73
1 Postal Penguin An Unmanned Combat Air Vehicle for the Navy Team 8-Ball Final Presentation April 22 nd , 2003

Team 8-Ball Final Presentation April 22ndmason/Mason_f/PostalPenguinFinalPres.pdf36 Requirements refresher: 0.85 Mach at Sea Level 0.7 Mach (or better) cruise speed at 40kft or better

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

Postal PenguinAn Unmanned CombatAir Vehicle for the Navy

Team 8-BallFinal PresentationApril 22nd, 2003

2

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

3

IntroductionTeam Members and Positions

Justin HayesBen Smith Greg Little

David Andrews Chuhui Pak

Nate Wright Alex RichJon Hirschauer

Christina DeLorenzo

4

IntroductionRequest for Proposal Overview

Structural LoadsCarrier OpsOblique AnglesSurvivabilityStealth

Volume, IntegrationGlobal HawkSensor SuiteEngine, Aero Performance> 40,000 ftCeiling

No Supersonic, Engine> M 0.7Cruise SpeedInternal Volume4,600 lbsPayload

Low TSFC, High Fuel10 HrsMission 2, EnduranceHigh Fuel Requirements500 nmMission 1, Strike RangeEffect of SpecificationSpecificationRFP Requirement

5

IntroductionProject Drivers

Store Capacity

Flyaway CostsStealth

Carrier Operation Fuel

Sensor Suite

(Pictures Courtesy of Global Security)

6

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

7

Background ResearchExisting Aircraft

(Pictures Courtesy of GlobalSecurity)

8

Background ResearchAdvanced Technologies, VSTOL

0

2

4

6

8

10

12

14

91 92 93 94 95 96 97

Fiscal Year

Mis

haps

per

100

,000

Flig

ht H

ours

AV-8b Harrier Jump Jet

All Other Navy Aircraft

Harrier Review Panel Study (HaRP)

Increased Failure Rates55 Peacetime Vehicle Losses (17 lives lost)Mishap Rates of 14-20 per 100,000 hrs

Increases Weight, Cost, Volume

9

AgendaIntroductionBackground ResearchConcepts Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

10

Concepts OverviewConcept Descriptions

YESYESYESYESAcceptable Length

YESWater Landing

YESYESYESVectored Thrust

YESMulti Engine

YESYESYESYESYESSingle Engine

YESFlying Wing

YESDelta Wing

YESYESYESCanted Tail

YESYESConventional Tail

Concept Stealth Wing BeetleDelta U2Biggun

Rubber Ducky

11

Concepts OverviewReduction Chart

Stealth Wing Beetle Delta U2 Biggun Rubber Ducky

12

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

13

Design Evolution, WeightsInitial Configuration, Problems

Severe Instability(21% MAC)Significant cg Travel

Landing ProblemsDrag DivergenceFuel Volume

14

Design Evolution, WeightsWeight Changes, cg Shift

Shift Engine ForwardWiden MidsectionNew Airfoil, MS(1)-0313

Planform Sweep

15

Design Evolution, WeightsSolving the Weights Problem

JDAM, pre-drop

HARM, pre-drop

JDAM/HARM, post-drop

Loiter

JDAM

HARM

Ordinance Release Ordinance Retention

16

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

17

Final ConfigurationPostal Penguin Layout

18

Final ConfigurationPostal Penguin Internal Layout

Integrated Sensor Suite

Fuel Tanks

Inlets

Main Gear

Nose Gear

EngineExhaust

Payload

Wing Tanks

19

FlapsAilerons

Air intake

Pelikan Tails

Nose Gear

Main Gear

Final ConfigurationPostal Penguin External Layout

20

Final ConfigurationFor Dr. Brown

22.7°Λo4.35AR125 kntVLand14.3'HeightMax

130-150 kntVLaunch30'SpanFolded

105 kntVStall45'Span16-34.5 kipsWeight32'Length

General Characteristics

21

Final ConfigurationPenguin Top/Side View

Length 35’Folded Length 32’Span 45’Folded Span 30’Wheelbase 15’Track Width 10’

22

Final ConfigurationPenguin Front View

23

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

24

Systems OverviewGeneral Systems

Electrical

Defensive

Engine

Weapons

Bomb Bay

Landing Gear

Hydraulics

Command/Control

Flight Control

(Pictures Courtesy of GlobalSecurity, FAS)

25

Systems OverviewBomb Bay, HARM

Must be rail launchedUtilize already existing technologyLAU-118/A Guided Missile LauncherBRU-32/A Bomb Rack

(Courtesy of GlobalSecurity)

26

Systems OverviewHARM Rail Launch System

27

Systems OverviewJDAM Pneumatic Ejector

Utilize already existing technologyPneumatic Ejector RacksThe Advantages of Pneumatic Ejection

28

PlacementSizeGeometric RetractionWeight: 600 lbsTires – Type VII

Ground Clearance

Systems OverviewMain Gear

Diameter: 25.84 in.Width: 7.30 in.

cg

29

Systems OverviewNose Gear

PlacementGeometric RetractionWeight: 600 lbs

SizeTires – Type VII

Diameter: 18.27 in.Width: 4.27 in.

30 35 40 45 50 55 600

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5x 104

Length

Wei

ght

Weight vs. Length

30

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

31

General Characteristics:Supercritical airfoil for drag divergenceModerate sweep for transonic performance/neutral point locationHigh span and area for good L/D characteristicsReasonable thickness for potential fuel storage

45’If Penguins Had Wings…

22.65 deg

11.4 ft

MAC

10 deg465 ft45 ft.0.294.35

Λ 1/2SbλAR

Aero-PerformanceAerodynamic Considerations

32

Aero-PerformanceThe Contenders

MS(1)-0313

SC(2)-0712 MS(1)-0317 MS(1)-0313

0.130.170.12t/c

5.26.83.1α max

1.421.381.3CL max

MS(1)-0313MS(1)-0317SC(2)-071240 kft

The Penguin presented unique design requirements:High L/D, good low-speed lift, all in a very small package.Some characteristics looked at are below.

The MS(1)-0313 provided the best combination of characteristics.

33

Example drag polarfor the cruise altitudeof 40,000 ft (deepstrike/SEAD missions)The marker signifiesmaximum L/D of 13.8

Drag Polar (40,000 ft)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

CD

CL

L/D)MAX = 13.8

Aero-PerformanceDrag Polar, Build-up

34

A supercritical airfoil alone is not enough to counter the effects of increased wave drag.Wing has been swept 10 deg at mid-chord to raise Mach drag divergence.

CL vs. MDD

0.64

0.66

0.68

0.7

0.72

0.74

0.25 0.45 0.65 0.85 1.05 1.25CL

MDD

10 deg5 deg0 deg

Aero-PerformanceSweep and MDD

35

While sacrificing fuel volume, the decreased thickness in the wings allowed for great improvement in the Mach drag divergence values for all potential angles of sweep.

Midchord Sweep vs. MDDCL = 0.5

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0 10 20 30 40Midchord sweep (deg)

MD

D 13 % t/c17 % t/c

Aero-PerformanceThickness and MDD

36

Requirements refresher:0.85 Mach at Sea Level0.7 Mach (or better) cruise speed at 40kft or better (Deep Strike/SEAD)10 hour endurance/loiter mission8400 ft/min (or better) initial climb rate

0.71 M0.54 M13.857,700 ft

Range VelocityLoiter VelocityL/D MaxCeilingOther

150 kts131 kts109 kts5g

T/O speedApproach SpeedStall SpeedT/O Accel.Carrier

10260 ft/min0.83 M550 nm14.5 h

Initial ROC (SL)Max Speed (SL)Range (40,000 ft)EnduranceRFP

Aero-PerformancePerformance Factors

37

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

38

117.66 knots

Take Off Rotation SpeedJDAM MISSION

HARM MISSION121.29 knots

LOITER MISSION121.83 knots

Aileron Size 7.28 ft^2Flap Size 13.49 ft^2Rudder Size 16.84 ft^2

Control and StabilityControl Surface Sizing

39

Required Roll Rate: 45 degrees in 1.4 seconds

562262201Loiter(Deg/sec)

456262202JDAM(Deg/sec)

638262201HARM(Deg/sec)

0.70.2270.197Mach #CruiseTake offLanding

Control and StabilityRoll

40

Sideslip Flight ( Beta = 11.5 deg )

CruiseLandingTake Off

6.922.6712.64PHI

(degrees)

0.210.320.31Delta R

(degrees)

1.831.811.82Delta A

(degrees)

0.70.2270.197Mach #

Control and StabilityHARM Mission

41

Stead/Level Flight Control Power Assessment

CruiseTake OffLanding

-.849.2612.54AOA

(degrees)

0.28-.96-3.9Delta e

(degrees)

0.480.851.12CL trim0.70.2270.197Mach #

Control and StabilityJDAM Mission

42

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

43

Structural AnalysisMaterial Usage

Large, One-Piece, Carbon Composites Titanium, Ceramic

Radar Absorbent PaintTitanium

BMI

Silicon

AramidComposites

44

Structural AnalysisWing Box Layout

Skin Stiffeners

LE Spar

Aft Spar

Aileron

45

Structural AnalysisBulkhead/Spar Placement

12%

36% 60%

Al 7075

Al 2024

46

Structural AnalysisBulkhead Placement

Nose Gear Tie In Main Gear

Tie In

Aft Tail, Tail Hook Support

Engine SupportLeading Edge Spar, Inlet Support

Exhaust Support

47

Structural AnalysisEngine Bulkhead Design

Engine mounts

Ordinance mounts

Supporting plateRemovable piece

Weapons bay doors

Navy requires engines be removable through bottom of airframe

48

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

49

Pelikan TailAbout the Pelikan Tail

What is a Pelikan tail?Why do we want to use it?Testing the Pelikan Tail

50

Pelikan TailWhat Is the Pelikan Tail?

A tail configuration that obtains yaw and pitch control through the use of two rear control surfaces. Named for Ralph Pelikan.

51

Pelikan TailLook at our Model

Courtesy: NOVA JSF Video

52Induced rolling moment will be countered by control system & ailerons.Opposite deflection causes equivalent side forces, creating yaw.

POSITIVE DEFLECTION

NEGATIVE DEFLECTION

Pelikan TailObtaining Yaw

53

Pelikan TailWhy Use a Pelikan Tail?

StealthFewer vertical surfaces reduces RCS

Other FactorsLess skin friction drag Only 2 actuated rear control surfacesUnproven design

54

Pelikan TailImportance of Stealth

The stealth of the aircraft keeps it safe from the enemyInterceptors are faster & more agile, survivability depends on stealth Stealth CAN provide all of an aircrafts survivability:

Courtesy: www.fas.org

55

Pelikan TailOther Factors

DragThe less skin friction drag the better

Fewer rear control surfacesOnly 2 hydraulic actuators, less weight

Unproven DesignOpportunity to explore a new idea with physical testingNo previous examples to justify Pelikan tail implementationCan we get enough side force?

56

Senior Design / Junior Lab PartnershipDr. Mason & Dr. DevenportWould provide futuresenior design teamswith the opportunityto test their designsWould expose juniors to a vast array of different aerodynamicdesigns.

Promote healthy Junior / Senior relations!

2003

2004

CLASSOF

Pelikan TailTesting

57

Pelikan TailModel Construction

Draft tail sections in UniGraphicsConstruct base plate (poplar)Fabricate tail sections with 3D printerCoat with epoxy, then fiberglassEpoxy hinges & attach deflection braces

58

53o

9”

4”

Tail Airfoil Section – NACA 0012

*Note: Drawings not to scale

Hinge Angle = 15o

23”

12”

Base Plate8”

Pelikan TailModel Dimensions

59

Pelikan TailExperimental Goals

Can we obtain the Yaw force needed?Will Pitch controls produce excess Yaw?Discover any unexpected characteristics

We do not have direct control over the testing process

60

Pelikan TailPictures

(Pictures Courtesy of Perez’s Junior Lab Group)

61

-0.600

-0.400

-0.200

0.000

0.200

0.400

0.600

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Angle of Attack (degrees)

CY

L-Neg / R-Pos

L-Pos / R-Neg

R-Neg / L-Zero

Both Negative

Both Positive

R-Pos / L-Zero

Both Zero

V = 80mph

Re = 540,000

CY

CY vs. Angle of Attack

Pelikan TailTesting Data

(Data from Perez’s Junior Lab Group)

62

Pelikan TailTest Conclusions

We can obtain the Yaw needed.There is little Yaw effect in pitch.Testing still in progress.

From what data we have we believe that the Pelikan tail is a viable tail design.

63

Thank you to the TAs and students who participated in this concept test

Rafael Perez’s Lab GroupNanyaporn Intaratep’s Lab GroupAny groups to test this week

Pelikan TailConclusion

Additional thanks to Dr. Devenport and Dr. Mason for this unique opportunity and we hope this partnership continues in the years to come.

64

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

65

AutonomyMission Logic

Launch

Climb

Waypoint Cruise

Combat Approach

Seek Target

ReleaseStores

AbortAttack

Retreat/Cruise

Land

SEAD ISRLaunch

Climb

Waypoint Cruise

ISR Pattern Search

Land

Return Information

Command/Control

66

AutonomyFlight Controls, Weapons Arming

Fly-by-WirePre-Programmed MissionsAutonomous Capability

ISRSEAD

Auto Pre-launch Weapons ArmingPin-Puller Mechanisms, Electronic

67

Carrier IntegrationAutonomous Integration, “Spot”

Autonomous Movement in CarrierPrecise Placement and ManueveringLessens Crew Requirements

“SPOT”(Courtesy of Alec Gosse)

68

Carrier IntegrationCarrier Characteristics

EMALSLanding and Stowing Procedure

2830# UCAVs32Launch Angle (deg)45Acceleration (g’s)285200Take-off Length (ft)33Deceleration348350Landing Length (ft)Design 2Design 1

Carrier Characteristics

69

AgendaIntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

70

Life-cycle: 20 years

RUN COSTS

Production Run: 100

Program Cost:$ 7.3 billion

Unit Program Cost:$ 72.9 million

Unit Life Cycle Cost:$ 84 million

RUN COSTS

Production Run: 500

Program Cost:$ 15 billion

Unit Program Cost:$ 30.1 million

Unit Life Cycle Cost:$ 41.9 million

CostsPostal Penguin Cost Analysis

Using Raymer DAPCA IV

71

AgendaSummary

IntroductionBackground ResearchConcept Overview, SelectionDesign Evolution, WeightsFinal ConfigurationSystems OverviewAero-PerformanceControl & StabilityStructural AnalysisPelikan TailAutonomy, Carrier IntegrationCostSummary and Questions

72

Questions

Thank You,

We appreciate your time andattendance

73

ReferencesCarrier Suitability Testing Manual, Pax River MD Rev 2, Sept 1994Boeing Corporate Website, http://www.boeing.comDoyle, Michael R. Electromagnetic Aircraft Launch System – EMALS, Naval Air Warfare Center, Aircraft Division, Lakehurst, NJ 08733Northrop Corporate Website, http://www.ng.comGlobal Security Website, http://www.globalsecurity.comRaymer, Daniel P. Aircraft Design. Reston: AIAA, 1999Kennedy, Michael, Younossi, Obaid, Graser, John C. Military Airframe Costs, The Effects of Advanced Materials and Manufacturing Processes. Santa Monica: Rand, 2001Eden, Paul and Moeng, Soph. Modern Military Aircraft Anatomy. New York: Friedman/Fairfax, 2002Niu, Michael C. Airframe Structural Design. Los Angeles: Conmilit Press, 1988Beer, Ferdinand P. and Johnston, E. Russel. Mechanics of Materials. New York: McGraw- Hill, 1992Kirschbaum, Nathan with Mason, W.H. Aircraft Design Handbook, Aircraft Design Aid and Layout Guide. Blacksburg: Virginia Tech, 1993NOVA Films, Battle of the X-Planes. Broadcast on PBS, 2003Mason, W.H. Configurational Aerodynamics. Online Notes, avail http://www.aoe.vt.edu/~Mason/Mason_f/ConfigAero.htmlWhitford, Ray. Fundamentals of Fighter Design. Shrewsbury: Longlife, 2002Knott, Eugene F., Schaeffer, John F. and Tuley, Michael T. Radar Cross Section. 2ed. Boston: ArtechHouse, 1993Jenn, David C. Radar and Laser Cross Section Engineering. Reston: AIAA, 1995Survivability BookMORE REFERENCES (freshman?)