32
TECHNICAL METHODOLOGY 1 States at Risk: America’s Preparedness Report Card Technical Methodology Table of Contents Introduction................................................................................................................................................. 2 Climate Threat Analysis ........................................................................................................................... 2 Data Sources ........................................................................................................................................................... 2 Conterminous United States .............................................................................................................................................. 2 Alaska and Hawaii .................................................................................................................................................................. 3 Coastal Flooding Analysis ................................................................................................................................... 5 Climate Threat Scores .......................................................................................................................................... 6 Climate Threat Indicators ................................................................................................................................................... 6 Alaska and Hawaii .................................................................................................................................................................. 8 Spatial Aggregation: From Grid Cell to State .............................................................................................................. 8 Note: Using Multiple Global Climate Models ................................................................................................ 9 Note: Considerable and Significant Climate Threat ................................................................................... 9 Exceptions............................................................................................................................................................................... 10 Statistical Test ....................................................................................................................................................................... 10 Limitations of the Climate Threat Analysis ................................................................................................ 10 Other Sources of Uncertainties ...................................................................................................................................... 11 References ............................................................................................................................................................. 12 Credits And Acknowledgements .................................................................................................................... 12 Climate Preparedness Analysis ........................................................................................................... 13 The Climate Preparedness Concept .............................................................................................................. 13 Assessing Climate Preparedness ................................................................................................................... 14 Climate Preparedness Scoring ........................................................................................................................ 15 Limitations of the Climate Preparedness Analysis .................................................................................. 16 Aggregation and Grading....................................................................................................................... 16 Scores Standardization ..................................................................................................................................... 16 Grading ................................................................................................................................................................... 17 Climate Threat Grade ......................................................................................................................................................... 17 Overall State Grade ............................................................................................................................................................. 17 Alaska and Hawaii ............................................................................................................................................................... 17 Limitations of the Grading Scheme ............................................................................................................... 18 Grading Example ................................................................................................................................................. 18 Appendix I: Detailed Preparedness Scoring Approach ............................................................... 20

TechnicalMethods JB 1120 RY

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  1  

 States  at  Risk:  America’s  Preparedness  Report  Card    

Technical  Methodology    

Table  of  Contents  

Introduction  .................................................................................................................................................  2  Climate  Threat  Analysis  ...........................................................................................................................  2  Data  Sources  ...........................................................................................................................................................  2  Conterminous  United  States  ..............................................................................................................................................  2  Alaska  and  Hawaii  ..................................................................................................................................................................  3  

Coastal  Flooding  Analysis  ...................................................................................................................................  5  Climate  Threat  Scores  ..........................................................................................................................................  6  Climate  Threat  Indicators  ...................................................................................................................................................  6  Alaska  and  Hawaii  ..................................................................................................................................................................  8  Spatial  Aggregation:  From  Grid  Cell  to  State  ..............................................................................................................  8  

Note:  Using  Multiple  Global  Climate  Models  ................................................................................................  9  Note:  Considerable  and  Significant  Climate  Threat  ...................................................................................  9  Exceptions  ...............................................................................................................................................................................  10  Statistical  Test  .......................................................................................................................................................................  10  

Limitations  of  the  Climate  Threat  Analysis  ................................................................................................  10  Other  Sources  of  Uncertainties  ......................................................................................................................................  11  

References  .............................................................................................................................................................  12  Credits  And  Acknowledgements  ....................................................................................................................  12  

Climate  Preparedness  Analysis  ...........................................................................................................  13  The  Climate  Preparedness  Concept  ..............................................................................................................  13  Assessing  Climate  Preparedness  ...................................................................................................................  14  Climate  Preparedness  Scoring  ........................................................................................................................  15  Limitations  of  the  Climate  Preparedness  Analysis  ..................................................................................  16  

Aggregation  and  Grading  .......................................................................................................................  16  Scores  Standardization  .....................................................................................................................................  16  Grading  ...................................................................................................................................................................  17  Climate  Threat  Grade  .........................................................................................................................................................  17  Overall  State  Grade  .............................................................................................................................................................  17  Alaska  and  Hawaii  ...............................................................................................................................................................  17  

Limitations  of  the  Grading  Scheme  ...............................................................................................................  18  Grading  Example  .................................................................................................................................................  18  

Appendix  I:  Detailed  Preparedness  Scoring  Approach  ...............................................................  20        

Page 2: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  2  

Introduction    The  States  at  Risk:    America’s  Preparedness  Report  Card  project  (hereafter,  Report  Card)  focuses  on  five  threats  related  to  climate  change  –  extreme  heat,  drought,  wildfires,  inland  flooding,  and  coastal  flooding.    It  then  assesses  to  what  extent  states  have  taken  a  core  set  of  climate  actions  to  protect  people  and  infrastructure  from  the  risks  associated  with  the  future  changes  in  the  five  climate  threats.    There  is  no  doubt  that  climate  change  could  have  differential  and  considerable  impacts  on  natural  systems  as  well  as  human  systems.    The  scope  of  this  climate  preparedness  analysis  focused  on  the  potential  climate  change  impacts  on  each  state  and  covered  five  major  sectors:  transportation,  energy,  water,  human  health  and  communities.    Each  state’s  climate  preparedness  was  evaluated  only  for  those  threats  determined  to  be  of  considerable  magnitude  and  were  projected  to  get  worse  in  the  future  due  to  climate  change.        Grades  were  then  assigned  to  each  of  the  50  states  based  on  both  the  magnitude  of  the  current  and  future  changes  in  their  climate  threat  and  the  action  states  have  taken  to  prepare  for  them,  as  well  as  how  these  compare  to  other  states.  

Climate  Threat  Analysis    In  this  Report  Card,  the  characteristics  of  five  climate  threats  and  their  changes  between  the  baseline  and  future  periods  were  assessed  across  all  50  states.    The  characteristics  of  extreme  heat,  wildfires  and  inland  flooding  were  quantified  for  the  baseline  period  of  year  2000  (the  mean  value  of  1991-­‐2010)  and  the  future  period  of  year  2050  (the  mean  value  of  2041-­‐2060).    Since  drought  is  cumulative  period  of  dryness,  a  50-­‐year  mean  was  used  for  both  the  baseline  period  (1950-­‐1999)  and  the  future  period  (2025-­‐2075).    For  coastal  flooding,  sea  levels  in  the  years  2000  and  2050  (projected)  were  used.  

Data  Sources  

Conterminous  United  States    The  climate  threat  analysis  for  the  conterminous  United  States  was  based  on  "Downscaled  CMIP3  and  CMIP5  Climate  and  Hydrology  Projections"  archive  at  http://gdo-­‐dcp.ucllnl.org/downscaled_cmip_projections/.    The  bias-­‐corrected  statistically-­‐downscaled  (BCSD)  climate  projections  (Reclamation,  2013)  and  hydrology  projections  (Reclamation,  2014)  used  are  derived  from  the  global  climate  model  (GCM)  runs  in  the  Coupled  Model  Intercomparison  Project  5  (CMIP5)  experiment  (Table  1),  referenced  in  the  IPCC  Fifth  Assessment  Report  (AR5).    Climate  threat  analysis  was  performed  for  outputs  based  on  29  GCMs  available  in  the  archive  under  the  RCP  8.5  emissions  scenario.    These  climate  and  hydrology  projections  have  a  spatial  resolution  of  ⅛°  (about  140  

Page 3: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  3  

square  kilometers  per  grid  cell),  and  cover  the  conterminous  United  States  and  portions  of  Canada  and  Mexico.  

Alaska  and  Hawaii    The  climate  threat  analysis  for  Alaska  and  Hawaii  was  based  on  the  NASA  Earth  Exchange  (NEX)  Global  Daily  Downscaled  Projections  (GDDP)  dataset,  available  at  https://nex.nasa.gov/nex/projects/1356/  (Thrasher  et  al.,  2012).    The  NEX-­‐GDDP  dataset  is  comprised  of  BCSD  climate  projections  at  0.25°  x  0.25°  (approximately  25  km  x  25  km),  also  derived  from  the  CMIP5  experiment  (Table  1);  no  downscaled  hydrology  projections  are  available  in  this  dataset.    Climate  threat  analysis  was  performed  for  outputs  based  on  21  GCMs  available  in  the  dataset  under  RCP  8.5.        Before  using  the  temperature  projections  in  the  climate  threat  analysis,  a  post-­‐processing  step  was  applied  to:  

• Exchange  the  values  when  Tmax  <  Tmin.        Table  1.  List  of  CMIP5  global  climate  models  used.  

Model  Name   Modeling  Center  (or  Group)   Dataset  

ACCESS1-­‐0  Commonwealth  Scientific  and  Industrial  Research  Organization  (CSIRO)/Bureau  of  Meteorology  (BOM),  Australia  

USBR;  NASA  NEX-­‐GDDP  

BCC-­‐CSM-­‐1-­‐1-­‐M   Beijing  Climate  Center,  China  Meteorological  Administration,  China  

USBR  

BCC-­‐CSM-­‐1-­‐1   Beijing  Climate  Center,  China  Meteorological  Administration,  China  

USBR;  NASA  NEX-­‐GDDP  

BNU-­‐ESM   College  of  Global  Change  and  Earth  System  Science,  Beijing  Normal  University  

USBR;  NASA  NEX-­‐GDDP  

CANESM2   Canadian  Centre  for  Climate  Modelling  and  Analysis,  Canada  

USBR;  NASA  NEX-­‐GDDP  

CCSM4   National  Center  for  Atmospheric  Research,  University  Corporation  for  Atmospheric  Research,  USA  

USBR;  NASA  NEX-­‐GDDP  

CESM1-­‐BGC   Community  Earth  System  Model  Contributors,  USA   USBR;  NASA  NEX-­‐GDDP  

CESM1-­‐CAM5   Community  Earth  System  Model  Contributors,  USA   USBR  CMCC-­‐CM   Euro-­‐Mediterranean  Center  on  Climate  Change,  Italy   USBR  

CNRM-­‐CM5   National  Centre  for  Meteorological  Research,  France   USBR;  NASA  NEX-­‐GDDP  

CSIRO-­‐MK3-­‐6-­‐0  Commonwealth  Scientific  and  Industrial  Research  Organization/Queensland  Climate  Change  Center  of  Excellence,  Australia  

USBR;  NASA  NEX-­‐GDDP  

FGOALS-­‐G2   Laboratory  of  Numerical  Modelling  for  Atmospheric   USBR  

Page 4: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  4  

Model  Name   Modeling  Center  (or  Group)   Dataset  Sciences  and  Geophysical  Fluid  Dynamics,  Institute  of  Atmospheric  Physics,  Chinese  Academy  of  Sciences,  China  

FIO-­‐ESM   The  First  Institute  of  Oceanography,  SOA,  China    

GFDL-­‐CM3   National  Oceanic  and  Atmospheric  Administration,  Geophysical  Fluid  Dynamics  Laboratory,  USA  

USBR;  NASA  NEX-­‐GDDP  

GFDL-­‐ESM2G   National  Oceanic  and  Atmospheric  Administration,  Geophysical  Fluid  Dynamics  Laboratory,  USA  

USBR;  NASA  NEX-­‐GDDP  

GFDL-­‐ESM2M   National  Oceanic  and  Atmospheric  Administration,  Geophysical  Fluid  Dynamics  Laboratory,  USA  

USBR;  NASA  NEX-­‐GDDP  

GISS-­‐E2-­‐R   National  Aeronautics  and  Space  Administration  Goddard  Institute  for  Space  Studies,  USA  

USBR  

HADGEM2-­‐AO   Met  Office  Hadley  Centre,  UK   USBR  HADGEM2-­‐CC   Met  Office  Hadley  Centre,  UK   USBR  HADGEM2-­‐ES   Met  Office  Hadley  Centre,  UK   USBR  

INMCM4   Institute  for  Numerical  Mathematics,  Russian  Academy  of  Sciences,  Russia  

USBR;  NASA  NEX-­‐GDDP  

IPSL-­‐CM5A-­‐LR   Dynamical  Meteorology  Laboratory  at  the  Pierre-­‐Simon  Laplace  Institute,  France  

USBR;  NASA  NEX-­‐GDDP  

IPSL-­‐CM5B-­‐MR   Dynamical  Meteorology  Laboratory  at  the  Pierre-­‐Simon  Laplace  Institute,  France  

USBR;  NASA  NEX-­‐GDDP  

MIROC-­‐ESM  Atmosphere  and  Ocean  Research  Institute,  National  Institute  for  Environmental  Studies/Japan  Agency  for  Marine-­‐Earth  Science  and  Technology,  Japan  

USBR;  NASA  NEX-­‐GDDP  

MIROC-­‐ESM-­‐CHEM  Atmosphere  and  Ocean  Research  Institute,  National  Institute  for  Environmental  Studies/Japan  Agency  for  Marine-­‐Earth  Science  and  Technology,  Japan  

USBR;  NASA  NEX-­‐GDDP  

MIROC5  Atmosphere  and  Ocean  Research  Institute,  National  Institute  for  Environmental  Studies/Japan  Agency  for  Marine-­‐Earth  Science  and  Technology,  Japan  

USBR;  NASA  NEX-­‐GDDP  

MPI-­‐ESM-­‐LR   Max  Planck  Institute  for  Meteorology,  Germany   USBR;  NASA  NEX-­‐GDDP  

MPI-­‐ESM-­‐MR   Max  Planck  Institute  for  Meteorology,  Germany   USBR;  NASA  NEX-­‐GDDP  

MRI-­‐CGCM3   Meteorological  Research  Institute,  Japan  Meteorological  Agency,  Japan  

USBR;  NASA  NEX-­‐GDDP  

NORESM1-­‐M   Norwegian  Climate  Center,  Norway   USBR;  NASA  NEX-­‐GDDP  

 

Page 5: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  5  

Coastal  Flooding  Analysis    The  sea  level  rise  and  coastal  flood  analysis  aimed  to  delineate  zones  with  1%  annual  flood  risk  (100-­‐year  coastal  floodplains),  given  baseline  and  projected  sea  levels  in  the  years  2000  and  2050,  and  to  tabulate  the  current  population  residing  within  them.    Median  sea  level  rise  (SLR)  projections  from  Kopp  et  al.  (2014)  are  for  2050  under  RCP  8.5  at  69  tide  gauges  along  the  U.S.  coast.    The  projections  take  vertical  land  motion  into  account.    The  baseline  100-­‐year  coastal  floodplains  used  are  unmodified  from  FEMA  floodplain  maps  and  coastal  area  classification  (Crowell,  2013).  To  generate  new  coastal  floodplains  following  sea  level  rise,  it  is  first  necessary  to  find  elevations  along  the  margins  encapsulating  baseline  floodplains.    To  do  so,  this  analysis  first  constructed  a  list  of  points  along  each  edge  that  are  no  further  than  1  arcsec  apart.  Employing  NOAA’s  high-­‐accuracy  Coastal  LIDAR  Digital  Elevation  Model  (DEM),  the  analysis  then  sampled  land  elevation  at  each  of  these  points,  referenced  to  local  mean  higher  high  water  (MHHW).    All  samples  with  land  elevation  less  than  or  equal  to  zero  meters  (already  below  high  tide  line)  or  greater  than  five  meters  (empirically  found  to  be  very  strong  outliers)  were  removed  from  this  list.    The  remaining  samples  provided  approximate  elevations,  above  MHHW,  along  all  margins  of  FEMA’s  100-­‐year  coastal  flood  layers.    To  reduce  the  impact  of  noise  due  to  errors  in  the  DEM  and  particularly  in  FEMA’s  flood  maps,  which  were  derived  using  older  and  less  accurate  elevation  data,  each  state  was  then  divided  into  a  0.2  x  0.2  degree  grid.    Each  grid  cell  was  assigned  to  the  county  within  which  its  centerpoint  resides;  and  within  each  grid  cell,  the  median  elevation  of  samples  was  computed.    Any  cells  with  zero  samples  were  ignored.    To  further  prune  outliers,  sample  points  within  all  cells  with  median  values  two  or  more  standard  deviations  away  from  the  mean  of  all  cell  medians  in  the  same  county,  were  removed.    For  each  pixel  in  the  DEM,  inverse  distance  weighted  interpolation  was  then  performed  using  the  nearest  five  grid  cells,  to  compute  the  estimated  100-­‐year  flood  elevation  (referenced  to  MHHW)  at  that  point.    By  subtracting  the  flood  elevation  from  land  elevation,  a  new  land  elevation  map  referenced  to  flood  height  was  created.    Finally,  this  new  flood-­‐referenced  elevation  was  thresholded  against  the  projected  local  SLR  at  each  point  to  produce  estimated  100-­‐year  coastal  floodplain  maps  for  the  year  2050.    Local  SLR  projections  were  based  on  nearest-­‐neighbor  interpolation  from  the  69  tide  gauges.    Before  using  these  maps  to  assess  flood  exposure  risk,  they  were  further  refined  by  removing  all  low-­‐lying  areas  isolated  by  topography  or  levees  from  the  ocean.    Data  from  the  Mid-­‐term  Levee  Inventory  (FEMA/USACE)  was  used  for  levees,  which  was  assume  to  be  high  enough  and  strong  enough  to  protect  against  any  flood.    Connected  components  analysis  was  used  to  remove  all  areas  that  were  protected  by  levees  and  the  natural  topography  of  the  land.    The  US  Census  provides  place  boundaries,  block  boundaries  and  block  populations  (www.census.gov/geo/maps-­‐data/data/tiger-­‐line.html),  which  were  used  to  compute  population  and  land  exposed  under  each  of  our  flood  maps,  before  tabulation  up  to  state  level.    

Page 6: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  6  

This  analysis  assumes  uniform  density  Census  blocks,  except  for  zero  density  over  wetland  areas,  as  described  in  more  detail  in  (Strauss  et  al.,  2012).    

Climate  Threat  Scores    The  calculation  of  a  state  climate  threat  score  consists  of  4  basic  steps:    

(1) Climate  threat  indicators:  Compute  climate  indicator  values  at  each  of  the  grid  cells  covering  the  United  States,  for  the  baseline  period  and  future  period  separately.    

(2) Spatial  aggregation:  For  both  the  baseline  period  and  future  period,  aggregate  the  gridded  climate  indicators  values  to  the  state  level,  using  two  weighting  methods:    a. The  “absolute”  measure,  which  weights  intermediate  geographies  (counties  and  

watersheds)  by  their  total  vulnerable  population.  b. The  “relative”  measure,  which  weights  intermediate  geographies  (counties  and  

watersheds)  by  their  vulnerable  population  as  a  percentage  of  state  population.    

(3) State  climate  threat  level:  Calculate  a  climate  threat  level  for  both  time  periods  by  combining  the  absolute  and  relative  measures.    

(4) State  climate  threat  score:  Calculate  a  climate  threat  score  by  combining  two  elements:  the  climate  threat  level  for  the  baseline  period  and  the  change  in  the  climate  threat  level  between  the  baseline  period  and  the  future  period.  

 Each  of  these  steps  is  detailed  below.    

Climate  Threat  Indicators    To  quantify  the  level  of  climate  threat,  an  indicator  was  selected  to  represent  each  of  the  five  climate  threats  (Table  2).    Each  indicator  has  its  own  strengths  and  weaknesses,  and  there  is  no  single  “best”  indicator  to  represent  a  particular  climate  threat.    The  indicators  were  chosen  on  the  basis  that  they  could  be  used  to  reflect  the  general  condition  for  their  respective  climate  threats  and  allow  spatial  comparison  across  the  U.S.    The  scope  of  this  Report  Card  focuses  on  state  level  climate  actions  intended  for  human  systems,  and  climate  change  is  likely  to  have  differential  effects  on  different  demographics.    Hence,  the  climate  threat  analysis  put  more  emphasis  on  a  state’s  vulnerable  population.    Table  2  shows  the  groups  of  population  considered  to  be  especially  vulnerable  in  relation  to  extreme  heat,  wildfire,  and  inland  flooding,  which  were  used  as  weighting  factors  during  the  spatial  aggregation  process  up  to  the  state  level  (described  below).    In  all  cases,  2010  Census  data  was  used  and  populations  were  assumed  to  remain  unchanged  in  the  future  –  therefore,  changes  in  climate  threat  level  were  due  to  climate  change.    

Page 7: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  7  

For  drought,  it  was  difficult  to  determine  a  meaningful  vulnerable  population,  as  drought  impacts  on  population  tend  to  be  less  direct  and  less  location-­‐dependent.    For  coastal  flooding,  a  weighting  factor  was  not  used  as  the  indicator  already  measured  population  at  risk.      Table  2.    Indicators  and  Weighting  Factors  for  Each  Climate  Threat.  

Climate  Threat  Indicator   Weighting  Factor  Extreme  Heat    Average  annual  number  of  heatwave  days    Average  number  of  days  each  year  with  daily  maximum  temperature   exceeding   the   95th   percentile   of   daily  maximum   temperature   in   the   baseline   (1991-­‐2010)  period  for  at  least  three  consecutive  days.    

County-­‐level   population  under   the   age   of   5   and  aged   65   or   over   living  below  the  poverty  line.    

Drought    Severity  of  widespread  summer  drought  Sum   of   soil   moisture   deficit   (standard   score)   in   the  summer  months  for  model  grid  cells  where  z-­‐score  <  -­‐1,  based  on  the  1950-­‐1999  mean  and  standard  deviation,  when   at   least   30%   of   grid   cells   in   a   state   meet   this  criterion.  

N/A  

   Wildfire    Average   annual   number   of   days   with   high   wildfire  potential  Average  number  of  days  each  year  with  Keetch-­‐Byram  Drought  Index  exceeding  600.  

County-­‐level   population  living   in   the   wildland-­‐urban  interface  (WUI)1.  

   Inland  Flooding    Average  annual  severity  of  high  flow  events  Sum  of  runoff  volume  that  exceeds   the  95th  percentile  of  daily  total  runoff  in  the  baseline  (1991-­‐2010)  period.  

HUC4-­‐level   population  living   on   FEMA   100-­‐year  riverine  floodplain.    

   Coastal  Flooding    Number  of  people  at  risk  of  a  100-­‐year  coastal  flood   N/A        

                                                                                                               1  The  wildland-­‐urban  interface  is  the  area  where  structures  and  other  human  development  meet  or  intermingle  with  undeveloped  wildland  (Radeloff  et  al.,  2005).  

Page 8: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  8  

 

Alaska  and  Hawaii    Since  the  NASA  NEX-­‐GDDP  dataset  contains  only  BCSD  climate  projections  and  no  BCSD  hydrology  projections,  hydrology-­‐related  indicators  for  drought  and  inland  flooding  were  not  computed  for  Alaska  and  Hawaii.    

Spatial  Aggregation:  From  Grid  Cell  to  State    The  climate  models  divide  the  United  States  into  a  grid.    With  the  exception  of  coastal  flooding,  the  values  for  each  of  the  climate  threat  indicators  (Table  2)  were  calculated  separately  at  each  grid  cell,  before  aggregating  to  a  state-­‐level  value  as  described  below.    For  drought,  the  gridded  standard  score  anomalies  were  totaled.    This  captures  both  the  magnitude  and  spatial  extent  of  the  drought  events.  

Absolute  and  Relative  Measures    With  the  exception  of  drought,  two  state  values  –  an  “absolute”  and  a  “relative”  measure  –  were  derived  for  each  climate  indicator.      For  extreme  heat,  wildfire  and  inland  flooding,  the  state  absolute  and  relative  measures  were  calculated  by  multiplying  the  sub-­‐state  climate  indicator  value  by  its  vulnerable  population  and  vulnerable  population  as  a  percentage  of  total  state  population,  respectively,  before  summing  across  the  state.    It  is  necessary  to  account  for  both  of  these  situations:  for  instance,  vulnerable  population  may  represent  1%  of  State  A’s  population  and  8%  of  State  B’s  population;  however,  this  could  mean  that  State  A  has  45,000  vulnerable  people  and  State  B  has  5,000  vulnerable  people.    For  extreme  heat  and  wildfire,  the  county-­‐mean  indicator  values  were  weighted  according  to  the  county-­‐level  distribution  of  the  state’s  vulnerable  population.    For  inland  flooding,  the  HUC4-­‐mean  results  were  weighted  by  the  HUC4-­‐level  distribution  of  the  state’s  vulnerable  population.    A  spatial  unit  larger  than  a  county  or  watershed  implies  averaging  of  dissimilar  results  due  to  the  topographic  heterogeneity  across  a  state.    For  coastal  flooding,  the  state  absolute  and  relative  measures  were  the  number  of  people  and  the  percentage  of  state  population  living  on  land  within  the  baseline  or  projected  100-­‐year  coastal  floodplain,  respectively.  

State  Climate  Threat    To  combine  the  absolute  and  relative  measures,  a  data  standardization  process  was  performed  for  the  baseline  and  future  periods,  and  for  each  climate  indicator  separately.    

Page 9: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  9  

The  absolute  measure  for  each  state  was  standardized  by  dividing  the  value  of  each  absolute  measure,  for  each  indicator,  by  its  maximum  value  in  the  baseline  period  across  all  the  states  analyzed.    The  same  standardization  process  was  also  applied  to  the  relative  measures.    For  each  climate  indicator,  the  standardized  values  of  the  state  absolute  and  relative  measures  were  then  summed  with  equal  weights  to  give  the  state  climate  threat  level  for  each  time  period.  

State  Climate  Threat  Score    For  each  indicator,  the  state  climate  threat  score  was  mean  of  the  baseline  threat  level  and  the  change  in  threat  level  between  the  baseline  and  future  periods.    

Note:  Using  Multiple  Global  Climate  Models    State  climate  threat  for  each  indicator  was  computed  separately  for  each  GCM;  only  the  central  tendency  (median)  values  were  reported.    This  climate  threat  analysis  adopted  a  multi-­‐model  approach  because  results  from  a  single  GCM  only  suggest  a  single  trajectory  of  how  future  climate  might  unfold,  which  overlooks  the  full  range  of  possible  future  conditions  and  could  therefore  be  misleading.    Since  there  is  no  way  to  scientifically  determine  the  single  most  accurate  projection  of  future  conditions,  results  presented  here  are  based  on  multiple  GCMs  –  known  as  a  multi-­‐model  ensemble    The  GCM  results  were  not  weighted  in  any  way;  each  model  was  considered  equally  credible,  with  each  projection  equally  plausible  (note:  but  not  equally  likely).    This  is  because:    

• A  model  that  does  well  reproducing  the  past  climate  does  not  necessarily  mean  it  would  do  well  for  the  future,  especially  when  long-­‐term  climate  projections  cannot  be  validated  directly  through  observations;  and,  

• Whether  or  not  a  GCM  does  “well”  at  reproducing  the  past  climate  can  vary  with  the  aspect  of  past  climate  one  is  evaluating  its  performance  on.    Therefore,  model  rankings  can  vary  with  the  metrics/criteria  used  for  evaluation.  

• Even  for  analyses  that  rank  and  weight  models,  there  is  no  universally  agreed  metric  for  separating  “good”  from  “bad”  models.        

Note:  Considerable  and  Significant  Climate  Threat    It  is  particularly  important  for  states  to  prepare  for  climate  threats  that  have  a  certain  level  of  seriousness  and  are  projected  to  get  worse  in  a  changing  climate.    The  emphasis  of  this  Report  Card  was  on  climate  threats  determined  to  be  of  considerable  magnitude  and  significantly  increasing  in  the  future  due  to  climate  change,  thus  the  level  of  climate  preparedness  was  only  assessed  for  the  qualified  state  climate  threats.    The  assumption  was  that  states  should  already  be  acting  on  those  climate  threats  with  a  considerable  magnitude  in  the  baseline  period  

Page 10: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  10  

though  not  projected  to  get  worse  with  climate  change.    In  the  case  of  coastal  flooding,  all  the  coastal  states  were  projected  to  experience  sea  level  rise,  thus  were  all  assessed  for  their  state  climate  preparedness.    For  the  other  climate  threats,  the  number  of  states  assessed  for  their  climate  preparedness  are:    

• Extreme  Heat:  48  states  • Drought:  36  states  • Wildfire:  24  states  • Inland  Flooding:  32  states  

 Either  one  of  the  following  conditions  would  qualify  a  state  climate  threat  for  the  climate  preparedness  analysis:    

• A  state  with  a  climate  threat  that  exceeded  the  threshold  in  the  baseline  period  in  either  absolute  measure  (relative  to  other  states)  or  relative  measure  (relative  to  the  state  itself);  and,  the  threat  level  is  (statistically)  significantly  increasing  in  the  future;  OR  

• A  state  with  a  climate  threat  that  was  below  the  threshold  in  the  baseline  period  in  either  absolute  or  relative  measure  but  was  projected  to  exceed  the  baseline  threshold  in  the  future.  

 The  threshold  of  an  indicator,  in  both  the  absolute  and  relative  measures,  is  the  median  value,  in  the  baseline  period,  of  the  state  climate  threat  the  lower  48  states.    For  instance,  this  included  the  top  24  (of  the  48)  states  that  have  the  highest  number  of  vulnerable  people,  or  the  highest  percentage  of  the  state's  population,  in  the  baseline  period.  

Exceptions    There  were  two  cases  where  the  change  in  climate  threat  in  the  2050  period  were  not  statistically  significant  but  were  included  in  the  climate  preparedness  assessment;  these  are  inland  flooding  in  California  and  drought  in  Nevada.    This  was  because  both  of  them  have  statistically  significant  increases  in  the  2030  period  (2021-­‐2040),  which  implies  that  states  should  also  consider  preparing  for  the  associated  near-­‐term  climate  risks.  

Statistical  Test    For  each  state,  the  significance  of  change  for  each  climate  indicator  (except  for  coastal  flooding)  between  the  baseline  and  future  periods  was  determined  by  the  Wilcoxon  Signed-­‐Rank  test  (two  sample,  paired).    Only  states  with  an  increase  in  their  threat  level  at  p  <  0.05  were  considered  to  be  statistically  significant.  

Limitations  of  the  Climate  Threat  Analysis    This  climate  threat  analysis  has  a  number  of  limitations  and  assumptions,  some  of  which  include:    

Page 11: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  11  

• Results  in  this  climate  threat  analysis  are  subject  to  the  uncertainties  associated  with  the  global  climate  models  and  hydrological  model,  as  well  as  the  downscaling  approach  used.    

• Results  are  conditional  upon  the  selected  climate  threat  indicators  and  weighting  factors,  as  well  as  datasets  (e.g.,  wildland-­‐urban  interface  and  FEMA  flood  maps)  used  to  construct  them,  which  may  be  more  suitable  for  some  regions  than  others.      

• The  use  of  2010  Census  information  in  the  coastal  flooding  analysis  and  weighting  factors  for  other  climate  threats  assumed  uniform  density  Census  blocks.  

• Population  living  within  the  FEMA  100-­‐year  riverine  floodplain  was  estimated  using  available  digital  data.    This  dataset  covers  more  than  70%  of  state  population  in  30  of  the  32  states  analyzed  for  inland  flooding,  with  100%  coverage  in  7  states.    For  states  without  100%  coverage,  areas  already  digitized  and  those  that  were  not  yet  digitized  were  assumed  to  have  the  same  proportion  of  population  in  the  FEMA  floodplain.  

• The  coastal  flooding  analysis  method  assumed  that  storm  risks  will  remain  constant;  and  that  small  changes  in  sea  level  height  will  not  affect  local  storm  surge  dynamics.  

Other  Sources  of  Uncertainties    While  this  climate  threat  analysis  was  based  on  an  ensemble  of  global  climate  models  and  one  hydrological  model,  the  effects  of  other  sources  of  uncertainties  have  not  been  accounted  for.    Some  examples  include  uncertainties  associated  with:    

• Downscaling:  The  hydro-­‐climatic  datasets  used  are  only  based  on  one  statistical  downscaling  approach  –  Bias-­‐Correction  Spatial  Disaggregation.  Uncertainties  associated  with  other  statistical  (e.g.,  Bias-­‐Correction  Constructed  Analogues,  BCCA),  and  dynamical  downscaling  approaches,  have  not  been  explored.    

• Emission  scenario:    Results  are  only  based  on  RCP8.5.    • Hydrological  model:    The  hydrology  dataset  used  are  solely  based  on  outputs  from  the  

Variable  Infiltration  Capacity  hydrologic  model  (VIC).    • Parameter:    The  hydro-­‐climatic  datasets  used  are  only  based  on  one  model  variant  of  

each  global  climate  model  and  VIC.    Parameter  uncertainties  have  not  been  explored  by  using  variants  of  a  given  model  with  different  plausible  ranges  of  parameter  values,  known  as  a  perturbed  physics  ensemble  (PPE).  

• Natural  climate  variability:    This  is  difficult  to  estimate  due  to  the  short  instrumental  records  and  difficulties  in  reconstructing  past  climate  conditions  using  paleoclimatology  proxies,  which  imply  an  incomplete  description  of  variability  on  decadal  and  longer  time  scales.  

   

Page 12: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  12  

References    Crowell, M., J. Westcott, S. Phelps, T. Mahoney, K. Coulton, and D. Bellomo, 2013: “Estimating the United States Population at Risk from Coastal Flood-Related Hazards”. In Coastal Hazards, edited by Charles W Finkl, 245–66. Springer. doi:10.1007/978-94-007-5234-4. Kopp, R.E., R.M. Horton, C.M. Little, J.X. Mitrovica, M. Oppenheimer, D.J. Rasmussen, B.H. Strauss, and Cl. Tebaldi, 2014: Probabilistic 21st and 22nd Century Sea-Level Projections at a Global Network of Tide-Gauge Sites, Earth’s Future, 2(8), 383–406. doi:10.1002/2014EF000239. Radeloff,  V.C.,  R.B.  Hammer,  S.I  Stewart,  J.S.  Fried,  S.S.  Holcomb,  and  J.F.  McKeefry.  2005:  The  Wildland  Urban  Interface  in  the  United  States,  Ecological  Applications,  15,  799-­‐805.    Reclamation,  2013:  “Downscaled  CMIP3  and  CMIP5  Climate  and  Hydrology  Projections:  Release  of  Downscaled  CMIP5  Climate  Projections,  Comparison  with  preceding  Information,  and  Summary  of  User  Needs”,  prepared  by  the  U.S.  Department  of  the  Interior,  Bureau  of  Reclamation,  Technical  Services  Center,  Denver,  Colorado.  47pp.    Reclamation,  2014:  “Downscaled  CMIP3  and  CMIP5  Climate  and  Hydrology  Projections:  Release  of  Hydrology  Projections,  Comparison  with  preceding  Information,  and  Summary  of  User  Needs”,  prepared  by  the  U.S.  Department  of  the  Interior,  Bureau  of  Reclamation,  Technical  Services  Center,  Denver,  Colorado.  110  pp.    Strauss, B.H, R. Ziemlinski, J.L. Weiss, and J.T. Overpeck, 2012: Tidally Adjusted Estimates of Topographic Vulnerability to Sea Level Rise and Flooding for the Contiguous United States, Environmental Research Letters, 7(1). IOP Publishing: 014033. doi:10.1088/1748-9326/7/1/014033.  Thrasher,  B.,  Maurer,  E.  P.,  McKellar,  C.,  &  Duffy,  P.  B.,  2012:  Technical  Note:  Bias  correcting  climate  model  simulated  daily  temperature  extremes  with  quantile  mapping,  Hydrology  and  Earth  System  Sciences,  16(9),  3309-­‐3314.  

Credits  And  Acknowledgements    We  acknowledge  the  World  Climate  Research  Programme's  Working  Group  on  Coupled  Modelling,  which  is  responsible  for  CMIP,  and  we  thank  the  climate  modeling  groups  (listed  in  Table  1  of  this  analysis)  for  producing  and  making  available  their  model  output.  For  CMIP  the  U.S.  Department  of  Energy's  Program  for  Climate  Model  Diagnosis  and  Intercomparison  provides  coordinating  support  and  led  development  of  software  infrastructure  in  partnership  with  the  Global  Organization  for  Earth  System  Science  Portals.    Climate  scenarios  used  were  from  the  NEX-­‐GDDP  dataset,  prepared  by  the  Climate  Analytics  Group  and  NASA  Ames  Research  Center  using  the  NASA  Earth  Exchange,  and  distributed  by  the  NASA  Center  for  Climate  Simulation  (NCCS).    We  are  grateful  to  Eitan  Frachtenberg  and  Brian  Rumsey  for  assistance  in  data  management  and  analysis  for  this  climate  threat  analysis.  

Page 13: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  13  

Climate  Preparedness  Analysis  

The  Climate  Preparedness  Concept    This  Report  Card  quantifies  the  states’  climate  preparedness  in  terms  of  the  actions  they  have  taken  that  aim  to  prepare  them  for  potential  climate  change  impacts  and  risks.    Embedded  in  our  criteria  for  preparedness  assessment  are  the  following  questions:    

1. Is  the  state  taking  action  to  address  its  current  risks  from  the  climate  threat?  2. Has  the  state  undertaken  activities  to  understand  its  future  changes  in  vulnerabilities  

and  risks  from  each  climate  threat?      3. Has  the  state  planned  for  adaptation  to  the  future  changes  in  risks  from  each  climate  

threat?      4. Is  the  state  implementing  specific  actions  to  address  future  changes  in  risks  to  each  

climate  threat?    In  order  to  provide  quantifiable  and  comparable  results,  the  concept  of  climate  preparedness  in  this  Report  Card  focuses  on  whether  states  have  taken  actions  to  prepare  for  the  projected  changes  in  the  climate  threats  assessed,  rather  than  whether  those  actions  are  sufficient  to  address  their  changing  climate  risks.    Despite  advances  in  climate  science  and  climate  models,  it  is  almost  impossible  to  predict  the  exact  changes  in  future  climate  a  state  will  face,  what  the  precise  climate  impacts  on  the  community  will  be,  nor  whether  a  state’s  actions  are  sufficient  to  address  those  impacts.    For  each  of  the  climate  threats  assessed,  states  were  evaluated  for  their  climate  preparedness  to  that  threat  across  five  major  sectors:  Transportation,  Energy,  Water,  Human  Health,  and  Communities  (which  includes  non-­‐transportation  and  non-­‐energy  infrastructure),  as  well  as  the  state  as  a  whole.    Each  sector  was  selected  based  on  the  critical  role  it  plays  in  modern  society.    In  some  cases,  certain  climate  threats  were  assumed  to  have  a  relatively  insignificant  impact  on  a  given  sector,  it  would  be  difficult  to  assess  whether  a  sector  has  prepared  for  that  impact,  or  the  impact  was  already  covered  under  another  sector.    In  such  cases,  the  sector  was  not  assessed  for  those  climate  threats.    These  “not  applicable”  sector-­‐threat  intersections  are:    

• Transportation  &  drought:  Although  drought  can  affect  transportation  infrastructure—such  as  through  effects  on  right-­‐of-­‐way  vegetation,  soil  integrity  underlying  infrastructure,  and  inland  waterway  navigation—the  impacts  are  less  significant  and  uniformly  applicable  nationwide  than  those  of  other  climate  threats.    In  addition,  transportation  agencies  generally  do  not  have  specific  policies  or  programs  related  to  drought;  necessary  maintenance  and  repairs  are  covered  by  general  programs  within  the  agencies,  so  it  is  difficult  to  tease  out  whether  states  are  preparing  for  this  threat.  

• Water  &  inland  flooding:  Research  for  the  water  sector  revolved  around  sufficient  availability  of  water  for  the  states’  needs.    While  inland  flooding  can  affect  water  quality,  those  effects  are  covered  under  the  human  health  sector.    Also,  inland  flooding  

Page 14: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  14  

could  affect  the  infrastructure  related  to  water  supply  and  distribution,  but  non-­‐transportation  infrastructure  is  covered  by  the  communities  sector.  

• Communities  &  extreme  heat:  The  communities  sector  covers  non-­‐transportation,  and  non-­‐energy,  infrastructure.    Most  infrastructure  is  not  greatly  affected  by  extreme  heat.      

• Communities  &  drought:  The  communities  sector  covers  non-­‐transportation  and  non-­‐energy  infrastructure.    Most  infrastructure  is  not  greatly  affected  by  drought,  except  in  very  specific  geographic  areas  with  high  plasticity  soils.  While  services  to  communities  can  be  affected,  those  services  are  covered  in  other  sectors.      

 A  state’s  climate  preparedness  is  derived  from  a  multitude  of  factors.    One  cannot  focus  on  a  single  action  of  a  state  and  declare  it  prepared.    Rather,  climate  preparedness  comes  from  a  combination  of  general  emergency  preparedness  and  hazard  mitigation  planning,  understanding  and  planning  for  state-­‐specific  climate  risks,  and  implementation  of  and  financing  of  coordinated  climate  preparedness  actions.    There  is  certainly  no  “one  size  fits  all”  way  to  prepare  for  the  potential  impacts  associated  with  future  changes  in  climate.    There  is  also  no  one  (or  several)  action(s)  that  will  guarantee  that  a  state  is  prepared.  

Assessing  Climate  Preparedness      Sixteen  indicators  were  identified  for  each  climate  threat  and  sector  that  represented  different  actions  a  state  might  take  to  increase  its  climate  preparedness.    These  indicators  each  fell  under  one  of  the  following  categories:    

1. Category  1:  Is  the  state  taking  action  to  address  its  current  risks  from  the  climate  threat?  A  state  cannot  be  prepared  for  future  climate  threats  if  it  is  not  prepared  for  its  current  ones.    This  category  considers  actions  that  the  state  has  already  taken  to  address  the  climate  threats,  for  example,  through  the  state  hazard  mitigation  planning  process  (extreme  heat  is  sometimes  excluded),  whether  the  state  has  strong  communications  systems  to  alert  its  communities  about  extreme  weather  events  (including  disadvantaged  populations),  and  other  activities  aimed  to  reduce  current  climate  risks  within  the  state.  

2. Category  2:  Has  the  state  undertaken  activities  to  understand  its  future  changes  in  vulnerability  and  risks  from  each  climate  threat?    It  is  difficult  for  a  state  to  prepare  for  the  potential  changes  in  climate  risks  when  it  does  not  know  what  they  are.  Therefore,  this  analysis  examined  whether  there  was  evidence  that  the  state  was  making  an  effort  to  understand  any  future  changes  in  its  climate  risks.    For  example,  whether  a  state  has  published  information  on  how  the  state’s  climate  may  change,  or  conducted  a  climate  change  vulnerability  assessment.  

3. Category  3:  Has  the  state  planned  for  adaptation  to  the  future  changes  in  risks  from  each  climate  threat?    Planning  involves  developing  a  plan  to  adapt  to  the  state’s  changing  climate  threats  that  covers  the  sectors  examined.    This  analysis  considered  whether  there  was  a  climate  action  plan  in  progress  or  already  completed,  whether  there  was  evidence  that  relevant  agencies  were  involved  in  developing  the  plan  (rather  than  a  plan  developed  by  one  stakeholder  group  that  made  recommendations  for  other  

Page 15: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  15  

groups  that  did  not  have  the  opportunity  to  weigh  in),  whether  the  plan  evaluated  relative  effectiveness  or  feasibility  of  different  climate  change  adaptation  measures,  and  whether  the  plan  was  endorsed  by  the  State  and  included  a  clear  implementation  timeline  and  responsibilities.  

4. Category  4:  Is  the  state  implementing  specific  actions  to  address  future  changes  in  risks  to  each  climate  threat?  Implementation  goes  beyond  the  actual  plan,  and  considers  whether  a  State  is  taking  actions.    The  analysis  investigated  whether  there  was  evidence  that  climate  change  adaptation  or  resiliency  measures  were  eligible  projects  for  state-­‐administered  funding  programs,  whether  there  were  (optional)  state  policies  or  technical  guidance  for  how  to  incorporate  climate  change  projections  in  agency  programs  or  planning  activities,  whether  there  were  (mandatory)  state  regulations  that  require  agencies  to  considers  climate  change  projections  in  programs,  investments,  or  other  activities,  and  whether  there  was  evidence  that  climate  change  has  already  been  accounted  for  in  state  planning  activities  or  investments.  

Climate  Preparedness  Scoring    Category  1  covers  the  actions  that  address  climate  risks  in  the  present-­‐day,  and  Categories  2  to  4  focus  on  those  intended  to  address  changes  in  risks  under  future  climates.    Each  of  the  four  categories  is  comprised  of  up  to  six  indicators.    Each  of  these  indicators,  in  turn,  were  broken  into  up  to  25  sub-­‐indicators  specific  to  each  climate  threat  and  sector  combination.    Performance  against  each  of  these  indicators  is  assigned  a  score  of  1-­‐  4,  based  on  specific  criteria  designed  to  reflect  the  seriousness  and  rigor  with  which  a  state  is  addressing  each  of  the  categories  for  each  of  the  climate  threats  and  sectors.      Each  state  received  a  score  for  each  of  the  four  categories  that  represented  the  percentage  of  possible  points  earned.    A  state  climate  preparedness  score  for  each  threat  was  the  mean  of  Category  1  score  (preparedness  for  current  climate  risks)  and  the  mean  score  for  Categories  2-­‐4  (future  climate  risks).    This  scoring  methodology  was  developed  in  consultation  with  an  Expert  Panel  of  five  leading  experts  in  the  areas  of  climate  change  indicator  development,  assessment  techniques,  and  state  approaches  to  preparedness.    This  group  reviewed  and  refined  the  methodology  prior  to  launch  of  the  study.    Expert  Panel  members  include:    Dr.  Virginia  Burkett  (U.S.  Geological  Survey),  Dr.  Melissa  Kenney  (University  of  Maryland),  Dr.  Thomas  Wilbanks  (Oak  Ridge  National  Labs),  Dr.  LaDon  Swann  (Mississippi-­‐Alabama  Sea  Grant  Consortium),  and  Ms.  Susan  Love  (Delaware  Department  of  Natural  Resources).    The  climate  preparedness  scores  were  entirely  evidence-­‐based.    Each  indicator  was  first  evaluated  through  extensive  web-­‐based  research,  including  reviewing  publicly-­‐available  documents  and  state-­‐published  web  content  describing  state  actions  that  fall  under  the  four  categories.    To  augment  findings  from  the  review  of  publicly-­‐available  documents,  representatives  from  state  agencies  responsible  for  the  sectors  were  then  interviewed.  These  interviews  filled  any  gaps  in  the  online  research  and  confirmed  findings.    

Page 16: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  16  

Limitations  of  the  Climate  Preparedness  Analysis    As  with  any  methodology,  there  are  some  important  limitations  to  note.    First,  the  analysis  did  not  evaluate  adequacy  of  state  climate  actions.    For  example,  states  were  awarded  points  in  Category  3  for  having  a  climate  change  adaptation  plan  with  certain  characteristics;  however,  whether  the  proposed  climate  change  adaptation  measures  would  be  sufficient  for  managing  the  potential  climate  change  impacts  were  not  assessed.    Similarly,  points  were  awarded  in  Category  4  for  states  that  provide  financial  resources  to  fund  climate  resiliency  initiatives,  but  it  would  be  difficult  to  determine  whether  the  levels  of  funding  are  adequate.    Secondly,  this  analysis  focused  entirely  on  climate  actions  intended  for  human  systems.    State  actions  aimed  for  natural  systems  such  as  ecosystems  and  biodiversity  were  not  assessed.          Another  limitation  is  that  the  scope  of  this  Report  Card  focused  specifically  on  climate  actions  at  the  state  level.    In  some  states,  local  communities  are  making  strong  efforts  to  prepare  for  climate  change  risks;  similarly,  there  are  cases  where  actions  taken  by  federal  or  municipal  agencies,  or  the  private  sector  are  making  a  state  better  prepared.    Because  this  Report  Card  focused  only  on  state  actions,  actions  undertaken  by  non-­‐state  entities  were  not  taken  into  account  when  developing  the  climate  preparedness  scores.    Finally,  because  all  scores  were  evidence-­‐based,  there  were  a  few  situations  where  full  points  were  not  awarded  for  some  indicators  even  though  some  climate  action  might  be  underway.    These  situations  were  few,  and  generally  arose  because  of  two  situations:  (1)  the  state  has  decided  to  take  action  (such  as  by  preparing  a  climate  change  vulnerability  assessment  or  adaptation  plan),  but  the  initiative  was  in  the  very  early  stages  during  the  research  process,  and  draft  documents  were  not  yet  available  or  the  content  of  the  intended  plans  or  programs  could  not  be  confirmed  with  detailed  information.    The  information  contained  in  the  Report  Card  is  up-­‐to-­‐date  as  of  October  15,  2015,  so  some  states  may  have  completed  additional  activities  since  that  date,  and  their  grades  will  not  reflect  those  activities;  and,  (2)  the  content  of  key  documents  could  not  be  obtained,  reviewed,  and  confirmed.    For  example,  Delaware  is  the  only  state  that  does  not  make  its  State  Hazard  Mitigation  Plan  publicly  available,  therefore  the  content  of  the  plan  could  not  be  assessed.  

Aggregation  and  Grading      For  each  indicator,  the  climate  threat  score  and  climate  preparedness  score  were  combined  to  give  a  final  threat  score  for  each  threat.    To  achieve  this,  both  the  climate  threat  score  and  climate  preparedness  score  were  first  standardized.      

Scores  Standardization    To  compute  the  grade  for  each  climate  threat  assessed  for  each  state,  both  the  climate  threat  score  and  climate  preparedness  score  were  converted  to  standard  scores,  which  put  these  two  

Page 17: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  17  

different  components  on  the  same  standard  scale  to  enable  comparison.    Each  standard  score  is  expressed  as  number  of  standard  deviations  from  the  mean  of  the  distribution.      

Grading  

Climate  Threat  Grade    In  this  Report  Card,  the  grading  method  was  developed  such  that  any  state  has  the  potential  to  get  an  overall  “A”  (by  being  well  prepared)  or  “F”  (by  being  poorly  prepared)  grade,  regardless  of  its  climate  threat  level.    To  achieve  this,  the  climate  threat  score  and  preparedness  score  were  weighted  by  a  1  :  3.51  ratio  (the  minimum  weighting  factor  to  meet  the  above  criterion).    Thus,  for  each  climate  threat:      

𝐹𝑖𝑛𝑎𝑙  𝑡ℎ𝑟𝑒𝑎𝑡  𝑠𝑐𝑜𝑟𝑒 =  3.51 ∗ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑𝑛𝑒𝑠𝑠  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑠𝑐𝑜𝑟𝑒 − 𝑇ℎ𝑟𝑒𝑎𝑡  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑠𝑐𝑜𝑟𝑒    The  final  score  was  translated  into  a  grade  according  to  the  following  percentile  scale:    

Percentile   Grade  93   A  90   A-­‐  

81.7   B+  73.3   B  65   B-­‐  55   C+  45   C  35   C-­‐  

26.7   D+  13.3   D  10   D-­‐  

Below  10   F    

Overall  State  Grade    For  overall  state  scores,  the  final  scores  for  all  the  threats  faced  by  a  given  state  were  added.    Thus  a  state  with  five  climate  threats  would  have  more  opportunity  to  do  well  or  poorly  than  a  state  with  two  climate  threats.    Grades  were  then  assigned  to  these  overall  state  scores  by  the  same  percentile  scale.    

Alaska  and  Hawaii      For  Alaska  and  Hawaii,  the  grades  for  extreme  heat  and  coastal  flooding  were  derived  in  the  same  way  as  the  lower  48  states,  except  that  these  two  states  were  not  included  in  the  

Page 18: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  18  

distribution  during  the  data  standardization  process.    This  was  because  a  different  set  of  BCSD  climate  projections  was  used  to  compute  the  extreme  heat  indicator,  and  only  extreme  heat  and  coastal  flooding  were  assessed  for  Alaska  and  Hawaii  due  to  the  absence  of  BCSD  hydrology  projections.    

Limitations  of  the  Grading  Scheme    Some  of  the  limitations  and  assumptions  associated  with  the  aggregation  and  grading  process  are  outlined  below:  

• Grades  are  based  on  both  the  magnitude  of  the  climate  threats  and  level  of  state  climate  action,  each  evaluated  relative  to  other  states,  as  opposed  to  using  absolute  measures.  

• The  3.51  weighting  used  for  climate  preparedness  may  over-­‐  or  under-­‐emphasize  it  compared  to  the  climate  threat.  

• Equal  weights  were  applied  to  the  climate  threats  analyzed  for  any  given  state,  absolute/relative  measures,  and  baseline/future  components  –  i.e.,  a  low  value  in  one  can  offset  or  average  out  a  high  value.    This  may  under-­‐represent  the  true  level  of  state  climate  threat  and  preparedness  (e.g.,  inland  flooding  may  pose  a  greater  risk  than  extreme  heat  in  one  state  but  not  another).    The  sensitivity  of  the  results  to  different  levels  of  tradeoff  has  not  been  explored.  

 

Grading  Example    As  an  example  of  the  grading  process,  consider  the  grading  of  Iowa.      (1)  The  climate  indicator  calculations  and  aggregation  methods  described  above  yield  final  threat  and  preparedness  scores  of:    

Threat     Preparedness  Extreme  Heat:     56.9       44  Drought:     44.52       52  Inland  Flooding:     40.8       51    Note  that  these  scores  are  not  directly  comparable  to  one  another.          

Page 19: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  19  

(2)  Conversion  to  a  standard  score  [  (!!!)!,  where  𝜇  is  the  mean  and  𝜎  is  the  standard  deviation  

across  state  scores  for  each  threat]  allows  comparison  of  the  threat  and  preparedness  scores  on  the  same  scale:    Standard  Scores   Threat     Preparedness  Extreme  Heat:     -­‐0.60       -­‐0.27  Drought:     -­‐0.86       -­‐0.07  Inland  Flooding:     -­‐0.68       -­‐0.46      (3)  The  final  threat  score  is  3.51  times  the  threat  standard  score  minus  the  preparedness  standard  score:    Extreme  Heat:     3.51  *  (-­‐0.27)  –  (-­‐0.60)  =  -­‐0.35  Drought:     3.51  *  (-­‐0.07)  –  (-­‐0.86)  =  0.60  Inland  Flooding:   3.51  *  (-­‐0.46)  –  (-­‐0.68)  =  -­‐0.95      (4)  Grades  are  assigned  by  the  percentile  of  each  score  within  the  distribution  of  scores  of  all  states  assessed  for  the  threat:           Threat  Score  Percentile   Grade     Grade  range  Extreme  Heat:   54.8         C     45-­‐55  Drought:     62.8         C+     55-­‐65  Inland  Flooding:   51.0         C     55-­‐65      As  can  be  seen,  Iowa’s  grade  for  extreme  heat  is  a  high  C,  its  grade  for  drought  is  a  high  C+,  and  its  grade  for  inland  flooding  is  a  mid-­‐range  C.      (5)  To  calculate  the  overall  grade,  the  three  final  threat  scores  (for  extreme  heat,  drought,  and  inland  flooding)  are  added  to  yield  an  overall  score:           (-­‐0.35)  +  0.60  +  (-­‐0.95)  =  -­‐0.70      (6)  Overall  grades  are  assigned  by  the  percentile  of  the  overall  score  within  the  distribution  of  all  states’  overall  scores:    Iowa  Overall  Score   Overall  Score  Percentile   Grade     Grade  range  -­‐0.70       59.5         C     55-­‐65    Note  that  the  overall  grade  may  not  correspond  to  an  average  of  a  state’s  individual  threat  grades;  the  threat  grades  compare  states’  performance  for  a  given  threat,  the  overall  grades  compare  states’  performance  across  all  threats  they  face.    

Page 20: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  20  

Appendix  I:  Detailed  Preparedness  Scoring  Approach    This  appendix  provides  an  overview  of  the  approach  used  to  evaluate  preparedness,  as  well  as  detailed  scoring  guidelines  for  evaluating  the  preparedness  indicators.  

General  Approach  and  Definitions  This  section  provides  and  overview  of  the  preparedness  indicators,  the  general  research  process,  and  key  guidelines  for  research.  

Scope  The  preparedness  evaluation  considered  actions  that  states  are  taking  to  prepare  for  climate  change  within  5  sectors,  with  consideration  of  5  climate  threats.      The  sectors  evaluated  are:  

• Transportation  –  State-­‐owned  transportation  networks  and  assets.  This  will  include  the  state  highway  system  for  all  states.    

• Energy  –  Provision  of  energy/ability  of  residents  to  get  electricity  –  this  is  largely  related  to  energy  infrastructure  ranging  from  generation  (power  plants)  through  transmission  and  distribution  infrastructure  (transfer  stations,  power  lines).  Focus  is  on  activities  by  the  state  energy  department  and  public  utilities  commission  (and  not  individual  utility  companies).    

• Water  –  Drinking  water  supply  and  demand.  Includes  infrastructure  ranging  from  storage  (dams  and  reservoirs)  through  distribution  infrastructure  (pipes,  aqueducts).  Focus  is  on  the  state  water  department  and  public  utilities  commission  (and  not  individual  utility  companies).  

• Health  –  Public  health  (morbidity,  mortality).    • Communities  –  Buildings:  homes,  businesses,  and  related  infrastructure  (except  for  

transportation,  energy,  and  water  infrastructure).  The  climate  threats  considered  are:  

• Coastal  Flooding  –  Flooding  caused  by  sea  level  rise  or  storm  surge.  Can  refer  to  permanent  inundation  or  temporary  flooding.  Hurricanes  fall  under  coastal  flooding  for  coastal  states.  

• Inland  Flooding  –  Flooding  or  erosion  from  heavy  rains.  • Extreme  Heat  –  Hot  days,  heat  waves.  • Wildfire  –  Wildfire  (not  urban  fires).  • Drought  –  Summer  drought.  

 

Page 21: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  21  

Climate  Change  Preparedness  Indicators  Overview  The  report  card  uses  the  following  set  of  indicative  actions  (indicators)  to  evaluate  each  state’s  climate  change  preparedness.  Each  indicator  is  applied  to  each  of  the  5  threats  (extreme  heat,  drought,  wildfires,  inland  flooding,  coastal  flooding)  and/or  the  5  sectors  (transportation,  energy,  water,  health,  communities),  for  a  range  of  5  to  25  sub-­‐indicators.  For  example  Indicator  1.1  –  Does  the  state  have  programs  to  mitigate  [threat]  impacts  to  [sector]?  Is  actually  a  series  of  25  questions:  Does  the  state  have  programs  to  mitigate  Extreme  Heat  impacts  to  Transportation?  Does  the  state  have  programs  to  mitigate  Drought  impacts  to  Energy?  and  so  on.    The  indicators  are  classified  under  four  categories  to  address  the  stages  of  adaptation  planning  and  implementation.  The  first  category  identifies  actions  taken  to  address  current  climate  risks  while  the  remaining  three  categories  identify  actions  to  understand  and  prepare  for  future  changes  in  risks  due  to  climate  change.  Table  3  lists  these  categories  and  their  associated  indicators.  For  each  indicator,  a  state  could  earn  up  to  four  points  depending  on  the  specific  actions  taken  to  date.  Specifics  on  the  point  system  are  found  in  the  Indicator-­‐Specific  Scoring  Guidelines,  starting  on  page  23.    Table  3:  Overview  of  Indicators  for  Each  Category  of  Preparedness  

Category   Indicator   Number  of  Sub-­‐Indicators  

Is  the  state  taking  action  to  address  its  current  risks  from  the  climate  threat?  

Does  the  state  have  programs  to  mitigate  [threat]  impacts  to  [sector]?  

25  

Does  the  state  have  a  technical  assistance  program  to  help  communities  mitigate  [threat]  impacts?  

5  

Does  the  state  have  a  disaster  response  plan  for  [threat]?  

5  

Does  the  state  provide  emergency  communications  materials  to  citizens  for  [threat]?  

5  

Is  there  evidence  the  state  is  providing,  or  there  is  no  need  for  the  state  to  provide*,  the  following  to  support  vulnerable  populations  in  the  event  of  [threat]?  

5  

What  is  the  state’s  bond  rating?   1  Has  the  state  undertaken  activities  to  understand  its  future  changes  in  vulnerabilities  and  risks  from  each  

Has  the  state  published  general  information  on  future  [threat]  risk?  

5  

Has  the  state  agency  responsible  for  [sector]  published  information  on  future  [threat]  risk/vulnerabilities?  

25  

Is  the  state  tracking  [threat]  impacts  to  [sector]?   25  

Page 22: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  22  

climate  threat?       Has  the  state  conducted  public  outreach  regarding  future  [threat]  risk?  

5  

Has  the  state  planned  for  adaptation  to  each  of  the  future  changes  in  risks  from  each  climate  threat?      

Does  the  state  have  a  general  adaptation  plan  covering  [threat]?  

5  

Does  the  state  have  an  agency-­‐level  adaptation  plan  covering  [sector]?  

5  

Is  the  state  implementing  specific  actions  to  reduce  future  changes  in  risks  to  each  climate  threat?  

Has  the  state  established  a  dedicated  source  of  funding  for  [threat]  climate  change  adaptation  in  the  [sector]  sector?  

25  

Has  the  state  adopted  a  policy  or  issued  technical  guidance  to  incorporate  climate  projections  for  [threat]  into  [sector]-­‐specific  programs,  investments,  or  activities?  

25  

Does  the  state  have  regulations  or  policy  requirements  to  incorporate  climate  projections  for  [threat]  into  [sector]-­‐specific  programs,  investments,  or  activities?  

25  

Is  there  evidence  that  state  agencies  have  incorporated  climate  projections  for  [threat]  in  [sector]-­‐specific  programs,  investments,  or  activities  that  will  directly  reduce  risk?  

25  

 

Process  The  research  process  involved  a  two-­‐prong  approach.    First,  extensive  web-­‐based  research  was  conducted  in  order  to  review  plans,  policies,  and  other  information  available  online  for  each  state.    Then—because  a  lot  of  information  may  not  be  published  in  publicly-­‐available  documents  on  the  web—the  research  team  reached  out  to  specific  agencies  within  each  state  to  gather  additional  information.    The  research  was  conducted  using  the  following  process:  

1. Conduct  web  research.  a. Review  state  organizational  chart  to  note  relevant  agencies.  Identify  the  

agencies  responsible  for  each  sector.  b. Review  centralized  resources  to  identify  major  adaptation-­‐related  activities  in  

the  state.  For  example:  Georgetown  Climate  Central  Adaptation  Clearinghouse,  EPA  State  and  Local  Climate  and  Energy  Program,  Centers  for  Disease  Control  Building  Resilience  Against  Climate  Effects  (BRACE)  program,  Federal  Highway  Administration  Climate  Resilience  Pilots  program.  

c. Review  all  state  agency  websites  and  search  for  evidence  of  each  indicator.      

Page 23: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  23  

2. Conduct  interviews.  a. Attempt  to  contact  a  representative  from  each  relevant  state  agency  (e.g.,  

Emergency  Management,  Transportation,  Energy,  Water,  Natural  Resources,  Health,  Housing).  Confirm  and  supplement  web-­‐based  findings.  Ask  specifically  about  any  indicators  with  no  evidence  available  online.  

 General  Research  Guidance    To  ensure  consistency  among  the  research  team,  the  following  general  guidelines  were  instituted  to  guide  the  research.  

• Focus  on  actions  that  the  state  government  has  control  over.  • “Future  risk”  or  “future  threats”  refers  to  future  levels  or  changes  in  the  threat  as  a  

result  of  climate  change.  The  exact  terminology  “climate  change”  need  not  necessarily  be  used,  but  it  must  be  clearly  implied.    

• When  plans  or  other  documents  address  infrastructure  generally,  count  it  for  all  sectors  except  Health.  

• All  scores  must  cite  concrete  evidence.  Evidence  may  be  in  the  form  of  a  phone  conversation  with  an  agency  representative,  as  long  as  they  can  cite  specific  actions  that  support  the  score.  

• If  a  document  is  not  publicly  available,  but  is  known  to  exist,  do  not  give  credit  unless  it  is  possible  to  evaluate  it  against  the  scoring  criteria  in  some  other  way  (interviews,  news  articles,  etc.).  

Indicator-­‐Specific  Scoring  Guidelines  

Category  1  –  Is  the  state  taking  action  to  address  its  current  risks  from  the  climate  threat?  

Indicator  1.1.1  to  1.1.25  –  Does  the  state  have  programs  to  mitigate  [threat]  impacts  to  [sector]?  Scoring  Rubric:  Criteria:   State-­‐level  

programs  including  funding  for  local  governments    

State-­‐level  programs  including  public/stakeholder  outreach  (through  any  outreach  relevant  to  the  specific  Threat  and  Sector)  

State-­‐level  programs  including  mechanisms  for  evaluating  their  effectiveness  

Sector-­‐level  programs  (i.e.,  if  there  is  a  very  specific  program  targeted  toward  a  specific  sector  –  such  as  transportation  and  wildfire)  

Points:   +1   +1   +1   +1        

Page 24: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  24  

Scoring  Notes:  • Researchers  started  with  the  State  Hazard  Mitigation  Plan  (SHMP)  and  confirmed  

which  threats  are  addressed.  Most  states  received  the  first  three  points  if  the  threat  was  included  in  the  SHMP.  

• Cross-­‐cutting  programs  were  applied  to  all  sectors,  unless  any  sectors  were  explicitly  excluded.  

Indicator  1.2.1  to  1.2.5  –  Does  the  state  have  a  technical  assistance  program  to  help  communities  mitigate  [threat]  impacts?  Scoring  Rubric:  Criteria:   Technical  

assistance  offered  within  past  5  years  

Clear  points  of  contact  for  technical  assistance  

Covers  at  least  2/5  sectors  

Covers  at  least  3/5  sectors  

Points:   +1.33   +1.33   +0.667   +0.667    Scoring  Notes:  

• Technical  assistance  is  defined  as  non-­‐monetary  support  to  communities  (cities,  counties)  to  help  mitigate  threat  impacts,  such  as  providing  technical  expertise  to  help  develop  plans  or  implement  projects.  Most  states  will  offer  technical  assistance  as  part  of  their  SHMPs.  

• The  four  possible  points  for  the  indicator  are  divided  evenly  among  the  three  criteria  (where  number  of  sectors  covered  is  one  criteria  with  two  sub-­‐criteria).  

Indicator  1.3.1  to  1.3.5  –  Does  the  state  have  a  disaster  response  plan  for  [threat]?  Scoring  Rubric:  Criteria:   Plan  exists  and  is  routinely  updated  

every  5  years  or  less  Clear  evidence  of  implementation  already  underway  (e.g.,  practice  drills,  trainings)  

Points:   +2   +2    Scoring  Notes:  

• Disaster  response  plans  focus  on  responding  to  emergencies,  which  is  distinct  from  threat  mitigation  (preparation  and  prevention)  

   

Page 25: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  25  

Indicator  1.4.1  to  1.4.5  –  Does  the  state  provide  emergency  communications  materials  to  citizens  for  [threat]?  Scoring  Rubric:  Criteria:   State  provides  live  

updates  in  an  emergency  event  

State  provides  materials  to  help  citizens  prepare  for  emergency  situations  (e.g.,  guidance  on  an  emergency  supply  kit)  

Emergency  communications  materials  are  provided  in  social  media  

Points:   +1   +2   +1    Scoring  Notes:  

• Guidance  on  general  emergency  supply  kits  count  for  all  threats  except  drought  (based  on  Ready.gov  guidance).  To  receive  points  for  drought,  materials  to  help  citizens  prepare  for  emergency  situations  need  to  include  communications  materials  on  water  conservation.  

Indicator  1.5.1  to  1.5.5  –  Is  there  evidence  the  state  is  providing,  or  there  is  no  need  for  the  state  to  provide,  the  following  to  support  vulnerable  populations  in  the  event  of  [threat]?  Scoring  Rubric:  Criteria:   Evacuation/shelter  

support  for  the  elderly,  inform,  and  disabled  

Translated  emergency  communications  materials  (e.g.,  real-­‐time  alerts)  

Translated  emergency  preparedness  materials  (e.g.,  know  the  signs  of  heat  stress,  how  to  pack  an  emergency  kit,  how  to  prepare  your  family)  

Outreach/education  to  disadvantaged  populations  (e.g.,  low  income,  environmental  justice  populations,  tribes)  

Points:   +1   +1   +1   +1    Scoring  Notes:  

• The  burden  of  proof  is  very  high  for  a  state  to  qualify  for  “or  there  is  no  need  to  provide”  such  assistance.  If  the  state  is  not  engaging  in  these  actions  themselves,  need  concrete  evidence  that  the  reason  they  are  not  is  because  it  is  another  organization’s  responsibility  (e.g.,  cities,  counties,  NGOs)  and  that  other  organizations  are  providing  these  services  statewide/where  they  are  needed  (i.e.,  in  population  centers).  

• For  translated  materials,  many  states  use  a  “Google  Translate”  plugin  where  users  press  a  button  and  the  page  is  automatically  translated.  Credit  was  given  for  this  plug-­‐in  as  long  as  A)  it  worked  at  the  time  of  review  and  B)  it  translated  the  relevant  

Page 26: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  26  

resources.  For  some  states,  the  plug-­‐in  translates  the  website  text,  but  all  relevant  preparedness  materials  are  in  separate  PDFs  that  do  not  get  translated.  Therefore,  they  do  not  have  translated  preparedness  materials.  

Indicator  1.6  –  What  is  the  state’s  bond  rating?  Scoring  Rubric:  Rating:   BBB   BBB+   A-­‐   A   A+   AA-­‐   AA   AA+   AAA  Points:   0   0.5   1   1.5   2   2.5   3   3.5   4    Scoring  Notes:  

• Based  on  S&P  State  Credit  Ratings,  2014,  Infographic:  S&P  State  Credit  Ratings,  2001–2014,  The  Pew  Charitable  Trusts,  http://www.pewtrusts.org/en/research-­‐and-­‐analysis/blogs/stateline/2014/06/09/sp-­‐ratings-­‐2014      

Category  2  –  Has  the  state  undertaken  activities  to  understand  its  future  changes  in  vulnerabilities  and  risks  from  each  climate  threat?      

Indicator  2.1.1  to  2.1.5  –  Has  the  state  published  general  information  on  future  [threat]  risk?  Scoring  Rubric:  Criteria:   Yes,  general  

information  on  potential  regional  or  state-­‐specific  climate  changes  (e.g.,  temperature  increases)  

Yes,  general  information  on  potential  climate  changes  (e.g.,  temperature  increases)  at  the  sub-­‐state  level  (e.g.,  downscaling,  counties,  regions)  

Yes,  general  information  on  implications  of  potential  climate  changes  (e.g.,  increased  temperatures  lead  to  greater  risk  of  heat  stroke,  changes  in  growing  seasons,  etc.)  

Yes,  detailed  information  on  implications  of  potential  climate  changes  (e.g.,  X  people  at  risk  of  heat-­‐related  illness)  

Points:   +1   +1   +1   +1    Scoring  Notes:  

• SHMPs  and  other  non-­‐climate  change  documents  can  receive  points  in  this  category  if  they  actually  incorporate  climate  change  into  the  plans.    

   

Page 27: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  27  

Indicator  2.2.1  to  2.2.25  –  Has  the  state  agency  responsible  for  [sector]  published  information  on  future  [threat]  risk/vulnerabilities?  Scoring  Rubric:  Criteria:   No   Yes,  general  

info  on  potential  climate  changes  (e.g.,  temperature  increases)  

Yes,  general  info  on  implications  of  potential  climate  changes  (e.g.,  more  risk  for  heat  stroke)  

Yes,  quantitative  vulnerability  assessment  in  a  “pilot”  area  (e.g.,  X  people  at  risk  of  heat-­‐related  health  issues  by  2020  in  South  Florida)  

Yes,  quantitative  vulnerability  assessment  statewide  (e.g.,  X  people  at  risk  of  heat-­‐related  health  issues  by  2020)  

Points:   0   1   2   3   4    Scoring  Notes:  

• This  indicator  is  scored  on  a  sliding  scale  (while  others  can  receive  up  to  4  points  piecemeal).  For  example,  if  a  state  has  a  quantitative  vulnerability  assessment  in  a  pilot  area  then  they  automatically  receive  the  points  associated  with  general  information  on  potential  climate  changes  and  its  implications.    

• The  state  agency  can  receive  credit  for  an  overarching  state  effort  from  Indicator  2.1  if  and  only  if  the  overarching  state  effort  includes  detailed  information  specific  to  the  sector  and  there  is  clear  evidence  that  the  agency  was  involved  in  the  effort.  

Indicator  2.3.1  to  2.3.25  –  Is  the  state  tracking  [threat]  impacts  to  [sector]?  Scoring  Rubric:  Criteria:   Recording  

occurrence  of  threats  

Tracking  trends  in  threat  occurrence  

Recording  impacts  associated  with  threat  events  

Tracking  trends  in  impacts  associated  with  threat  events  

Points:   +1   +1   +1   +1    Scoring  Notes:  

• Threat  vs  Impact:  Tracking/reporting  focused  on  threats  should  look  at  incidence  of  flooding,  drought,  etc.    Impacts  refer  to  property  damage,  road  closures,  reservoir  water  levels,  hospitalizations,  etc.  

• Some  SHMPs  will  have  information  on  frequency  and  impacts  associated  with  past  events.    

Page 28: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  28  

• For  the  two  points  focused  on  the  threat,  award  points  for  all  sectors  for  each  relevant  threat  (i.e.,  if  a  state  is  tracking  wildfire  frequency,  all  sectors  receive  points  for  wildfire).  

• The  two  points  focused  on  impacts  are  sector-­‐specific.  • States  do  not  need  to  own  the  source  of  the  data  they  are  tracking  (i.e.,  they  can  pull  

from  national  datasets).  However,  there  must  be  evidence  that  the  state  is  actively  monitoring  the  trends/occurrence  events,  and/or  have  analyzed  the  data  on  their  own.  

 

Indicator  2.4.1  to  2.4.5  –  Has  the  state  conducted  public  outreach  regarding  future  [threat]  risk?  Scoring  Rubric:  Criteria:   No   Accepted  

public  comment  in  climate  change  planning  process  

Held  single  public  meeting  or  webinar      

Held  a  series  of  public  meetings  /webinars  (limited  to  specific  outreach  effort)    

Holds  ongoing  series  of  public  meetings  on  climate  change  risks  Or  Engages  public  citizens  in  vulnerability  assessment  committees  

Points:   0   1   2   3   4    Scoring  Notes:  

• This  indicator  is  scored  on  a  sliding  scale  (while  others  can  receive  up  to  4  points  piecemeal).  For  example,  if  a  state  held  a  series  of  public  meetings  as  part  of  a  particular  outreach  effort  then  they  would  automatically  receive  three  points  even  if  they  did  not  accept  public  comment  on  a  climate  change  planning  process.    

• Examples  of  “public  outreach”  include  public  meetings,  accepting  public  comment  on  a  plan/document,  releasing  publicly-­‐oriented  education  materials.    

   

Page 29: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  29  

Category  3  –  Has  the  state  planned  for  adaptation  to  each  of  the  future  changes  in  risks  from  each  climate  threat?      

Indicator  3.1.1  to  3.1.5  –  Does  the  state  have  a  general  adaptation  plan  covering  [threat]?  Scoring  Rubric:  Criteria:   Evidence  

of  plan  in  progress  

Includes  discussion  of  adaptation  measures  

Plan  was  developed  with  input  from  relevant  agencies/stakeholders    

Include  assessment  of  effectiveness,  advantages,  disadvantages  of  adaptation  measures  

Includes  implementation  plan  for  adaptation  activities    (indicating  responsible  parties  and  timeline  for  action)  

Points:   +0.5   +0.5   +0.5   +1.5   +1.5    Scoring  Notes:  

• To  receive  credit,  an  “adaptation  plan”  does  not  have  to  be  explicitly  called  a  “climate  change  adaptation  plan,”  but  it  does  need  to  be  a  long-­‐term  plan  for  how  the  state  will  adapt  to  changing  climate  conditions.  For  some  states,  the  State  Hazard  Mitigation  Plan  could  incorporate  climate  change  and  could  be  evaluated  for  the  different  attributes  as  would  other  adaptation  plans.  State  Water  Plans  can  also  count  for  Drought  as  long  as  they  address  climate  change.  

• Points  for  each  plan  are  applied  only  to  applicable  sectors.  • Plans  in  progress  but  not  yet  released  cannot  receive  more  than  0.5  points.  

Indicator  3.2.1  to  3.2.5  –  Does  the  state  have  an  agency-­‐level  adaptation  plan  covering  [sector]  and  [threat]?  Scoring  Rubric:  Criteria:   Evidence  

of  plan  in  progress  

Includes  discussion  of  adaptation  measures  

Plan  was  developed  with  input  from  relevant  agencies/stakeholders    

Include  assessment  of  effectiveness,  advantages,  disadvantages  of  adaptation  measures  

Includes  implementation  plan  for  adaptation  activities    (indicating  responsible  parties  and  timeline  for  action)  

Points:   +0.5   +0.5   +0.5   +1.5   +1.5  

Page 30: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  30  

 Scoring  Notes:  

• Evaluation  of  sector-­‐specific  adaptation  plans  followed  the  same  guidelines  as  the  state-­‐level  plans  (Indicator  3.1).  

• The  state  agency  can  receive  credit  for  an  overarching  state  plan  from  Indicator  3.1  if  and  only  if  the  overarching  state  plan  includes  detailed  information  specific  to  the  sector,  and  there  is  clear  evidence  that  the  agency  was  involved  in/is  invested  in  the  effort.  

• Points  for  each  plan  are  applied  only  to  applicable  threats.    

Category  4  –  Is  the  state  implementing  specific  actions  to  reduce  future  changes  in  risks  to  each  climate  threat?  

Indicator  4.1.1  to  4.1.25  –  Has  the  state  established  a  dedicated  source  of  funding  for  [threat]  climate  change  adaptation  in  the  [sector]  sector?  Scoring  Rubric:  Criteria:   Yes,  state  has  a  funding  

source  for  which  adaptation/resilience  explicitly  qualifies  (but  is  not  the  only  purpose)  (e.g.,  Florida  Coastal  Management  Program  Grant  lists  resilience  as  one  objective,  among  many)  

Yes,  state  has  funding  dedicated  solely  to  adaptation/resilience,  on  a  pilot  scale  (e.g.,  Connecticut  Institute  for  Resilience  and  Climate  Adaptation  funding  adaptation  pilot  projects  in  towns  and  cities)  

Yes,  state  has  funding  dedicated  solely  to  adaptation/resilience,  on  a  statewide  scale  (e.g.,  Massachusetts  $50  million  statewide  climate  change  adaptation  fund)  

Points:   1   2   4    Scoring  Notes:  

• Like  all  indicators  in  this  category,  this  indicator  is  scored  on  a  sliding  scale.  So,  each  state  is  awarded  0,  1,  2,  or  4  points  depending  on  which  criteria  best  fits  the  state,  but  only  a  maximum  of  4  points  is  possible.  

• Funding  for  energy  efficiency  can  receive  1  point  for  funding  for  extreme  heat  adaptation  in  the  energy  sector  if  and  only  if  climate  change  adaptation/resilience  is  explicitly  identified  as  a  reason  for  the  program.  

   

Page 31: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  31  

Indicator  4.2.1  to  4.2.25  -­‐  Has  the  state  adopted  a  policy  or  issued  technical  guidance  to  incorporate  climate  projections  for  [threat]  into  [sector]-­‐specific  programs,  investments,  or  activities?  Scoring  Rubric:  Criteria:   No   Yes,  in  a  pilot  area  (or  

regulations)  Yes,  statewide  (or  regulations)  

Points:   0   2   4    Scoring  Notes:  

• Like  all  indicators  in  this  category,  this  indicator  is  scored  on  a  sliding  scale  • States  receive  credit  if  the  state  has  made  a  formal  statement  that  it  is  their  policy  to  

incorporate  climate  change  into  activities  related  to  the  specific  threat/sector,  or  if  they  have  provided  detailed  technical  guidance  on  how  to  do  so  (technical  advice  is  sufficient,  but  not  necessary).  This  does  not  include  recommendations  in  adaptation  plans  such  as  “[state]  should  identify  ways  to  incorporate  climate  change  projections  into  exiting  planning  processes.”  Rather,  states  must  have  actually  implemented  that  recommendation  to  receive  credit.  For  example:  

o Connecticut  Office  of  Policy  and  Management's  2013-­‐2018  plan,  "Conservation  &  Development  Policies:  The  Plan  for  Connecticut,"  serves  as  a  statement  of  the  development,  resource  management,  and  public  investment  policies  for  the  State  (i.e.,  any  acquisition  or  development  of  real  property  or  transportation  infrastructure  or  property).  The  Plan  is  used  as  a  framework  for  evaluating  plans  and  proposals  submitted  to  OPM  for  review  through  mandated  review  processes.  The  plan  calls  for  state  agency  policies  to  "proactively  address  climate  change  adaptation  strategies  to  manage  the  public  health  and  safety  risks  associated  with  the  potential  increased  frequency  and/or  severity  of  flooding  and  drought  conditions,  including  impacts  to  public  water  supplies,  air  quality  and  agriculture/aquaculture  production.”  

o Caltrans  Guidance  on  Incorporating  Sea  Level  Rise:  For  use  in  the  planning  and  development  of  Project  Initiation  Documents.  

 Indicator  4.3.1  to  4.3.25  -­‐  Does  the  state  have  regulations  or  policy  requirements  to  incorporate  climate  projections  for  [threat]  into  [sector]-­‐specific  programs,  investments,  or  activities?  Scoring  Rubric:  Criteria:   No   Yes,  in  a  pilot  area   Yes,  statewide  Points:   0   2   4        

Page 32: TechnicalMethods JB 1120 RY

TECHNICAL METHODOLOGY  

  32  

Scoring  Notes:  • Like  all  indicators  in  this  category,  this  indicator  is  scored  on  a  sliding  scale.  • States  receive  credit  if  the  state  has  adopted  a  requirement  to  incorporate  climate  

change  into  existing  programs.  For  example:  o Delaware  (Coastal  Flooding,  infrastructure  sectors)  –  Executive  Order  41  

mandates  that  “All  state  agencies  shall  incorporate  measures  for  adapting  to  increased  flood  heights  and  sea  level  rise  in  the  siting  and  design  of  projects  for  construction  of  new  structures  and  reconstruction  of  substantially  damaged  structures  and  infrastructure.”  

o Rhode  Island  (Extreme  Heat/Health)  –  Legislature  passed  S  2952,  “An  Act  relating  to  State  Affairs  and  Government  –  Climate  Change”:  “The  [DEM]  director  shall  plan  for,  support,  assist,  and  as  necessary,  provide  the  preservation,  expansion,  and  creation  of  urban  and  metropolitan  parks  and  greenways  as  a  means  to  temper  the  effects  of  high  temperatures  and  heat  waves."    

 

Indicator  4.4.1  to  4.4.25  -­‐  Is  there  evidence  that  state  agencies  have  incorporated  climate  projections  for  [threat]  in  [sector]-­‐specific  programs,  investments,  or  activities  that  will  directly  reduce  risk?  Scoring  Rubric:  Criteria:   No   Yes,  in  a  pilot  area   Yes,  statewide  Points:   0   2   4    Scoring  Notes:  

• Like  all  indicators  in  this  category,  this  indicator  is  scored  on  a  sliding  scale.  • States  receive  credit  if  the  state  has  actually  implemented  any  of  these  strategies  to  

incorporate  climate  change  into  ongoing  activities.  For  example:  o Oklahoma  (Drought/Water)  –  The  Oklahoma  Comprehensive  Water  Plan  

incorporates  climate  change  projections  for  drought  into  assumptions  of  water  availability  and  demand,  and  into  resulting  statewide  water  management  activities.  Therefore  the  projections  have  been  integrated  into  all  ongoing  water  programs  and  activities.  

o New  York  (Energy)  –  The  state  has  installed  dozens  of  microgrids  to  support  energy  resilience  (received  credit  as  a  pilot  area).  

o Maine  (Extreme  Heat/Health)  –  Maine  has  implemented  a  heat  warning  system  that  did  not  exist  previously  as  heat  is  not  currently  a  high  risk  threat  in  Maine.  In  addition,  they’ve  implemented  changes  to  the  syndromic  surveillance  system  in  order  to  quickly  receive  data  on  heat  injury  from  hospitals,  allowing  the  state  to  respond  to  outbreaks  more  quickly.