como ejemplos:

Roca de cemento + calizas puras

Arcillas o pizarras Arcillas o pizarras

Arcillas o pizarras Arcillas o pizarras

+ +

+ +

margas calizas puras

creta álcalis residuales

Escorias + calizas puras

Procedimiento de fabricación.-

Se pueden agrupar en dos sistemas:

1.- procedimientos por vía seca, en el cual las materias

primas se muelen y se desecan, en primer lugar; se mezcla enseguida

dosificándolas, y después son reducidas a polvo, pasando luego a los

hornos.

2.- Procedimientos por vía húmeda, en el que las

materias primas después de haber sido molidas separadamente, se dosifican y mezclan, amasándolas con mucha agua; el lodo así formado

Page 21: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 20 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

pasa los hornos.

Como ya se ha dicho el producto resultante de la

calcinación en los hornos se llama clinker. Estos hornos pueden ser

verticales fijos, e inclinados o giratorios.

Los hornos giratorios son casi los únicos usados en la

actualidad, Consisten en un cilindro de chapas de acero, de l.80 a

3.00 m. de diámetro, y de 30.00 á 90.00 m. de longitud, el cual está ligeramente inclinado con respecto a la horizontal; con frecuencia va

revestido interiormente con ladrillos refractarios. Cuando el horno gira suavemente la materia prima que es echada en su interior, lo recorre lentamente, de un extremo a otro, recibiendo gradualmente

temperaturas cada vez más elevadas hasta alcanzar la de 1,600º a 1,700°, que es la máxima que se genera en el horno.

En el interior del horno, en su parte más baja, y en su eje,

actúa un chorro de fuego, producido por un quemador de petróleo por

un pulverizador de carbón de piedra; el petróleo es más ventajoso, por

que el carbón siempre origina cenizas que a veces resulta perjudiciales.

El material pasa por el interior del horno, gradualmente

como hemos dicho, durando la cocción unas cuatro o cinco horas. Al

horno se le llama también kiln.

Después de formado el clinker recibe una ligera lluvia de

agua y pasa a los molinos para ser pulverizados.

Antes o después de ese riego, el clinker recibe una adición

de yeso, hidratado o deshidratado, según los procedimientos de

fabricación. La adición del yeso tiene por objeto retardar la fragua,

contrarrestando en este sentido la acción de la cal viva que pudiera

contener el cemento; pero esta adición no debe sobrepasar el 3% del

c1inker en peso.

El polvo que sale de los molinos es ya el cemento portland.

Después de manufacturado el cemento debe permanecer

en silos, por lo menos diez días, a fin de que toda la cal libre que pudiera contener, se hidrate por si misma. Se pueden suponer los inconvenientes que ofrecería un cemento que contuviera cal no

hidratada, principalmente el aumento de volumen al fraguar.

Los hornos verticales, son de diseño similar al de los usados

para la fabricación de la cal hidráulica. Siempre están provistos de una camisa de ladrillos refractarios; son de carga continua y poseen dos cámaras, la primera ó alta, para la desecación del material, y la

segunda, baja, para la clinkerización.

Page 22: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 21 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

A continuación se da un esquema característico de los dos

procesos principales de la fabricación del cemento.

Procedimiento por vía seca Procedimiento por vía húmeda

MATERIALES MATERIALES MATERIALES MATERIALES AGUA CALCAREOS ARCILLOSOS CALCAREOS ARCILLOSOS

Trituración trituración trituración

Secado Secado Dosificación

Dosificación Lodos

Los dos Procedimientos:

Molinos Petróleo

Ó H O R N O S Combustible Polvo de

Carbón

Yeso Clinker

Molinos

CEMENTO PORTLAND

Silos

Ensacado

La Fabricación del cemento peruano “Sol”.-

La planta donde se prepara el clinker se encuentra en Atocongo a unos 27 km. al Sur de Lima, al pie de las canteras de caliza. Esta materia, prima es corregida, de acuerdo con las necesidades, con

carbonato de calcio procedente de Cuy-Off, en las vecindades, de Cerro de Pasco, con calcitas de Chilca, y con esquistos silíceos de Puente Piedra, en el camino de Lima a Ancón.

En Atocongo, para el tratamiento de la materia prima se

emplean sucesivamente una chancadora de trompo, kc Cully, martillos

chancadores Dixie, y molinos de rodillos, Hércules, dosificándose en

este proceso, convenientemente, los materiales.

Los hornos para preparar el clinker son de los tipos. El

primero, modelo alemán, corresponden al sistema de calcinación por vía

semi - húmeda; el material antes de ingresar al horno pasa a los

Page 23: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 22 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

granuladores en 1os que es humedecido y amasado llevándosele

después a las parrillas secadoras que actúan a 250º, y por ultimo al horno de fuego, que trabaja a 1.500º.

El otro tipo corresponde a modelo norte—americano,

consisten en un cuerpo cilíndrico de planchas de fierro; de 60.00 m. de

largo aproximadamente. Tienen un diámetro interior a la entrada de 2.40 y a la salida de 2.90 m.; presenta una inclinación de 1:24 y rota a

razón de una revolución por minuto; están provistos de inyectores de petróleo que generan una temperatura aproximada de 1,500º; un

sistema he1icoidal interior regula el desplazamiento del material que entra al horno. Últimamente se han instalado dos hornos rotatorios, Allís Chalmers, de 91.50 m. de longitud cada uno.

En el interior de estos hornos se pueden constatar las

siguientes trasformaciones químicas. En la sección de entrada del

material o zona fría se observan pequeñas volatilizaciones de gases. En

la zona de calcinación, el carbonato de calcio que es el componente más importante de la materia prima, sufre un desdoblamiento ocasionado

por la elevación de la temperatura a 850-900º, desprendiéndose

anhídrido carbónico y formándose cal viva que, muy ávida, reacciona

con los otros elementos, sílice y alúmina, creando silicatos y aluminatos de calcio, mientras que la temperatura sigue elevando hasta

cerca de 1,200º. Por ultimo, en la zona de clinkerización, con el hierro

existente al estado de oxido y que actúa como fundente a una temperatura de 1.450º, permite la formación del aluminato férrico

tetracálcico.

Los ladrillos refractarios que revisten interiormente los

hornos no son de 1a misma composición en todas las zonas. Así los

porcentajes de sílice y alúmina, respectivamente, son los siguientes en

las distintas zonas: en la zona fría de 50 y 50%; en la zona de

calcinación, 40 y 60%; en la de clinkerizacion, 30 y 70%, y por ultimo

en la zona de descarga, el revestimiento no necesita ser de ladrillos

refractarios.

El clinker sale del horno, por la zona de descarga o de

enfriadores, a una temperatura de 200º.

Después, el clinker es acarreado a la Planta de maravillas,

en la ciudad de Lima, donde sufre el tratamiento final consistente en

trituración, adición de yeso, pulverización, ensilado y ensacado.

Fragua del cemento.-

Amasado el cemento con agua se produce su

endurecimiento ó petrificación, en un periodo de tiempo más o menos

corto. Este endurecimiento es debido principalmente a la hidratación y

Page 24: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 23 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

consecuentemente cristalización de los componentes.

En el proceso de petrificación del cemento, se pueden

distinguir dos etapas perfectamente marcadas. La primera se llama

fragua y la segunda, endurecimiento.

La fragua es la pérdida de plasticidad o de fluidez que sufre

la pasta de cemento y que hace que ésta soporte, sin dejar huellas aparentes, la presión suave de un objeto exterior.

El endurecimiento es la mayor resistencia estructural que

va adquiriendo el cemento con el transcurso del tiempo.

En esta parte del Curso se estudia de preferencia la fragua, dejando el endurecimiento para tratarlo al estudiar los morteros y el concreto.

En el fraguado hay que distinguir dos períodos: el principio

de la fragua; y el final, ó conclusión de la fragua.

El principio del fragua es el tiempo transcurrido desde el

momento en que se vierte el agua del amasado, hasta aquel en que la

pasta pierde, parcialmente, la plasticidad.

El final del fraguado es el

tiempo trascurrido desde que la pasta

ha comenzado a perder plasticidad,

hasta que adquiere suficiente

consistencia para resistir determinada

presión.

Tanto el principio como el

fin del fraguado se pueden determinar

por medio de los aparatos conocidos con los nombres de Aguja de Vicat y Agujas Gillmore.

La aguja Vicat está formada por una sonda cilíndrica de

1mm2, de sección, cargada con un peso de 300 gr. La sonda ó

aguja, que se desliza en una corredera vertical, acciona un indicador que se mueve sobre una escala graduada en mm.

Las agujas Gillmore, generalmente se montan en

pareja; son de sección circular y el extremo de ellas está cortado a

ángulo recto con el eje vertical. Una, de ellas se denomina aguja inicial

Page 25: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 24 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

tiene un diámetro de 1/12” y está cargada con un peso de 1/4 lb.; la

otra, que se llama, aguja final, tiene un diámetro de l/24” y soporta un peso de una libras.

Los ensayos de la fragua se realizan sobre lo que

llama pasta de consistencia normal, ó simplemente pasta normal.

La pasta normal esta formada por una cantidad

de cemento, de 400 a 1.000 gr. amasada con un volumen de

agua suficiente para que el operador pueda moldear una bola,

teniendo las manos protegidas con guantes de jebe. La temperatura

del laboratorio, debe estar comprendida entre los 20 y 27.5º C.

Otras veces se define la pasta

normal por la cantidad de agua usada, la que debe estar comprendida entre el 24 y

el 30% del peso de. Cemento.

Por último, se controla la consistencia de la pasta normal,

por medio de la sonda de Tetmajer, que es en síntesis una barra de 1

cm2. De sección y cargada con un peso de 300 gr. La pasta tendrá la

consistencia normal cuando dejándole caer la sonda, en el molde, de

que se habla inmediatamente, aquella se detiene a unos 5 ó 6 mm.

medidos a partir del fondo.

Cuando se emplea la aguja de Vicat, el ensayo se realiza

llenando un molde en forma de anillo tronco-cónico, de dimensiones

standard y de 40 mm. de altura. Se establece que el fraguado inicial

ha ocurrido cuando la aguja alcanza un punto situado 5 mm. más

arriba del fondo del molde, a los 30 segundos de haber sido aplicada.

El fraguado final se determina cuando la aguja no penetra,

visiblemente, en la pasta.

Cuando se usan las agujas Gillmore, se fabrica una torta ó

galleta, con la pasta, de 1/2” de espesor. Se determina el fraguado inicial ó el fraguado final cuando, respectivamente, las agujas correspondientes no dejan huella apreciable en la torta.

Propiedades físicas del cemento.-

Finura. - La finura de molido, o de molturación, en 1os materiales, se

aprecia por medio de los análisis granulométricos, que consisten en

hacerlos pasar a través de cedazos, tamices, cribas o zarandas,

apreciando los porcentajes en peso que atraviesa el material. Este

Page 26: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 25 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

análisis granulométrico se llama también análisis mecánico.

Tratándose del cemento, e grado de finura es de la mayor

importancia, porque se ha determinado que el agua no actúa sino en una profundidad de 0.1 mm., de los granos; y como el agua es indispensable para la cristalización o fragua, se comprende la necesidad

de que el cemento posea la finura conveniente a fin de que la película de agua que rodea cada grano, lo atraviesa.

Las especificaciones usuales para el cemento prescriben

que más del 78%, en peso, de este material pase una criba Nº 200.

En la actualidad se prefieren reemplazar el empleo de

cedazos por la determinación de la velocidad de asentamiento de las partículas a través de un gas ó de un líquido.

La relación entre el tamaño de los granos y 1a velocidad de

asentamiento se establece diciendo que esa velocidad es proporcional al

cuadrado del diámetro del corpúsculo sólido.

En la industria se hace el ensayo con aparatos

especialmente construidos para ello y de manejo relativamente fácil y

rápido.

Firmeza. - (Soundness), Llamada también indeformabilidad es la

propiedad que se exige al cemento de no desintegrarse después del fraguado. Generalmente esta desintegración se produce en el cemento como en cualquier otro material, por variación de volumen y en el caso

especial del cemento, por aumento de volumen.

Según lo anterior, un cemento tendrá firmeza cuando

durante y después de la fragua, no aumenta de volumen.

En los laboratorios se comprueba esta, cualidad preparando

tortas de pasta normal, que después se secan al vapor, y se examinan

para observar si se han presentando fracturas de contracción,

distorsiones, desintegraciones, etc.

Page 27: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 26 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

También se usa el

aparato de Le Chatelier, que consiste

en cilindro mostrado en la figura, el

cual se lleva con la pasta de

cemento, y despuésde colocado en

agua hirviendo por un tiempo

determinado, indica el aumento de

volumen de la pasta al fraguar por la

separación de las agujas.

Peso especifico.- Como se sabe, es el guarismo que resulta de dividir el peso por el volumen. El cemento Portland debe tener un peso

específico superior a 3.10, pudiendo bajar a 3.07, para los cementos

blancos tipo Port1and.

En los laboratorios para la determinación

del peso específico se emplea generalmente el

densímetro de Le Chatelier.

Ensayo del cemento en las obras.-

Al pié de obra Los ensayos usuales son los siguientes:

1.- terminación de la iniciación y término de la

fragua.- Se hace por medio de la aguja Vicat, ó de las

agujas Gillmore, en la forma ya indicada.

Un medio de orientación se puede obtener realizando el

llamado ensayo de la uña, el que se practica según las siguientes prescripciones.

Se prepara la pasta de cemento con una cantidad de agua

comprendida entre el 24 y 30% del peso del cemento. La prueba debe

efectuarse en un recinto cerrado, cuya temperatura deberá mantenerse entre 18 y 25º, Se considera como principio de fragua el momento en

que la pasta opone cierta resistencia a la penetración de la uña, y que

los bordes de una hendidura de 1/2 mm. de profundidad, adquieren cierta rigidez y se mantengan. Una vez que la uña, aplicada sin gran

esfuerzo, no deja una marca perceptible en la pasta, el tiempo de fragua

ha terminado. Durante toda la operación debe protegerse la pasta contra el aire, para evitar la evaporación prematura de la humedad.

2.- Ensayo de la firmeza.- Se practica de la manera siguiente Con la pasta normal se prepara una galleta de 1.5 á 2.0 cm. de espesor por

unos 8 á 10 cm. de diámetro, sobre una placa de vidrio. Se introduce la galleta con su placa en una caja saturada de humedad, y en la cual se

Page 28: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 27 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

le tiene 24 horas, a temperatura de 18° á 21°. Después se coloca la

galleta en posición vertical, sumergiéndola en un depósito de agua fría,

que se calienta lentamente hasta la ebullición, la que mantiene por tres horas, Después del ensayo la galleta debe presentarse dura, sonora y

sin grietas.

3.- Determinación de la densidad.- Se realiza utilizando una medida de 10 lts. de capacidad, en la cual se deja caer el cemento desde una

altura de 40 cm., medidos sobre los bordes de la caja. El exceso se separa con una regla pasada sobre los bordes, Se determina el peso contenido en la medida.

Se prescribe la altura de llenado de la caja porque un metro

cúbico de cemento suelto pesa entre 900 y 1200 kg.; envasado, es decir

apretado por el sacudimiento de las medidas, de 1300 a 1700 kg.; y endurecido, de 2500 3000 kg.

Especificaciones del cemento peruano “Sol”.-

A continuación se dan las especificaciones que satisface

este cemento comparándolas con las del gobierno Norte-Americano, para cemento Portland.

Estándar S o l

Finura : Criba Nº 100 - Residuo no más de 5% 2.10% Criba Nº 200 - Residuo no más de 25 % 22.50%

Fraguado : Principio No menos de 30 min. 3h 50’

Fin No más de 10 hrs. 6h 40’

Expansión

al vapor : Por cinco horas 0 0

Magnesia : No más de 5 % 3.10%

Anhídrido

Sulfúrico : No más de 2 % 1.8%

Mercado.-

El cemento que viene del extranjero se importa en barriles de madera, y en en bolsas de papel. Generalmente el barril pesa 180

kgs. (peso bruto).

En los tratados técnicos se considera que el barri1 tiene un volumen de 3.9 pies cúbicos, ó sea 0.1076 m3.: por esta razón

usualmente se considera entre nosotros que el barril de cemento tiene

Page 29: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 28 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

1/10de m3.

El cemento Portland ce vende en bolsas, a razón de cuatro

bolsas por barril. Generalmente se considera que cada bo1sa tiene un

pie cúbico de de cemento, ó sea 28.3 lt. Cada bolsa pesa 42.5 kg.(pcso

neto).

Las bolsas de papel que se usan para el envasado del

cemento son de 4,5 ó 6 pliegos. Historia.-

El proceso histórico de fabricación del cemento Portland

prosigue al de la cal hidráulica. Después de que este producto había

sido descubierto y ensayado con éxito, varios constructores fabricaron

materiales similares y entre ellos el ingles José Apsdin, que lo patentó

en 1824, y que por el parecido de color que adquiere con la piedra de la localidad inglesa portland, le puso este nombre. Por esta razón algunos

autores consideran a Aspadin como el inventor del cemento que hasta

ahora lleva el nombre que el le aplicara.

En el Perú, la fabrica de cemento “Sol”, fue establecida en

1922, trabajando desde esa facha hasta el día de hoy, sin interrupción.

Fabricas peruanas de cemento.-

1.- Compañía Peruana de Cemento ‘Portland.- (Sol). Producción en el año de 1956 467.380 tons. Capital en 1954: S/ 240 millones.

2.- Compañía de Cemento Chilca.- Planta en Chilca a 80 kms. al sur de Lima.-producción en 1956: 87.500 tons. Capital en 1955: S/ 85 millones.

3.-Compañía Nacional Portland del Norte.- Planta en el puerto de

Pacasmayo a 637 kms. Al norte de Lima.- Capacidad proyectada

100,000 toneladas al año. Inicio su producción en 1957. 4.-Cemento Andino S. A.- Planta en Crancha a 14 kms. de la Oroya.-

Capacidad inicial proyectada 83,000 tons. anuales.

5.- Cemento Chiclayo S. A.- Planta en Chiclayo a 760 km. al norte de

Lima, sobre la

Page 30: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 29 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Carretera panamericana. Inicio su producción en 1957 con una capacidad de 68.000 Tn. anuales.

6.- Compañía de Cemento del Sur S. A.- Planta en Caracoto, cerca de

Juliaca, cerca de la vía de ferrocarriles el sur. Inicio su producción con 60.000 tons. anuales.

SUPERCEMENTOS

Desde los primeros años del presente siglo pasado, se han

hecho esfuerzos para producir cemento que, aunque no fragüen más rápidamente que el Portland normal, se endurezcan con mayor

velocidad, una vez iniciada la fragua.

Se ha encontrado que esto se ‘puede obtener:

1º.- Con mayor molturación de los granos de cemento;

2°.- Incrementando la proporción de alúmina, o disminuyen do la cal y de sílice.

A la primera clase pertenecen los supercementos; y a la

segunda, los aluminosos.

Los supercementos se llaman también de endurecimiento

rápido, cementos eléctricos y Ferrocretes, en Inglaterra. Se comenzaron

a fabricar en Europa por el año 1912.

Los supercementos son en todo similares a los Portland

normales; pero con un ligero exceso de cal y una manufactura muy

cuidadosa, aparte de su mayor grado de finura, como acabamos de

decir.

Son de fragua lenta, pues ésta no empieza sino a las dos

horas de iniciado el amasado, terminando antes de las 10 horas. Pero

en cambio el endurecimiento es mucho más rápido que

el del Portland normal, pues a los tres días presentan una

resistencia 50% superior a éstos, pudiendo efectuarse el

desencofrado, en las estructuras de concreto

armado, en tiempos menores.

Page 31: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 30 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

En Lima se han usado con muy buenos resultados, en trabajos de vías férreas que debían ser entregadas al tráfico con premura de tiempo.

CEMENTO ALUMINOSO, FUNDIDO O DE BAUXITA

Se le fabrica fundiendo una mezcla de caliza y bauxita.

La bauxita es un hidrato alumínico (A1203, 2 H20), en el cual una buena parte de la alúmina está sustituida por óxido férrico (Fe203); contiene frecuentemente, además, cierta proporción de sílice. Es

también uno de los principales minerales utilizados para la extracción del aluminio. Debe su nombre a la circunstancia de haberse descubierto un yacimiento muy importante de e1 en Baux, cerca de

Arlés, en Francia.

El cemento aluminoso se manufactura en forma semejante

al Portland normal. Sus características son también similares; pero es

de color mucho más oscuro. La fragua es lenta, pues no comienza

sino a las dos horas de amasado; pero el endurecimiento es aun más

rápido que el de los supercementos.

Una característica notable del cemento aluminoso es de que

en su fragua, al contrario de lo que pasa con los demás cementos, se genera apreciable calor que, en masas de importancia, puede alcanzar

hasta una temperatura de 100º. Pero estos cementos no tienen cal libre y poseen, en consecuencia, gran estabilidad de volumen, o sea apreciable firmeza.

Los cementos aluminosos resisten mucho mejor que los

Portland normales la acción de las aguas selenitosas, o sea de las aguas

que contienen yeso, así como la de las sustancias orgánicas, aceites

saponificables, líquidos azucarados, etc. No atacan el corcho, aluminio

o plomo, pues como se ha manifestado no contienen cal libre.

La mezcla cemento aluminoso con el Portland normal

origina un producto que fragua más rápidamente que cualquiera de los

componentes aisladamente.

CEMENTOS PUZOLÁNICOS

Son aquellos que en su fabricación se ha incorporado, como

materia prima la puzolana, que en el Capítulo presente del Curso la

podemos definir como un material silíceo, natural o artificial, que por si

mismo no posee propiedades aglomerantes pero que las adquiere en

Page 32: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 31 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

parte al ser molido finamente y mezclados con un activador como el cemento Portland normal.

En la industria actual reciben el nombre genérico de

puzolana los siguientes materiales:

a) Las puzolanas naturales o tobas volcánicas, que hemos

mencionado en páginas anteriores; el trass; las tierras de infusorios; ó

tierras de diatomitas; las piedras pómez.

b) Las escorias de altos hornos, que posean las

características de ser básicas y vítreas.

c) Polvo de vidrio, el polvo fino de las industrias que queman carbón previamente pulverizado.

d) Algunas sustancias inertes, como la arena muy fina.

El concreto preparado con puzolana es más trabajable y por

consiguiente mas, fácil de colocarse en obra que el Portland normal;

pero su resistencia es menor que la de éste, por lo que se recomienda

usarlo de preferencia en obras en que la albañilería trabaje a la

compresión y no hacerlo en las estructurales, especialmente de diseño

delicado.

Cementos puzolánicos peruanos.-

Se fabrican en el país dos tipos:

1.-Cemento Atocongo Sol.-

Se prepara combinando y moliendo finamente Clinker de

cemento Portland Sol, con una proporción determinada de un material

silíceo aluminoso que contiene un 65 % de SiO2 que resulta activado

por medio de la molienda, obteniéndose un cemento similar al cemento

Sol, en sus características principales.

2.-Cemento Caima.-

Fabricada con una puzolana arequipeña de gran actividad

del tipo de ceniza volcánica y que posee un 72 % de SiO2 que se mezcla

con clinker de cemento Portland. El producto resultante es apropiado para la construcción de grandes masas de concreto, para obras hidráulicas y también para resistir aguas agresivas ó sea de

propiedades similares al cemento aluminoso ya mencionado en el Curso.

Page 33: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 32 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

ÁRIDOS

Bajo el nombre de áridos, se comprenden a los materiales inertes que entran en la composición de morteros y concretos; pero que

no experimentan cambios de estructura química o mineralógica, al formar parte de aquellos compuestos.

De acuerdo con sus dimensiones, especialmente en

concretos, se les clasifica y denomina áridos finos y áridos gruesos. Se les llama también agregados finos y agregados gruesos.

ARENAS

Definición.-

Se llaman arenas al conjunto de partículas o granos de

rocas, reducidos por fenómenos mecánicos o químicos, naturales acumulados por los ríos y corrientes acuíferas en estratos aluviales y

médanos, o que se forman in situ por descomposición; ó al conjunto de piedras producidas por acción mecánica artificial. Las primeras son las arenas naturales y las segundas, las arenas artificiales.

Clasificación por procedencia.-

Puntualizando lo establecido en la definición anterior, es usual clasificar las arenas, de acuerdo con su procedencia, en:

De río llamadas también dulces De duna, De playa de mar, ó saladas, Artificiales.

De mina, o de banco, Clasificación química. -

Según el predominio de la composición de los minerales, las

arenas pueden ser:

Silíceas, silicosas o cuarzosa, Calizas o calcáreas; y

Graníticas. Arcillosas. Las mejores arenas son las silíceas por su pureza y estabilidad química;

son aquellas en las que predomina el silicio.

Las graníticas provienen de las rocas de esta especie , y en general

son buenas cuando presentan abundancia de cuarzo; son poco

homogéneas y poco alterables. Como se sabe, el granito se compone de

cuarzo, feldespato y mica, y cuando este mineral es el predominante las

arenas se llaman micaceas y son objecionables, porque las laminillas de

Page 34: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 33 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

mica son blandas y desintegrables.

Las arenas arcillosas solo pueden usarse cuando la cantidad de

arcilla es inferior al 6 % en peso.

CLASIFICACIÓN GRANULOMÉTRICA

En ingeniería no hay un criterio uniforme para la clasificación de

las arenas desde el punto de vista del tamaño de los granos ; y se prefiere

usar normas propias de acuerdo a la aplicación o campo en que va a emplearse la arena, a saber construcción general, concreto de cemento

Pórtland, Ingeniería Sanitaria, Ingeniería de suelos, Agrología, etc.

La siguiente es la clasificación propuesta por la Comisión de

Normalización.

Arena flor de roca 0.005 a 0.05 mm

Arena fina 0.05 0.5 “

Arena media 0.5 2.0 “

Arena gruesa 2.0 5.0 “

Todo material de dimensión inferior a 0.005 mm. está constituido

por sedimentos finos terrosos, cienos y arcillas.

En los análisis granulométricos de las arenas, se dibujan curvas

referidas a coordenadas rectangulares, en las cuales las abscisa

representan los diámetros de las aberturas de las cribas y las ordenadas

los porcentajes en peso que pasan el diámetro correspondiente

En estos análisis se llama Coeficiente de uniformidad, la relación

del diámetro de las partículas que pasan la ordenada 60 % al diámetro de

las partículas que pasan la ordenada 10 %. Según lo anterior se aconseja

lo siguiente.

Arena gruesa 5.2 o más de coeficiente de uniformidad

Arena fina 4.2 de coeficiente de uniformidad

Arena fina 2.2 de coeficiente de uniformidad

En los trabajos de concreto se considera como buena una arena

que tiene hasta 4.5 de coeficiente de uniformidad.

En Ingeniería Sanitaria, con frecuencia se menciona el diámetro

efectivo de los granos de arena, que es la dimensión de las partículas

cuando solo el 10 % en peso, del volumen considerado tienen

dimensiones menores.

Page 35: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 34 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

La arena normal Ottawa que es la recomendada es eminentemente

cuarzosa, de mina, de granos redondeados y de tamaño uniforme, pasa la

criba N° 20 y es retenida en la criba N° 30; su porcentaje de vacíos es

alrededor de 37 % y su peso de 1670 Kg/m3 , su peso específico de 2.40.

Propiedades Físicas de las arenas. -

Forma y tamaño.- Para morteros y concretos de cemento Portland, el agregado fino debe consistir en una mezcla de granos duros, compactos y de diferentes tamaños. Si los granos fueran de las

mismas dimensiones, aproximadamente, son preferibles los redondeados a los de forma alargada, porque aquellos a igualdad de tamaños producen mezclas más compactas, conteniendo menos

vacos que los de forma alargada.

La experiencia muestra que los morteros preparados con

arenas finas son menos densos que aquellos hechos con arenas

gruesas. Esto se debe probablemente a dos causas: la primera, es

la dificultad con que las partículas de arena pueden ser envueltas

por las de Cemento del mismo tamaño; y la segunda, es el mayor

porcentaje de vacíos que presentan las arenas finas.

La forma de los granos influye, pues, mucho en la

resistencia de los morteros, Los granos de superficie áspera y que

forman ángulos se adhieren mejor y dan mas resistencia que los de

superficie lisa y formas redondeadas; pero los primeros necesitan mas agua que los segundos para la misma consistencia. Los granos en forma

de agujas o lajas son objecionables.

Page 36: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 35 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Pesos.- El peso específico de la arena varía según su composición mineralógica entre 2.50 á 2.80. Así se tiene por ejemplo: arenas cuarzosas, 2.65; arenas dolomíticas, 2.65-2.75; arenas calcáreas, 2.60-

2.70; pero se pueda tomar el valor de 2.65 como un promedio general.

En la práctica se usan las siguientes cifras como pesos

unitarios, de las arenas:

Arenas secas de 1,400 á 1,700 kg/m3.

Arenas húmedas de 1,700 á 1,900 “

Estos pesos son para arenas compactas; pero la arena seca y suelta puede disminuir en peso hasta un 20%, para el mismo volumen. La arena mojada, suelta, pesa menos que seca. El porcentaje

de absorción de la arena rara vez pasa de 3%.

El porcentaje de vacíos de las arenas varía entre 25 y 45%.

se determina vertiendo agua en un depósito de arena y estableciendo

volumen de agua echada, hasta que esta aflore a la superficie libre de la

arena mayor exactitud se obtiene vertiendo un volumen conocido arena

dentro de un depósito de agua, graduado; el aumento de volumen dará el porcentaje de vacíos.

Corno acabemos de ver, el promedio del peso específico de

las arenas es 2.65, y con esta cifra se puede determinar el porcentaje de vacíos, pesando un Volumen conocido dé arena y estableciendo la proporción respectiva.

Composición química de las arenas.-

Es ventajosa la presencia en el agregado fino de una

proporción apreciable da partículas minerales densas, compactas, e

inalterables a la acción de los agentes atmosféricos. Estos minerales no

deberán ser fácilmente rayados con un cortaplumas.

Como consecuencia de lo anterior, los mejores minerales en

la composición de las arenas son el cuarzo, dolomita y hornblenda; y

los objecionables, la mica, talco, pirita de fierro, pizarra, limonita, Ocre,

hematita y las calizas absorbentes. Sustancias nocivas en las arenas.-

Se consideran perjudiciales, por retardar el fraguado y

debilitar las resistencias, las arcillas, limos y sustancias análogas; pueden admitirse y se consideran adheridos a las arenas cuando su

proporción sea inferior al 3% en peso, del árido. Son también

perjudiciales los carbones, sobre todo los lignitos, las escorias de altos

Page 37: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 36 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

hornos y los productos que contienen azufre. Es también muy

perjudicial la materia orgánica.

A continuación se dan los porcentajes de los máximos

permisibles de materias nocivas, que se aceptan en las arenas: Materias movidas por decantación 3% en peso Materias orgánicas 1 Carbón 1

Alcali, granos sucios, terrones de arcilla, granos friables, partículas escamosas ó laminadas y fragmentos

alargados 5

Tot. de materias nocivas permisib. 10% en peso. Ensayo de las arenas en las obra.-

Las que se hacen son, generalmente, las siguientes:

1.-Prueba del polvo contenido.- Se realiza echando un volumen dado en un recipiente de vidrio, transparente, y de preferencia graduado,

anotándose la altura que ocupa la arena.

Se vierte un volumen triple de agua y se agita

Vigorosamente, durante un minuto; se deja reposar el recipiente por una hora.

El polvo se depositará formando una capa sobre la arena,

pudiéndose así establecer la proporción de este material nocivo por el

espesor de la capa de polvo en relación con el espesor de la capa de arena.

2.-Investigación de la materia orgánica.- Se realiza una prueba

colorimétrica, usándose una solución al 3 % de soda cáustica (Na OH),

que se agrega a la arena; se agita el contenido y se deja reposar por

espacio de 24 horas.

Después de ese tiempo y el color del líquido indicará si la

arena contiene materias orgánicas en cantidades peligrosas. Un líquido claro y limpio indica que la arena está exenta de materias orgánicas. Una solución color de paja expresa que hay algo de materia orgánica;

pero no en cantidad que afecte seriamente el trabajo. Si el color es oscuro, quiere decir que la arena contiene materias orgánicas en cantidades peligrosas, y no debe usarse a menos que se lave, pero aún

entonces, será necesario volver a ensayarla.

La proporción de solución en relación a la arena debe ser de

dos volúmenes de solución por un volumen de agua; pero medidos

antes de mezclarse, porque el conjunto no dará tres volúmenes.

Page 38: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 37 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

3.-. Ensayo de humedad.- Se pesa una muestra de arena, colocándola después en un recipiente metálico y vertiendo sobre la muestra alcohol en proporción de unos 40 cm3. por 100 gr. de arena. Se prende fuego

después, y se revuelve la arena, mientras arde.

En seguida se vuelve a pesar la muestra, y la diferencia

entre las dos pesadas permitirá calcular el porcentaje de humedad. 4.- Prueba de solubilidad.- Se hace en las arenas que se usan en los

filtros para agua potable.

El ensayo se realiza determinando al peso la solubilidad de las arenas,

tratadas por una disolución de HCl diluido al 20 %. Esta solubilidad no deberá exceder del 5% al peso.

Arenas artificiales.-

Como ya se ha manifestado, la arena artificial es aquella

que se obtiene de la trituración mecánica de rocas. A este material es al

que con mayor frecuencia se le denomina agregado fino; también se

llama cernidura de roca; pero en todos los casos, para que se le pueda

asimilar a la arena que se usa para preparar concreto de cemento, debe

pasar criba de 1/4” de aberturas.

Estas arenas se manufacturan en los trituradores

denominados molinos de arena. Los hay de varios tipos, siendo los más comunes los que son de diseño similar al de los “trapiches” para moler caña de azúcar.

A las arenas artificiales se aplica íntegramente lo que se va

a decir al tratar de la piedra triturada, con excepción, naturalmente, al

tamaño. Con frecuencia es producto subsidiario de la industria de la

trituración de piedra, y de allí su nombre de cernidura, porque se le

obtienen como residuo en el “zarandeo” de aquel material.

Grado de humedad.-

La arena seca corre libremente cuando esta apilada.

La arena poco húmeda produce una sensación ligeramente

acuosa al contacto de la mano; pero no deja humedad en ella. Contiene un litro de agua por 30 litros de arena. Lo que representa 2% de humedad.

La arena húmeda se siente mojada al contacto de la mano

y deja en ella un poco dé humedad. Contiene un litro de agua por

15 1itros de arena; 4% de humedad.

Page 39: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 38 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

La arena muy húmeda chorrea agua cuando se recibe en

la obra. Contiene un litro de agua por 10 litros de arena; 6% de humedad.

La arena fina puede contener de 1.3 á 1.7 litros de agua por

10 litros de arena; 8 á 10% de humedad.

Maquinaria de la industria arenera.-

La más característica consiste en: Trasportadores.- De faja,

de cangilones.

Zarandas o Cribas.- Cilíndricas o rotatorias, que pueden instalarse inclinadas u horizontalmente. Planas o vibratorias, que a veces se instalan unas sobra otras

en forma escalonada.

Lavadoras.- son de diversos modelos. El dibujo adjuntó representa el

llamado inyector. Consiste en una caja de palastro provista en su parte inferior de un pitón por el, que llega,

a presión, agua que arrastra

la arena por lavar, los granos de arena limpios son empujados hacia el eyector cuyo orificio se encuentra

fronterizo al del inyector. La arcilla e impurezas son eliminadas por rebose. En el fondo de la caja unos

surtidores impiden el asiento de la arena.

GRAVA Definición.-

La grava es el conjunto de fragmentos pequeños de piedra,

provenientes de rocas disgregadas por la acción del hielo y otros agentes

atmosféricos y que han sido arrastrados por los ventisqueros o por las

corrientes de agua; cada fragmento ha perdido sus aristas vivas y se

presenta con formas más o menos redondeadas.

Canteras. -

La grava puede obtenerse directamente del lecho de los ríos y

esteros, de las playas de los grandes lagos o de los mares, y de depósitos abiertos en zonas de la época glacial, o en lechos de antiguos cursos de agua.

Page 40: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 39 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Con mucha frecuencia a la grava se llama material de

acarreo, material de transito y también conglomerados, pero en éstos

últimos casos se encuentra con abundante proporción de arena; es el

hormigón de la terminología limeña. Cuando los trozos de rocas tienen

formas angulosas, al material se llama más corrientemente brecha

(breccia).

Caracteres. -

Las características de las gravas de un mismo depósito natural varían no solo en cuanto a su tamaño, sino en su composición química y estructura mineralógica.

La composición mineralógica de las gravas es semejante a la

de las arenas, es decir que pueden ser: cuarzosas, graníticas, calcáreas

y arcillosas.

En sus características físicas las gravas deben ser duras y

resistentes, capaces de soportar la acción de los agentes atmosféricos y

ser perfectamente insolubles. Deben resistir bien la prueba del rayado con un cortaplumas.

Los pesos específicos son los mismos que los dados para las arenas.

Las gravillas, y gravas, pesan de 1,600 á 1,700 kg/m3. Llamándose gravillas, las gravas de dimensiones menores.

La grava, de dimensiones variables entre 1/4 y 1-1/2”, medida en forma suelta, posee de 35 á 40 % de vacíos. La grava de banco, bien graduada, puede presentar hasta 28% de vacíos; porcentaje

que puede aplicarse al hormigón.

Prueba de durezas.- Una de las más recomendadas consiste en emplear el llamado

Molino de los Ángeles (EE. UU,), que es un cilindro metálico de 0.60 m.

de diámetro y de 0.50 m. de largo, dentro del cual se colocan 5 Kg. de

la grava por ensayar y bolas de acero, de dimensiones establecidas,

también en un peso total de 5 kg. Después de someter el barril a 500 revoluciones, a razón de 33 r.p.m. se extrae la carga; se le cierne en

malla N° 12, y se aprecia el peso perdido por la muestra.

El agregado grueso usado en pisos de concreto y

construcciones similares, sujetos a fuerte desgaste debe presentar una perdida inferior al 30 %, en la prueba reseñada; pero para otras estructuras que no trabajan al frotamiento, el límite de desgaste puede

subir hasta el 40%. Granulometría.-

La siguiente es la clasificación recomendada por la

Comisión peruana ya nombrada:

Page 41: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 40 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Gravillas o garbancillos de 5,0 á 10.0 mm.

Grava fina 10.0 20.0 Grava media 20.0 40.0

Grava gruesa, balasto o lastre 40.0 75.0 Cantos rodados, cascajos gruesos más de 75.0

Sustancias perjudiciales.-

El porcentaje de sustancias perjudiciales permisibles en las gravas es mayor que en las arenas:

Removidas por decantación l.5 % en peso

Materias orgánicas 1,0 Carbón 1,0 Terrones 0,5

Segmentos friables 5.0 Alcalis, grava sucia, fragmentos alargados ó astillas, fragmentos laminados 5.0

Esquistos 1,0 15.0 % en peso

Empleo.-

Las gravas se usan en construcción, como agregado grueso en la preparación de concreto; en caminos, en la ejecución de ca1zadas;

en ferrocarriles, como balasto o lastre; para rellenos en general, etc. En todos los casos se emplean después de pasarlas por cribas o

zarandas, para graduar convenientemente sus dimensiones.

PIEDRA PARTIDA

Definición.-

La piedra partida es el material que se obtiene triturando

mecánicamente rocas duras y tenaces.

En ingeniería son múltiples los usos que se hacen de la

piedra partida; pero en esta parte del Curso se trata casi exclusivamente de este material desde el punto de vista de su empleo como árido grueso en la preparación de concreto de cemento.

Caracteres.-

Como agregado grueso se puede usar cualquier clase de

piedra partida, siempre que sea limpia y durable, y cuyas resistencias

no sean inferiores a las del concreto, de tal manera que no limite la

resistencia de este material.

En estructuras de cemento armado se usa piedra de 1/2,

Page 42: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 41 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

3/4,-. 1-1/4 y 1-1/2’’, excediéndose pocas veces de esta última

dimensión.

En concreto simple, o con refuerzo metálico escaso, se

emplea 2, 2-1/2 y 3’’

Dimensiones mayores a las que se acaban de indicar sólo se

emplean en concretos ciclópeo.

E]. peso de la piedra partida se estima en 1 450 á l 500 kg/m3. El promedio de vacíos, varía de 30 á 55 %.

Rocas empleadas.-

Las principales rocas usadas para la obtención de la piedra

partida son las siguientes: 1º.- Grupo de rocas trap o diabasas, que son rocas de origen ígneo, mas

densas y de grano mas fino que las graníticas:

Andesita, diabasa, riolita,

basalto, gabbro, etc,.

2°.- Grupo de los granitos.

3º.- Grupo de las calcáreas: calcitas, dolomitas.

4º.- Grupo de las areniscas.

Especificaciones.-

A la piedra partida se aplican las recomendaciones técnicas

pertinentes, ya dadas, de la arena y grava; pero es necesario tener muy en cuenta el empleo que va a hacer del material. Así por ejemplo,

mientras en los caminos de macadán es conveniente que la piedra tenga cierta cualidad de cementación, esta es objecionab1e en aquella piedra que se va a usar como lastre en las vías férreas.

Trituradoras de piedra.-

Llamadas también chancadoras o machacadoras, Son

de dos tipos principales: de mandíbulas o quijadas; y de trompo o rotatorias Se dan diseños característicos de los modelos más

comunes.

Page 43: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 42 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

MORTEROS Y CONCRETOS

Definiciones.-

La mezcla de un aglomerante y agua se llama pasta, pero ésta debe ofrecer cierta consistencia, pues cuando el aglomerante está muy diluido, la mezcla se llama lechada.

Mortero es la mezcla de un aglomerante y agregado

f ino, realizada por vía húmeda. Cuando el mortero se prepara con

más de un aglomerante, se denomina mortero bastardo.

La aplicación de la pasta sobre una superficie se llama empastado

y tarrajeado o revoque, la de un mortero. El tarrajeado puede ser primario o enfoscado, enlucido o tarrajeo fino, etc.

Generalidades.-

El papel que desempeña la arena en los morteros es

múltiple.

a) En el caso de los morteros de cal, es simplemente

mecánico, pues sirve para separar los granos del aglomerante y evitar de ese modo las contracciones que se producen en el mortero como consecuencia de la evaporación del agua del amasado y a la que se

absorbe en la hidratación del calcáreo;

b) Cuando se emplean aglomerantes hidráulicos, ya no se

originan contracciones, y entonces la arena sirve para disminuir la dosis de aglomerante; y

c) En todos los casos, los agregados desempeñan la función

de dar resistencia a las masas, ó como se dice corrientemente, darles

“cuerpo”.

Teóricamente sólo se necesitaría la cantidad de

aglomerantes para cubrir con una película a los granos de arena, los cuales se pueden suponer tangentes entre sí; pero como además se desea obtener una masa compacta y casi siempre impermeable, se

tendrá que llenar los vacíos con el aglomerante u otro material de precio más económico.

Las dosificaciones se suelen expresar por la relación entre

los volúmenes del aglomerante y de los agregados. Así, la expresión (1 : 3), significa un volumen de aglomerante por tres de agregado fino.

Page 44: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 43 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

La dosificación del agua, depende en primer lugar de la

clase de aglomerante, y después del estado atmosférico, de la plasticidad deseada, y de la aplicación que se va dar al mortero. Como regla general conviene amasar el mortero con la mínima cantidad de

agua, pues el exceso retrasa la fragua y deja poros en la masa al evaporarse.

Como consecuencia de los vacíos que poseen tanto los

aglomerantes como los agregados, el volumen resultante de las mezclas

es inferior a la suma de los volúmenes de los componentes. Si se

conocen los pesos específicos y densidades de los componentes de un

mortero se puede determinar teóricamente el volumen resultante, de

acuerdo con la dosificación; pero en la práctica se prefiere trabajar con

datos experimentales.

MORTERO DE YESO

No es muy usado porque la pasta de yeso admite poca arena como consecuencia de la debilidad de aquel material en su

fragua. Las proporciones máximas que pueden emplearse son pues de

1:2 á 1:3. Además, como el fraguado del yeso es rápido, no da tiempo a amasarlo.

El amasado se hace vertiendo el yeso sobre el agua

dispuesta en una “batea”, mezclando rápidamente y procurando que no

se formen burbujas. Se prepara a medida que se necesita, pues el yeso empieza a fraguar a los tres o cuatro minutos y termina a los quince o veinte.

La pasta fraguada o endurecida no puede empleársele

agregándole más agua, y debe ser desechada. A este yeso los albañiles

le llaman “frío”.

Los morteros de yeso adquieren en un día la mitad de la

resistencia que pueden tener en un mes, que se considera como el tiempo en el cual han llegado prácticamente el límite de su resistencia.

La lechada de yeso, sólo sirve para blanqueos, debido a su

poca resistencia.

MORTERO DE C A L

Dosificación.-

Las proporciones empleadas, en volumen, varían de 1 parte

de pasta de cal por 2 a 4 de arena; siendo las más usadas de 1:3 y 1:3- 1/2. Corrientemente se agrega la cal a la arena, en forma de pasta.

Page 45: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 44 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Como orientación damos las cantidades de material

empleados en la preparación de un mortero de cal de proporción 1:3. Cal 1.00 m.³ = 25 qq. de 46 kg. c/u.

Arena 3.00 m.³ Mortero resultante 3.20 m.³ Preparación.-

Sobre una capa de pasta, de espesor uniforme, se echa también en capas de igual espesor, la arena. Y se revuelve todo hasta que el conjunto presente color uniforme; si es necesario se agrega más

agua. Caracteres.-

La fragua del mortero se realiza lentamente, sobre todo si se

lo ha empleado en capas gruesas; se ha observado que en ocasiones se

han necesitado años para el endurecimiento total, o sea para la

completa transformación de la cal hidratada en carbonato de calcio.

En estos morteros, el exceso de pasta atrasa la fragua,

aumenta la contracción, y las grietas consiguientes. De otro lado, el exceso de arena hace más acelerada la fragua y proporciona un

mortero difícil de trabajar con las herramientas de albañil.

Las mejores arenas para los morteros de cal, son las de

grano fino, anguloso y limpias. Resistencia.-

Depende principalmente de las cualidades de la cal y de la

arena, influyendo también el cuidado con que ha sido preparado el

mortero.

El exceso de cal disminuye la resistencia del mortero a la

compresión. Son causas, además, de disminución de esta resistencia:

a) Un exceso de arena;

b) La arcilla, limo y materiales similares; y

c) Los aceites, ácidos, álcalis y material vegetal que pudiera contener el agua.

Las siguientes cifras aproximadas, que se aceptan, para la

resistencia del mortero de cal, proporción 1:3.

1 mes 6 meses

Page 46: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 45 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Resistencia a la tensión kg/cm².

Resistencia a la compresión kg/cm².

2.0 á 4.00

10.0 28.00

3.0 á 5.0

12.0 35.0

MORTERO DE CEMENTO PORTLAND

Dosificación. -

La dosificación de la arena y el cemento, en este mortero, se

puede hacer por uno de los métodos siguientes:

1°.- Por peso;

2°.- Por volúmenes conocidos de los envases de cemento (barriles o sacos) y volúmenes medidos de arena; y 3°.- Por volúmenes medidos de cemento y arenas.

El mejor sistema de dosificación es el primero de los

señalados; y es el que se emplea, de preferencia en los laboratorios. La

objeción que se le hace es que la humedad de la arena puede falsear.

La dosificación teórica; pero como esta humedad no pasa

nunca del 5 % en peso, este es el error que se puede cometer. No se

emplea en las obras, porque no es suficientemente práctico.

El segundo método es el más usado en los trabajos, y es

casi universal. Para emplearlo se aprovecha del volumen conocido de los barriles ó sacos de cemento. La arena da distintos volúmenes según la compacidad resultante de la operación de llenar las cajas medidoras,

pudiéndose obtener variaciones hasta del 25%, en volumen; es por consiguiente importante que las cajas medidoras de arena se llenen siempre de la misma manera.

El tercer método, es decir, cubicando el cemento y la arena,

en cajas, es el menos recomendable. El cemento suelto se esponja bastante, y toma distintos grados de compacidad según la altura a que se le deja caer sobre la medida, como ya hemos manifestado al

ocuparnos de la densidad de este material; la dosificación quedaría entonces por completo al cuidado de los obreros.

La dosificación más usada en trabajos de albañilería, es de

1:2 a 1:6; morteros más ricos se usan sólo en enlucidos y en pocas

ocasiones; morteros más pobres no se usan sino raras veces.

Las cantidades de cemento y arena para producir 1,00 m³

de mortero, son los siguientes:

Mortero Cemento, bls. Arena, m³

1:1 6.37 0.70

1:2 4.18 0.90 1:3 3.07 1.00

Page 47: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 46 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

1:4 2.41 1.05

1:5 1.99 1.08 1:6 1.70 1.12

Para producir 1.00 m³ de pasta, se necesitan 9.8 bls. de cemento.

Mezclado.-

La arena y el cemento se pueden mezclar a mano, por

medio de lampas, o usando maquinas llamadas mezcladoras, concreteras u hormigoneras. Conviene mezclar primero el cemento y

la arena y agregar, después, el agua; a mezcla debe continuarse hasta que el conjunto o fresca un color uniforme.

El mortero deberá usarse antes de que se haya iniciado el

fraguado; no deberá emplearse mortero cuya fragua inicial haya

terminado.

Caracteres.-

La resistencia del mortero depende:

a) de la proporción de cemento empleado;

b) del tamaño de los granos de arena y de su graduación;

c) de la cantidad de agua usada; y d) del grado de compacidad obtenido en la manipulación.

En términos generales se puede decir que la resistencia del mortero depende: 1° de la cantidad de cemento por unidad de volumen;

y 2° de su densidad.

En cuanto a la influencia de la arena, se pueden

puntualizar lo siguiente.

1.- Cuando la arena está debidamente graduada, es decir,

cuando sus granos son de diferentes dimensiones, ofrece el menor

volumen de vacíos y proporcionara el mortero más denso; condición que

se obtiene con la presencia de una cantidad de granos gruesos en la

arena.

2.- Con el mínimo porcentaje de vacíos se producirá un

mortero más resistente, empleando arena de granos de superficie angulosa y granos gruesos, que si la arena fuera de granos redondeados

y finos.

3.- Por último, de dos arenas que tienen el mismo

porcentaje de vacíos, proporcionará mejor mortero, en cuanto a densidad y resistencia, la arena gruesa porque para un determinado

Page 48: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 47 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

volumen de mezcla, se tendrá menos vacíos.

El agua produce la siguiente acción: El exceso de agua ejerce las siguientes influencias:

a) Aumenta el tiempo de f ragua;

b) Disminuye la resistencia; teniendo mayor influencia en

los ensayos a corto plazo que en los de largo plazo; c) Aumenta la cantidad de lechada, en la superficie libre del

mortero;

d) Aumenta la dificultad de trabazón entre un mortero viejo y uno nuevo; y e) Tiende a producir la separación de la arena, del cemento.

El defecto de agua produce por el contrario:

a) Acortamiento en el tiempo de fragua;

b) Incremento de la porosidad, y por consiguiente decrecimiento de la impermeabilidad; y

c) Decrecimiento de la resistencia. Peso del mortero.-

De proporción: 1:1 2,320 kg/m³

1:3 2,240

1:4 2,210

Resistencia a la tensión.-

En condiciones normales esta resistencia aumenta muy

rápidamente durante los primeros días; pero la proporción de este

incremento disminuye también con rapidez. A los 7 días, la resistencia

es casi la mitad o las dos terceras partes de la resistencia máxima, que

se produce a los tres meses.

En los laboratorios

esta resistencia se ensaya por maquinas especiales que se definen como balanzas de dos

palancas. Las pruebas se hacen con briquetas o probetas en forma de ocho, y de dimensiones

reglamentarias. Para los ensayos, según las normas norte- americanas, las probetas en su parte más delgada tiene una sección

transversal de 1” x 1”.

Page 49: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 48 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

A continuación se dan los índices exigidos para morteros

1:3, con arena de Ottawa, tanto en los standard norteamericanos, como los obtenidos con el cemento ”Sol”. Debiéndose advertir que las

resistencias indicadas corresponden a esfuerzos de rotura. Conviene también decir que en los tiempos dados se considera que el primer día, las probetas se conservaran en aire húmedo, y los restantes sumergidas

en agua potable, para las obras corrientes, y en agua de mar, para los trabajos marítimos.

standard Cem. “Sol”

Resistencia a la tensión en 7 días

Resistencia a la tensión en 28 días

14 kg/cm³

21 kg/cm³

19 kg/cm³

26 kg/cm³

Resistencia a la compresión-

Un mortero que es bastante resistente a la tensión, también lo es a la compresión; pero la relación entre una y otra resistencia no es

constante para todos los morteros.

En los laboratorios los ensayos se hacen por medio de

prensas, generalmente hidráulicas, con las cuales se someten a

compresión las muestras, que casi siempre son cilindros de diámetro, y

de altura, estándar.

Las siguientes son las resistencias a la compresión que se

especifican para morteros 1:3, preparados con arena normal de Ottawa:

Muestras conservadas 1 día en aire

húmedo y 6 días en agua pura 85 kg/cm²

Muestras conservadas 1 día en aire húmedo y 27 días en agua pura 140 kg/cm²

Las mezclas más usadas para sentar ladrillos son:

Para muros resistentes, o sean portantes de cargas 1:5 Para muros de rellenos, o para cercos 1:6

En cuanto a los acabados con morteros de cemento-arena,

tienen generalmente los siguientes espesores, los mismos que se usan en la preparación de presupuestos:

Tarrajeos:

Sobre muros ‘de bloques Parva Domus 10 mm.

Sobre muros ladrillos corrientes 15 mm. Enlucidos:

Sobre tarrajeos 5 mm.

Page 50: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 49 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

MORTEROS BASTARDOS Definición.-

Como ya hemos dicho, cuando en el mortero se usa más de

un aglomerante, aquel recibe el nombre de mortero bastardo;

denominación originada porque la adición del segundo aglomerante casi

siempre tiene por objeto economizar el titular, que es más, costoso.

Morteros bastardos con yeso.-

Se obtienen mezclando el yeso con cal y arena. Se emplean

sólo en empastados, enlucidos y tarrajeados.

Un empastado que, de acuerdo con las definiciones dadas,

debe ser tildado de áspero, se obtiene usando las siguientes

proporciones:

Yeso Cal Arena

Para paredes 1 3 1

Para cielo-rasos 2 3 1

En tarrajeos se emplea la siguiente proporción:

Yeso Cal Arena

1 3 4-1/2 En todos los casos se usa arena fina.

Morteros bastardos de cemento Portland.-

Contienen como aglomerantes cemento y cal.

La cal agregada en pequeña proporción hace el mortero más

denso y también más suave y trabajable con las herramientas de

albañil.

El mortero bastardo es más resistente que el normal de cal

sola. Y con respecto al normal de cemento solo, es más débil; pero como ya hemos apuntado, más plástico e impermeable.

Las proporciones usadas varían entre una parte de

cemento, 1/2 a 2 partes de cal, y 5 a 6 partes de arenas. Entre estas

proporciones la experiencia muestra que la más resistente de 1:1:6,

representando 6 el volumen de arena.

En Lima, para asentar ladrillos se han empleado, con

buenos resultados, las proporciones siguientes:

Page 51: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 50 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

En muros no sobrecargados 1:1:6 (cal-cemento- arena)

En muros con sobrecarga 1/5:1:3 (cal-cemento-arena)

Mencionaremos, para que se pueda establecer comparación,

que la proporción más popular en Lima para el uso indicado, en

mortero de cemento y arena, es la de 1:5.

Estas recomendaciones se refieren a la cal corriente de

obra; pero actualmente se encuentra en el mercado de Lima una cal

hidráulica que para usarse no necesita “podrirse”, remojarse o hidratarse; se vende en sacos de 2 pies cúbicos, o de un peso de 30 kg.

Este producto se recomienda emplearlo en las siguientes

proporciones en volúmenes (cemento, cal, arena).

Para argamasa o “mezcla” para asentar ladrillos o piedras:

1:1:10 con 3.7 vol. De agua se obtiene en total 10.5 vol.

1:2:12 con 4.6 vol. De agua se obtiene en total 12.9 vol.

Para enlucidos:

1:2:15 con 5.5 vol. De agua se obtiene en total 15.75 vol.

CONCRETO DE CEMENTO PORTLAND Definiciones.-

Concreto simple es la piedra artificial formada por la mezcla, por vía húmeda, de cemento Portland, agregado fino y agregado grueso.

Concreto armado es el concreto simple con refuerzo

metálico, el cual está constituido en la generalidad de las veces por

barras de acero. También se le llama cemento armado, hormigón armado y betún armado.

Concreto ciclópeo es aquel que lleva fuerte proporción de

piedra grande, cuyas dimensiones varían entre 0.10 y 0.50 m. en su

diámetro. Esta piedra alcanza a veces a ser el 50 % de la masa total,

en volumen.

De los agregados.-

A lo ya dicho en las páginas anteriores vamos a añadir las

notas siguientes, que completan y reafirman lo ya establecido.

Page 52: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 51 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Agregado fino.- La experiencia ha mostrado que para preparar

concreto, las mejores proporciones granulométricas son las siguientes:

Peso del material, que pasa la malla 3/8” 100%

Peso del material, que pasa la malla Nº 4: 95 al 100 Peso del material, que pasa la malla Nº 16: 45 80

Peso del material, que pasa la malla Nº 50: 10 30 Peso del material, que pasa la malla Nº 100: 2 10

Esto en cuanto a la arena en sí misma, porque en su

relación con los dos agregados, fino y grueso, generalmente se prescribe en las especificaciones que el peso del material que pasa la malla Nº 4, ósea el agregado fino, no será menor que el 30%, ni mayor que el 50%

del peso de los dos agregados. Agregado grueso.- En concreto para edificaciones, el agregado grueso

podrá consistir en piedra triturada, grava, escoria de altos hornos u

otro material inerte de características que ya hemos estudiado.

En calzadas de concreto sólo podrá usarse piedra partida,

grava o una mezcla de estos materiales, En este uso, todo e1 agregado deberá pasar criba de 3”, y el 90% criba de 2”.

En todos los casos, peso no mayor del 10% de agregado

grueso, pasará la malla 1/4”.

El Agua,-

Deberá usarse de preferencia agua potable. Son dañinas

las siguientes clases.

y gravas; 1.- Las que contienen las impurezas anotadas en las arenas

2.- Las aguas de lluvia, que son ácidas y de un ph inferior a

7, por lo cual disuelven la cal;

3.- Las que contengan cloruros sódicos o magnésicos en proporción superior al 1 %. El Mg origina dilatación en la fragua, ó sea que le quita firmeza al cemento;

4.- Las aguas selenitosas o yesosas, que contengan más del

0,3% de so3, que también perjudica la firmeza o invariabilidad del cemento al fraguar;

5.- Las aguas estancadas, que casi siempre tienen apreciable proporción de materia orgánica, la cual es muy perjudicial

Page 53: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 52 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

porque hace el concreto poroso por los gases que despide al descomponerse;

6- Las aguas calientes.

La temperatura superior a 30º acelera la fragua, sobre todo en los cementos

hidráulicos; y

7. - Las aguas muy frías, que

retardan la fragua del cemento y pueden llegar a detenerla. Dosificación. -

Son varios los métodos que se

siguen para medir los volúmenes de los ingredientes sólidos que forman el concreto; revisando nosotros sólo los más usados. En

todos ellos imperan los dos principios fundamentales siguientes:

1°.- Séan dos volúmenes

iguales de concreto y los dos con el mismo

porcentaje de cemento, será más resistente y

más impermeable el que tenga mayor

densidad; y

2°.- Sean dos volúmenes iguales

de concreto, con iguales condiciones de

preparación de los agregados, será más resistente y más impermeable el de mayor porcentaje de cemento.

Estos dos postulados se expresan gráficamente en los

dibujos adjuntos.

1.- Método de las proporciones arbitrarias.- Se basa en el empleo de una dosificación sancionada por la experiencia como la

más apropiada, técnica y económicamente, para el objeto que se persigue.

El modus operandi consiste en medir por volúmenes,

separadamente, cada uno de los agregados, y adicionarle la proporción prefijada de cemento, por barriles.

Las dosificaciones usuales y los trabajos para los cuales se

recomiendan, son las siguientes:

1:1:2 Mezcla muy rica en cemento, usada solamente cuando se desea resistencia excepcional, o gran impermeabilidad

Page 54: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 53 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

1:1-1/2:3 Mezcla menos rica que la anterior, y empleada para los

mismos fines. 1:2:4 Mezcla buena, usada frecuentemente en estructuras de concreto

armado, y en cimentaciones sujetas a vibraciones; también en calzadas de concreto desnudo.

1:2-1/2:5 Mezcla mediana, usada en pisos, muros de sostenimiento,

estribos de puentes y obras similares.

1:3:6 Mezcla pobre, empleada en masas estructurales no sujetas a cargas elevadas; también en calzadas de concreto con cubierta asfáltica.

1:4:8 Mezcla muy pobre, empleada solamente en rellenos de concreto o masas de carácter secundario.

Los volúmenes de los materiales necesarios para

preparar un volumen requerido de concreto, se pueden determinar de

dos maneras: usando las Tablas que traen los Manuales y que están basadas en datos experimentales, o empleando fórmulas empíricas.

La siguiente Tabla es una de las más conocidas entre nosotros:

Materiales necesarios para preparar 1.00 m³ de concreto

Proporción cemento arena piedra

bls. m³ m³

1:1:2 3.60 0.39 0.78

l:l-l/2:3 2.62 0.42 0.85

1:2:4 2.09 0.45 0.90

1:2-1/2:5 1.70 0.46 0.91 1:3:6 1.44 0.46 0.93

1:4:8 1.10 0.48 0.96

También se pueden determinar los ingredientes necesarios para preparar un volumen determinado de concreto por medio de las siguientes fórmulas, que son igualmente de origen

experimental:

Vol. de Cemento = 1.55 C__

C + A + P

Vol. de Arena = _ 1.55 A___

C + A + P

Page 55: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 54 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Vol. de Piedra o grava = ___1.55 P___ C + A + P

En estas fórmulas, C, A y P, representan, respectivamente, el cemento, la arena y la piedra, expresados en volúmenes.

2.- Dosificación por ensayo de volumen.-

a) Por mínimo de vacíos.- Este método tiene dos variantes, pues

determinación de los vacíos puede hacerse sólo en el agregado grueso,

o en los dos agregados. El volumen de cemento por emplear deberá

ser el de los vacíos.

En ambos casos la determinación de los vacíos se realiza

vertiendo agua en una muestra y anotando la cantidad de agua “absorbida” por aquella. También se pueden obtener los vacíos analíticamente, conociendo la densidad y el peso específico del

agregado analizado.

Además del volumen de vacíos así determinado,

es necesario agregar a la mezcla un pequeño exceso de cemento, que la experiencia aconseja, para facilitar su manipulación.

El comportamiento ó “acomodo” de los agregados es también variable con la presencia del agua.

Este método no es rigurosamente exacto y no representa

ventaja apreciable sobre el de las proporciones arbitrarias. b) Por máxima densidad.- Consiste en pesar cuidadosamente

determinadas cantidades de los ingredientes, y mezclarlas con un

volumen fijo de agua, vertiendo el todo en un cilindro metálico. Se

mide el volumen que ocupa la mezcla, deslizando una tapa

dentro del cilindro.

Se hacen varios ensayos cambiando las proporciones de

los ingredientes; pero siempre con el mismo volumen de agua. La dosificación que da el menor volumen, para aproximadamente el

mismo peso total de los ingredientes, es la de mayor densidad; pero casi siempre resulta poco conveniente para su manipulación, porque la experiencia muestra que tiene un acentuado porcentaje de

agregado grueso; se recomienda entonces añadir un poco de arena; la mezcla pierde con ello algo de fortaleza y compacidad, pero se facilita sus labores.

Este método tiene la ventaja de que el ensayo puede

realizarse en el campo. Se indica procurar que la arena esté

Page 56: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 55 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

razonablemente seca a fin de no cometer un error volumétrico.

3.- Dosificación por ensayos granulométricos.-

a) Por curvas de máxima densidad.-

b) Dosificación por el módulo de finura.- c) Método de las áreas.-

Algunas propiedades del concreto -

Efectos de las impurezas.- Se disminuye la resistencia del concreto:

1.- Empleando arenas micaceas. 2.- Usando agregados que contengan arcillas tierras y fangos. Son dañinas al concreto.

En concretos pobres, sin embargo, pequeñas

proporciones de arcilla, pero siempre inferiores a 10%, son beneficiosas.

Son dañinos al concreto:

1º.- Las materias orgánicas, aún en cantidades

tan pequeñas como en proporción de 1:1,000; 2°.- La cal viva;

3°.- Las grasas y aceites. Efectos de algunos agentes físicos.- El concreto soporta el fuego

mejor que el ladrillo corriente, la piedra, La pizarra y la terracota.

La acción de los ácidos sobre el concreto es la misma

que sobre los otros materiales de construcción similares.

Las grasas y aceites no ejercen acción sobre el

concreto endurecido, sobre todo si éste presenta una superficie pulida.

Prácticamente el agua de mar no ataca el concretó de buena calidad. Sin embargo a veces se observan muros o construcciones de concreto que han sido afectadas; pero esto se debe

a que se han empleado mezclas pobres, mal batidas o mal dosificadas. Como la acción del mar se ejerce principalmente en las líneas de mareas, en estas zonas las estructuras se defienden

con enlucidos de proporción rica. Se acepta que el elemento activo sobre el concreto es el sulfato de magnesia que contienen las aguas del mar.

Los álcalis ejercen acción disgregadora sobre el

concreto. Por esta razón los agregados que contienen álcalis están

prescritos.

Page 57: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 56 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Coeficiente de dilatación.- El coeficiente de dilatación térmico del concreto es 0.00001, y el del acero 0,000011; tomándose el

valor de 0.00001 para el conjunto de concreto y armaduras, en estructuras que no están sujetas a grandes temperaturas.

La temperatura ambiente.- Para que la fragua del concreto se

realice en condiciones perfectas, no debe prepararse a más de 40º,

como límite de la temperatura ambiente, cuando se trata de cemento

Portland, porque este límite disminuye a 35°, cuando se usan

cementos aluminosos, ya que sabemos que estos fraguan con reacción

exotérmica muy apreciable.

Como temperatura baja, el límite aceptado para la

preparación del concreto, es de 2°. Con temperaturas inferiores se produce la helada del concreto.

Se puede bajar la temperatura de helada del concreto,

agregándole cloruro de sodio al agua de la mezcla; pero se hace

necesario añadir 1.8% de NaCl, del peso del concreto, para obtener

un descenso de 1° en esa temperatura; debiendo advertirse que no es

conveniente, agregar sino una proporción de 8 a 10% de cloruro de

sodio, porque esta adición disminuye notablemente la resistencia del

concretos

El agua de mezcla.-

El agua en el concreto ejerce las siguientes funciones:

1°,- Reacciona sobre el cemento y desarrolla en el su función de aglomerante;

2°.- Ayuda a distribuir el cemento sobre la superficie de los agregados;

3°.- Actúa como un lubricante entre las partículas de los agregados; y

4°.- Ocupa volumen en la mezcla.

Es sumamente importante emplear la cantidad de agua

correcta en la preparación del concreto, porque si se emplea con abundancia se retarda la fragua, se obtiene un concreto menos resistente por la formación de gran cantidad de lechada y se tiende a

separar los componentes; con respecto a la resistencia, se acepta que un exceso de 15% en el volumen de agua más de lo conveniente significa lo mismo, en cuanto al debilitamiento de la

mezcla, que si se redujera la proporción de cemento en un tercio.

De otro lado, si se emplea poca agua se corre el riesgo

de que no todo el cemento se hidrate, se produce un concreto más poroso o sea menos denso, y se dificulta la penetración del concreto,

uniformemente, en todos los sectores de las estructuras.

Page 58: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 57 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Las cifras siguientes tomadas del Reglamento Peruano

para el uso de Concreto, dan la relación que existe entre el volumen de agua empleada en una mezcla y sus resistencias a la compresión.

Por saco de cemento Resist.a la comp.: 28 días

7.50 gln. de agua 140 kg/cm².

6.75 175 6.00 210

5.00 265

Ensayo practico de la consistencia de la mezcla.- Para comprobar y

regular la cantidad de agua puesta en la

mezcla se puede hacer el ensayo del cono

de Abrams, que consiste en un molde

metálico de forma troncocónica, de las dimensiones de la figura, y compuesto de

dos piezas que se pueden separar.

Se coloca el cono sobre una superficie no absorbente de agua, y lo más próxima posible al punto de descarga de la

mezcladora de concreto. Se le llena hasta una cuarta parte de su altura, y se le da a esta capa de material unos 20 a 30 golpes con una varilla puntiaguda, de madera, y de 1 cm. de diámetro, y se

procede de la misma manera con tres capas sucesivas; o sea hasta llenar el cono. Inmediatamente después de agitada la última capa, se levanta el molde y se observa el asentamiento que sufre el

cono de concreto moldeado, en comparación con el molde metálico.

Los asentamientos deben estar entre los siguientes

Límites: Concretos para estructuras macizas,

Pavimentos y veredas: 2.5 á 10.0 cm.

Concreto para muros gruesos: 7,5 á 15,0 cm.

Concreto para tabiques, columnas y losas: 10.0 á 20.0 cm.

Al descenso que sufre el cono de concreto, se le llama

revenimiento, y también al ensayo, prueba de revenimiento (slump test).

Page 59: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 58 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Se determina igualmente la

consistencia o docilidad de las mezclas con el

decilímetro, que es una masa metálica en

forma, de casquete esférico. De dimensiones

Colocado el decilimetro sobre el concreto, vertido

en un recipiente conveniente, se su mayor o

menor descenso en la masa, apreciando este

hundimiento por medio de unas marcas

que lleva el decilímetro.

Sustancias extrañas para mejorar el concreto.-

Existen en el mercado muchos productos, amparados por

patentes, que agregados al concreto mejoran su plasticidad, o sea que

reemplazan el exceso de agua que tantos inconvenientes tiene, como

se ha visto anteriormente. Con estas adiciones, se pueden obtener

concretos más densos y por consiguiente impermeables.

Todos aquellos productos actúan llenando los vacíos de

cemento, reemplazando o expeliendo de ellos el agua de mezcla. Los granos de cemento en presencia del agua tienden a flocularse y los distintos materiales referidos, contribuyen a la dispersión del

cemento, por lo que se les llama “sustancias dispersantes”.

Para tal objeto se usan la cal hidratada, tierras

refractarias, feldespatos, sílice, soluciones de alumbre y jabón, cloruro de calcio, emulsiones de aceite, puzolanas, etc.

Pero en general se recomienda no abusar en el empleo de

estas sustancias, porque muchas de ellas debilitan la resistencia final

del concreto, desde que son materiales inertes.

Igualmente, se encuentran muchos productos

industriales que se emplean como aceleradores de fragua, y otros, como retardadores.

Resistencias del concreto.-

Los ensayos de resistencia del concreto se realizan, principalmente a los esfuerzos de tensión y de compresión.

Los de tensión se llevan a cabo sometiendo una viga de Sección apropiada y apoyada en sus extremos, a una carga central ó a dos equidistantes del centro, como si se tratara de un ensayo a la

flexión. La prueba se lleva hasta la rotura aumentando progresivamente la carga o las dos cargas. Determinadas estas cargas, por medio de fórmulas conocidas es fácil calcular la

resistencia buscada.

Page 60: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 59 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Las probetas para ensayo de compresión son cilindros ó

cubos, de dimensiones establecidas de acuerdo con el tamaño del

agregado grueso. Estas probetas se retiran de los moldes a las 24

horas de fabricadas, y se ensayan en los tiempos indicados en el

cuadro siguiente; pero durante el tiempo de espera la probeta debe

estar a unos 21° de temperatura. Las pruebas se practican en

maquinas de diseño apropiado que permiten aumentar

progresivamente la compresión.

En los tratados de especialidad se pueden consultar

fórmulas que ligan las resistencias a la compresión entre 7 y 28 días, ya que en ocasiones no es posible, por necesidades del trabajo esperar este último plazo.

Resistencias a la compresión sobre cubos de 0.30 m.

Mezcla 7 días 1 mes 3 meses 6 meses

1:2:4 110 kg/cm² 169 kg/ cm² 204kg/ cm² 269kg/ cm² 1:2:4 2 kg/cm² 152 kg/cm² 177 kg/cm² 217 kg/cm²

Resistencia a la tensión

1:2:4 12.3 á 19.3 kg/cm²

1:3:6 8.8 á 14.1 kg/cm²

Las resistencias indicadas corresponden a ensayos llevados hasta

la rotura.

CONCRETOS DE AIRE INCORPORADO

Definición y objeto del aire incorporado.-

Por el año de 1930 se descubrió, en EE. UU, que

un pequeño volumen de aire introducido “químicamente” en el concreto de cemento portland, le daba una ostensible mayor

resistencia a las heladas y deshielos.

Pronto se comprobó que este aire estaba formado por

minúsculas burbujas de forma esférica y de diámetro que variaban

de l0 a 1 000 microns, estables y no coalescentes, es decir que no

producían ligamento entre los elementos del concreto sino que

resbalaban entre ellos, comparándoseles a billas de un cojinete

y desempeñando, en consecuencia, papel deslizante entre los

componentes de la mezcla.

Como resultado de este efecto, el concreto se vuelve mas

fluido, mejorando su trabajabilidad, lo que permite reducir el volumen de agua, y como los esferoides de aire incorporado desarrollan una alta tensión superficial conservando su aislamiento y

cambiando de forma, permiten también reducir la cantidad de arena.

Page 61: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 60 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

También como un fenómeno resultante de la incorporación del aire se tiene la disminución de la exudación del

agua de mezcla, que es la que provoca la formación de canales capilares que causan la permeabilidad del concreto y su debilidad a la acción de las heladas y a la agresividad de las aguas superficiales.

Se ha comprobado que las mejores proporciones de aire

incorporado son las de 3 a 6 %, en relación al volumen de concreto.

Si se sobrepasara el límite de 6% se disminuye notablemente la

resistencia del concreto, convirtiéndolo en el calificado como poroso.

De todos modos, se deberá tener en cuenta al diseñar una mezcla,

que el aire incorporado baja la resistencia del concreto normal en

proporción que aumenta con la pobreza de la mezcla.

Conviene aclarar que el aire que por acción natural se

encuentra dentro de la mezcla, y que ha sido llamado atrapado,

no forma parte del incorporado que se desarrolla, como ya hemos dicho, artificialmente.

Agentes incorporados de aire.-

En el día se encuentran en el mercado industrial diversos

materiales capaces de producir aire incorporado, y que se denominan

agentes espumígenos; pero ellos se pueden agrupar, según la forma

como llegan al constructor, en sólidos y líquidos.

Al primero pertenece la llamada Resina Vinzol

manufacturado por la fábrica de explosivos Hércules, y que consiste

principalmente en una sustancia en forma de polvo, que contiene hidrocarburos de petróleo y una fracción alquitranes insolubles e hidrocarburos extraídos de la madera de pino.

Entre el segundo grupo de agentes se puede mencionar el

llamado “Darex AEA”, que es un líquido de color pardo oscuro que

contiene sales de triatonolamina y un hidrocarburo sulfatado.

Se están fabricando también, actualmente, cementos a los

cuales su productor le ha incorporado ya el agente espumígeno; operación que se realiza al moler el clinker, Estos cementos

son empleados principalmente en la construcción de calzadas y pisos que van a estar a la intemperie.

CONCRETOS LIVIANOS

El concreto liviano o de baja densidad se emplea en la

fabricación de blocks o planchas en los que se desea obtener poco

peso. Produce también un material térmico y acústico; es decir que

originan ambientes abrigados en invierno y frescos en el verano; y que

no dan motivo a reverberación del sonido o a la formación de ecos.

Page 62: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 61 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

La liviandad de estos concretos se obtiene usando áridos

de baja densidad, o echando en la mezcla productos qué crean gases o

espumas que aumentan notablemente su porosidad.

Entre los áridos usados para este objeto se tiene la piedra

pómez natural y las cenizas de carbón de piedra o antracitas.

En los segundos la formación de celdas o burbujas en

la masa del concreto se pueden obtener, por ejemplo, por

desprendimiento de hidrógeno naciente en la masa, mediante

polvo de aluminio finamente dividido que se incorpora en la mezcla

y que al contacto con el agua y los componentes básicos del cemento

produce el desprendimiento buscado del hidrógeno.

También se obtiene oxígeno naciente, con el mismo objeto,

empleando una solución Jabonosa a la que se agrega agua oxigenada e hipoclorito de calcio.

LOSETAS - BALDOSAS - MOSAICOS

Definición.-

Son elementos planos, de espesor reducido en

comparación con sus otras dimensiones, fabricados de mortero de cemento Portland, o de concretos del mismo cemento, que se emplean para el revestimiento de pisos, y también de muros.

Clasificaciones y denominaciones.-

Losetas, aquellas cuya superficie tiene el color natural del

cemento Portland, Cuando el tamaño es mayor que el usual de

20x20 cm., se denominan baldosas.

Losetas de color, cuando la coloración de la superficie es

uniforme y producida por un pigmento colorante, que es siempre de origen mineral. Pueden ser también blancas, obtenidas fabricándolas con cemento blanco tipo Portland.

Mosaicos, son aquellas que presentan un dibujo coloreado en varios tonos, o combinación de colores en la misma pieza.

Venecianas, que son las que presentan su superficie

formada por trozos de mármoles cementados en la masa de la

pasta superficial de la loseta.

Zócalos, las piezas que se usan para el revestimiento de

la parte inferior de los muros. Cuando el zócalo está formado por una simple hilera de losetas, éstas presentan uno de sus cantos

Page 63: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 62 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

moldurado y el cual se coloca hacia la parte superior. Dimensiones.-

Usualmente las más pequeñas son de 10 x 10 cm. y las

más grandes, de 40 x 40 cm. Se fabrican cuadradas, hexagonales, y con ángulos ochavados. Las hexagonales siempre de diámetros pequeños, de 11 x 15 cm.; y las de ángulos ochavados de 40 x 40

cm. El espesor de las 10 x 10 y de 20 x 20 es de 2 cm.; de las de 25 x 25, de 2.5 cm. y de las de 40 x 40, de 4 cm.

Descripción. -

Las losetas se componen de tres capas que, de abajo hacia arriba, son:

1) la base, formada por mortero de cemento, 1:3 a 1:5;

2) una capa denominada secante, constituida por polvo de ladrillo o arena artificial, de 12 mm de espesor; y

3) la pasta o capa superficial que está compuesta según los casos por mortero de arena fina de cemento gris o de cemento blanco, polvo de cuarzo, trozos de mármoles de colores, pigmentos colorantes, etc. En el caso de losetas venecianas se emplea, por ejemplo:

1 parte de cemento blanco;

1/2 parte de polvo de mármol; 1/2 parte de grano de mármol,

La superficie inferior de la loseta, o sea aquella que

va quedar en contacto con la mezcla de asiento, se hace rugosa con el

objeto de asegurar y favorecer la persistencia de la colocación;

algunos fabricantes aprovechan esta necesidad para imprimir,

generalmente en bajo relieve, la marca de fábrica o a1gun otro

distintivo industrial.

Fabricación.-

Las tres capas que componen las losetas se colocan en

el orden respectivo, en moldes metálicos que son sometidos a prensados en máquinas de diseño especial y que son verdaderas prensas. La presión se ejerce a brazo, por medio de tornillos, o

valiéndose de prensas hidráulicas, de aire comprimido, etc.

Las mezclas se colocan sólo ligeramente húmedas.

Moldeadas así las losetas deben fraguar en agua, por

lo menos 48 horas, no debiendo emplearse sino después de este plazo

mínimo; pero como resultan muy frágiles se recomienda usarlas, por lo menos, siete días después de acabadas,

Page 64: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 63 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

LOSETONES DE CONCRETO

Se denominan así a losas de concretó prefabricadas,

es decir, moldeadas en el taller, de dimensiones apreciables, pues se

les hace hasta de 1.00 x 1.00 m., empleadas para revestimientos de

pisos, especialmente de veredas.

Se componen de mezclas de concreto ricas, 1:5 y 1:6,

enlucidas con mortero de cemento, en la superficie visible y acabada con estrías o puntos, que se marcan con rodillos especiales de

bronce.

Los espesores de los losetones varían entre 7 y 10 cm.

BLOQUES DE CONCRETO

Definición.-

Se llaman así paralelepípedos de concreto, usados casi siempre cómo rellenos en muros o techos Los bloques están formados

por celdillas y tabiques, o sea son “huecos” como se les denomina usualmente.

Composición. –

La mezcla mas pobre permitida es la de 1:3:4; pero

cuando se hacen los bloques de mortero simplemente, entonces la proporción más usual es la de 1:4.

Fabricación.-

Los bloques se manufacturan por tres métodos principales:

1.- Pisoneado en seco.- Aunque los ingredientes del concreto no esta completamente secos, el sistema lleva esta denominación,

porque la mezcla se hace con muy pequeña cantidad de agua. Llenados los moldes con la mezcla, se les apisona prolija y enérgicamente con unas varillas metálicas de extremo ensanchado;

pisoneado que se puede realizar a mano o a maquina. 2.-Moldeado a presión.- La mezcla se hace de la misma

consistencia que en el método anterior, Después de colocada en los

moldes es sometida a presión por medio de palancas movidas a mano,

por aire comprimido, o por acción hidráulica.

3.- Moldeado prefabricado.- La mezcla se prepara con suficiente cantidad de agua para darle fluidez apreciable. Echada en

los moldes es necesario esperar que el concreto fragüe para que se pueda retirar el bloque. Esta última circunstancia diferencia sustancialmente este método de los anteriores, en los cuales el bloque

se saca del molde inmediatamente después de pisoneado o prensado.

Page 65: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 64 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

En los tres métodos, después de retirados los bloques de

los moldes, es necesario proceder a su cura, es decir, algún procedimiento que permita el endurecimiento con fraguado uniforme del bloque.

La cura de los bloques se puede hacer por aspersión

de agua fresca, o manteniéndolos en una atmósfera saturada de

vapor. Es suficiente en este último caso, una temperatura de 40 a 50°, y un tiempo de 48 horas; pero es necesario tenerlos en almacén por lo menos 8 días antes de que puedan ser usados.

Los bloques Parva Domus, tan conocidos en Lima,

pertenecen a este tipo de material. Se fabrican en tres clases principales para techos de concreto aligerado, para tabiques, y para

muros. Los bloques para techos aligerados llevan los huecos

en dirección horizontal; los que se usan en tabiques y muros, llevan

los huecos en sentido vertical. Son moldeados a presión.

TUBOS DE CEMENTO Y CONCRETO

Definiciones. –

Se denominan tubos de cemento a los de pequeño diámetro, manufacturados en el taller, o sea pre-fabricados. Tubos de

concreto, son aquellos que se construyen in-situ, es decir que se moldean en el emplazamiento donde van a quedar definitivamente. Tanto los tubos de cemento cuanto los de concreto pueden ser simpl

es, o llevar refuerzo metálico, en cuyo caso se llaman armados. Empleo.-

Se usan en Ingeniería Sanitaria, en las redes de agua y desagüe, ventilación de desagües, etc.; en Irrigación, para la construcción de drenajes; en Caminos y Ferrocarriles, para la

ejecución de alcantarillas, etc. Todas estas aplicaciones se revisan en los Cursos respectivos.

Fabricación

Los tubos de cemento se manufacturan por tres sistemas:

1° Por pisoneo.- El procedimiento consiste en echar mortero

de cemento ligeramente húmedo, dentro de un molde metálico constituido por dos cilindros concéntricos, y pisonear la mezcla cuidadosa y enérgicamente.

El mortero que se coloca en los moldes tiene un aspecto

aparentemente seco; pero tomando un puñado entre las manos,

debe poderse moldear con él una bola.

Page 66: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 65 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

El pisoneado se puede realizar a mano, o por medio de

maquinas. Estas últimas son de dos clases: unas en las cuales el

pisoneado se hace por medio de unos vástagos que golpean la mezcla

a razón de unos 200 golpes por minuto; y otras, en las cuales dentro

del molde se mueve un tambor giratorio, comprimiendo la mezcla y

puliéndola.

Terminado el pisoneado y suficientemente endurecido el

tubo, se le retira del molde y se procede a su cura, siguiendo un proceso similar al señalado para los bloques; es decir, por aspersión ó pulverización de agua, o por secamiento en cámara de vapor.

La calidad de los tubos depende: de la dosificación de

cemento, del método de pisoneado, de las características de los agregados, de la proporción de agua en la mezcla, del sistema y tiempo de cura, y por ultimo, de la prolijidad de la ejecución.

A continuación damos algunos datos experimentales de

una instalación nacional, correspondientes a tubos de desagüe

fabricados a mano y del tipo de espiga y campana.

6” diám.int. 8” diám.int.

Longitud total del tubo 0.75 m 0.90 m Dosificación del mortero 1: 2.5 1: 2 Núm. de tubos que hace un

obrero en 8 horas 40 20

2º por centrifugación.- Como el nombre lo indica, en este

procedimiento se emplea la acción de la fuerza centrifuga.

Los moldes son cilindros metálicos que se someten a un movimiento giratorio apreciable. Dentro de los cilindros, que están en

posición horizontal, se echa el mortero, suficientemente fluido con una consistencia como la que se emplea para fabricar bloques por moldeado pre-fabricado.

La fuerza centrífuga hace que el mortero se pegue a las

paredes del molde, en un espesor uniforme y sea desalojado todo el

exceso de aguas.

Terminado el proceso de centrifugación se colocan

los moldes en la cámara de vapor, y sólo después que el mortero se

ha endurecido es posible sacar el tubo de los moldes. Este sistema se presta mucho para el moldeado de los tubos armados. En este caso el refuerzo metálico esta formado por

una malla de grandes espacios o una canastilla de alambre de acero, empleándose el de calidad titulada en el mercado como alambre de fierro quemado.

Page 67: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 66 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Damos en seguida algunos datos relativos a los tubos

centrifugados, tipo hume, usados extensivamente en el país.

Tubos tipo “Hume” para desagüe.-

Sistema de empalme: espiga y campana (la campana esta formada

por un tubo de altura muy pequeña o collar, colocado en un extremo del tubo mismo).

Longitud total del tubo: 1.83 m.

Refuerzo metálico: alambre quemado, liso, flexible, Nº 12.

Diámetro int. del tubo, pulgadas: 6” 8” 10”

Diámetro ext, del tubo, pulgadas: 8 10 12.5

Peso del tubo, kg. : 69 94 132 Peso del refuerzo metálico, kg. : 2.3 2.9 3.7

3° Por vibración.- Los moldes son semejantes a los empleados en el método de pisoneo; pero en este caso el cilindro exterior lleva

adherido el roto-vibrador, que es ‘un dispositivo eléctrico de rotación excéntrica que sacude el molde al girar, reemplazando con ventaja al pisoneado del concreto; su velocidad es de 1200 a 1800

r.p.m.

Este sistema de fabricación se emplea de preferencia para grandes diámetros, de 0.75 á 1.5O metros; y los alambres de retuerzo se disponen en la forma Indicada en el croquis, de acuerdo

con la teoría de las vigas de cemento armado.

Page 68: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 67 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Caracteres.-

Los tubos son casi siempre de sección circular, Se

denominan por la dimensión dé su diámetro interior, expresada

muy generalmente, en pulgadas inglesas.

Exteriormente son también de sección circular; pero se

fabrican, aunque en pequeña escala y para diámetros reducidos, en los que la superficie exterior aparece cortada por un plano recto para

facilitar la colocación del tubo o su asiento sobre un solado o piso de albañilería; también con este ultimo objeto se construyen tubos que son hexagonales en su sección exterior, y otros por ultimo mucho

más usados, de sección octogonal.

Las longitudes de las piezas son relativamente

pequeñas. Las más usadas son de 0.60 á 1.00 m. de largo 2.00 m. y

casi nunca de mayor dimensión.

Los empalmes de un tubo con otro en obra, se hacen

por medio de una espiga circular de que va provisto un extremo; y la ranura conveniente del otro. También se emplea el sistema de espiga de campana.

La operación de empalmar un tubo con otro se le llama,

entre nosotros, fraguar o calafatear, y se realiza echando en la

unión mortero de cemento, La dosificación para este mortero es de 1:2.5 á 1:4; usándose muy pocas veces proporciones más pobres que esta ultima.

La superficie interior de los tubos debe ser lo más lista

posible. Los tubos necesitan ofrecer la mayor densidad; y por último,

se prescribe que no posean más de 8% como índice de absorción de

agua.

Page 69: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 68 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Resistencia -.

En estos tubos se especifican la resistencia interior y

la resistencia a la presión externa.

La primera se prueba por

medio de bombas hidráulicas, movidas a

mano, generalmente, y por medio de las cuales, y obturando convenientemente

los extremos del tubo se levanta en su

interior la presión deseada para la

prueba.

La presión externa se ensaya

por el método llamado de las capas de

arena, y del cual da la figura adjunta.

Es usual prescribir que la resistencia de estos tubos, a la

rotura por presión externa, sea de 2,000 kg/m., sin incluir la campana.

DUCTOS DE CEMENTO

Se denominan así unos conductos fabricados con

mortero de cemento, de sección interior circular; pero rectangulares

en su parte exterior. Se emplean, exclusivamente, para proteger

cables eléctricos enterrados, de luz, fuerza, telefónicos,

etc. Los ductos se fabrican con 1 a

4 huecos. Generalmente tienen 1.00 m. de longitud.

En su manufactura se siguen las normas que se ha

expuesto para los tubos de cemento.

LADRILLOS DE CAL Y ARENA

Son bloques macizos preparados como sustitutos de los

ladrillos corrientes de arcilla quemada.

Se componen de una mezcla de cal y arena fina, 1:5 á

1:10. se moldeando en maquinas o prensas que ejercen una presión de 1,000 kg/cm² aproximadamente. Después de moldeados se endurecen por vapor de agua, a presión de 9 atmósferas, que se

aplica en un depósito cerrado, durante 11 horas.

Por el año ,1908 se instalo en Lima, una fabrica de

Page 70: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 69 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

estos ladrillos, que funciono una decena años. Lo ladrillos eran de cal, obtenida de las canteras del cerro de El Agustino, y arena; sus

dimensiones eran de 26 x 12.5 x 6 cm., y presentaban una resistencia a la compresión de 200 kg/cm². Entre otras edificaciones de la Capital podemos citar la fachada actual del primer piso del Teatro

Colon, como construida con estos ladrillos.

PIEDRA ARTIFICIAL

En lenguaje corriente entre nosotros, se da el nombre de piedra artificial a algunos revestimientos de albañilería empleados

con fines decorativos. Revestimientos ornamentales.-

Estos revestimientos se aplican directamente a la

albañilería usándolos en forma de pastas; o también por bloques o chapas pre-moldeadas, que con mucha frecuencia solo llevan el material ornamental en su superficie visible.

Terrazo.-

Llamase piso veneciano o de terrazo al formado por una masa

de cemento Portland mezclado con astillas de mármol, las cuales después de endurecido el cemento se alisan y pulen con materiales esmerilantes, a mano o a máquina.

Generalmente se usa cemento Portland blanco, en la

proporción de 1 a 2 por 3 de astillas de mármol, agregándose en

ocasiones un colorante.

El terrazo debe descansar sobre una base de mortero de

cemento 1:4, de un espesor de 25 mm., siendo el espesor del terrazo de 18 mm.

Es conveniente intercalar en el terrazo unos marcos

de latón, que además de permitir la división del área, en figuras geométricas de muy buen aspecto, evitan las grietas de contracción.

Marmolina.-

Es un polvo que proviene de calcinar, después de

molida, una mezcla de cuarzo y mármol, contenido en ciertas piedras calcáreas.

La marmolina se usa en revoques de carácter ornamental, y en

la fabricación de piedras artificiales.

Page 71: Tecnología de Materiales 2015-II

FACULTAD DE CIENCIAS AGRARIAS

E. P. INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA CURSO: TECNOLOGÍA DE MATERIALES – V SEMESTRE – 2015-II

DOCENTE: ING. M.SC. VÍCTOR M. ESPINOZA PINEDO 70 FUENTE: Materiales de Construcción – Ing. Alberto Regal M.

Coloreado del concreto.-

El coloreado del concreto se puede hacer

agregándole arenas coloreadas, y también polvo de mármol, como

acabamos de ver pero se puede también realizar añadiéndole pigmentos colorantes, que es el método de que vamos a tratar exclusivamente en este párrafo, Los pigmentos que han dado mejores

resultados son:

Amarillo y rojo : óxido de fierro Verde : óxido de cromo Azul : azul ultramarino

Pardo : óxido de hierro Negro : óxido de hierro,

bióxido de manganeso

negro de humo.

Cuando el pigmento es mucho más ligero que el

cemento, tiende a flotar y separarse, sobre todo si se usa agua en exceso.

Muchos pigmentos se desvanecen ligeramente cuando el

concreto es expuesto a la luz del sol. Se contrarresta esta acción

dando al color mayor intensidad inicial.

Algunos pigmentos tienen gran cantidad de sales solubles que

salen a la superficie, formando una película grisácea, opaca, de feo aspecto. Esta película se quita lavando la superficie con ácido

muriático diluido en agua, proporción de 1:10. La mejor manera de efectuar la mezcla del pigmento

es agregarle al cemento, que generalmente es el blanco, revolver ambos materiales prolijamente y cernirlos después. El polvo así obtenido es el que se mezcla para formar el concreto o el mortero.

* HASTA ESTA PÁGINA, PRIMER EXAMEN