31
83 PROBLEM SUMMARY 1. Shortest route 2. Shortest route 3. Shortest route 4. Shortest route 5. Shortest route 6. Shortest route 7. Shortest route 8. Shortest route 9. Shortest route 10. Shortest route 11. Shortest route 12. Shortest route 13. Shortest route 14. Shortest route 15. Shortest route 16. Minimal spanning tree 17. Minimal spanning tree 18. Minimal spanning tree 19. Minimal spanning tree 20. Minimal spanning tree 21. Minimal spanning tree 22. Minimal spanning tree 23. Minimal spanning tree 24. Minimal spanning tree 25. Minimal spanning tree 26. Minimal spanning tree 27. Maximal flow 28. Maximal flow 29. Maximal flow 30. Maximal flow 31 Maximal flow 32. Maximal flow 33. Maximal flow 34. Maximal flow 35. Maximal flow 36. Maximal flow 37. Maximal flow 38. Maximal flow Chapter Seven: Network Flow Models PROBLEM SOLUTIONS

Taylch07

Embed Size (px)

Citation preview

Page 1: Taylch07

83

PROBLEM SUMMARY

1. Shortest route

2. Shortest route

3. Shortest route

4. Shortest route

5. Shortest route

6. Shortest route

7. Shortest route

8. Shortest route

9. Shortest route

10. Shortest route

11. Shortest route

12. Shortest route

13. Shortest route

14. Shortest route

15. Shortest route

16. Minimal spanning tree

17. Minimal spanning tree

18. Minimal spanning tree

19. Minimal spanning tree

20. Minimal spanning tree

21. Minimal spanning tree

22. Minimal spanning tree

23. Minimal spanning tree

24. Minimal spanning tree

25. Minimal spanning tree

26. Minimal spanning tree

27. Maximal flow

28. Maximal flow

29. Maximal flow

30. Maximal flow

31 Maximal flow

32. Maximal flow

33. Maximal flow

34. Maximal flow

35. Maximal flow

36. Maximal flow

37. Maximal flow

38. Maximal flow

Chapter Seven: Network Flow Models

PROBLEM SOLUTIONS

Page 2: Taylch07

84

Page 3: Taylch07

85

Page 4: Taylch07

86

Page 5: Taylch07

87

Page 6: Taylch07

88

Page 7: Taylch07

89

Page 8: Taylch07

90

Page 9: Taylch07

91

Page 10: Taylch07

92

Page 11: Taylch07

93

Page 12: Taylch07

94

Page 13: Taylch07

95

Page 14: Taylch07

96

Page 15: Taylch07

97

Page 16: Taylch07

98

10.

Step Permanent Set Branch Added Distance

1 {1} 1–3 73

2 {1,3} 1–2 89

3 {1,2,3} 1–4 96

4 {1,2,3,4} 3–7 154

5 {1,2,3,4,7} 2–5 164

6 {1,2,3,4,5,7} 3–6 167

7 {1,2,3,4,5,6,7} 4–8 177

8 {1,2,3,4,5,6,7,8} 7–9 208

9 {1,2,3,4,5,6,7,8,9} 7–10 239

10 {1,2,3,4,5,6,7,8,9,10} 9–12 263

11 {1,2,3,4,5,6,7,8,9,10,12} 8–11 283

12 {1,2,3,4,5,6,7,8,9,10,11,12} 10–13 323

11. 1 – 4 – 7 – 8 = 42 miles

12. 1 – 4 – 7 – 10 – 12 – 16 – 17 = 14 days

13. 1 – 3 – 11 – 14 = 13 days

14. 1 – 3 – 5 – 12 – 16 – 20 – 22 = 114

9.

Page 17: Taylch07

99

15. This is an example of the application of the shortest route method to solve the scheduled replacement problem.The branch costs are determined using the formula,

cij = maintenance cost for year i, i + 1,…, + cost of purchasing new car at the beginning of year i-selling priceof a used car at the beginning of year j.

Solution: 1 - 4 - 7 = $64.5 = $64,500

A car should be sold at end of year 3 (beginning of year 4) and a new one purchased.

c

c

c

c

12

13

14

15

3 26 15 14

3 4 5 26 12 21 5

3 4 5 6 26 8 31 5

= + − == + + − == + + + − =

. .

. .

== + + + + − == + + + + + − == + +

3 4 5 6 8 26 4 43 5

3 4 5 6 8 11 26 2 56 5

3 4 5 616

17

. .

. .

.

c

c ++ + + + + − == + − == + + −

8 11 14 26 28 5 0 101

3 26 5 15 14 5

3 4 5 26 5 1223

24

.

. .

. .

c

c === + + + − == + + + + − == + +

22

3 4 5 6 26 5 8 32

3 4 5 6 8 26 5 4 44

3 4 5

25

26

27

c

c

c

. .

. .

. 66 8 11 26 5 2 57

3 27 15 15

3 4 5 27 12 22 5

3 4

34

35

36

+ + + − == + − == + + − == +

.

. .

c

c

c .. .

. .

. .

5 6 27 8 32 5

3 4 5 6 8 27 4 44 5

3 27 5 15 15 537

45

4

+ + − == + + + + − == + − =

c

c

c 66

47

56

57

3 4 5 27 5 12 23

3 4 5 6 27 5 8 33

3 28 15 16

= + + − == + + + − == + − ==

. .

. .c

c

c 33 4 5 28 12 23 5

3 28 5 15 16 567

+ + − == + − =

. .

. .c

1 2 3 4 5 6 7

98.5

56.557

44 44.543.5

31.5

21.5 22 22.5 23 23.5

32 32.5 33

14 14.5 15 15.5 16 16.5

Begining ofYear 1

End ofYear 6

Page 18: Taylch07

17. 1 – 3, 4.11 – 4, 4.82 – 3, 3.64 – 8, 5.55 – 6, 2.16 – 7, 2.87 – 8, 2.77 – 9, 2.79 – 10, 4.6

32.9 = 32,900 feet

100

18.

19.

20.

21.

1–21–32–43–65–66–77–8

1–32–33–44–65–65–86–7

1–22–33–64–85–66–77–97–89–10

1–42–43–64–65–76–77–8

16.

1–32–43–44–64–75–7

minimum distance = 70

Page 19: Taylch07

101

1

2

3

4

5

6

7

8

9

10

11

12

13

14

112

107 76

63

67

92 88

84 61

8273

95

86

22.

23.

25.

24.

Total sidewalk = 1,086 ft.Length of ductwork = 790 ft 1–4

2–33–43–55–65–75–8

1–22–42–53–44–75–66–88–9

26. 1 – 2 = 481 – 4 = 524 – 7 = 353 – 5 = 395 – 6 = 295 – 8 = 565 – 9 = 486 – 7 = 809 – 10 = 719 – 12 = 7110 – 11 = 3811 – 14 = 5712 – 13 = 105Total = 729

Page 20: Taylch07

102

27.

Page 21: Taylch07

103

28.

Page 22: Taylch07

104

29.

Page 23: Taylch07

105

30.

Page 24: Taylch07

106

Page 25: Taylch07

107

31.

Page 26: Taylch07

108

Maximal flow network:

32.

Page 27: Taylch07

109

33.

34.

Page 28: Taylch07

35. This problem is solved using Excel with theaddition of a cost constraint to the normal linearprogramming formulation for a maximum flowproblem, as follows,

Maximize Z = x10, 1

subject to:

solution

Z = == =

16

684 684 000

16 000 units

Total cost

,

$ ,

x x

x x

x x

x x

x x

x x

12 45

13 57

14 58

25 59

26 68

35 6

6 8

2 10

8 4

0 1

6 2

0

= == == == == == 9

36 7 10

8 10

9 10

6

2 3

6

7

== =

==

x x

x

x

,

,

,

3 5 7

2212 13 14 25 26 35 36

57 58 59

( ) ( ) ( )

(

x x x x x x x

x x x

+ + + + + + 4 45( )x++ + + )) ( )

,

+ ++ ≤

19

16 70068 69

9 10

x x , ,+ +12 147 10 8 10x x

x

x x

x

x x

x x

x x

x x

12 57

13

14 59

25 68

26 69

35 7

7 3

10

8 1

9 6

6 8

7

≤ ≤≤ x58 4≤≤ ≤≤ ≤≤ ≤≤ ,,

,

,

,

10

36 8 10

45 9 10

10 1

8

5 7

10 7

100

≤ ≤≤ ≤

x x

x x

x

x x x x

x x x

x x x

x x x

10 1 12 13 14

12 25 26

13 35 36

14 45 46

0

0

0

0

, − − − =

− − =− − =− − =

xx x x x

x x

x

x

25 57 58 59

26 68 69

57

58

0

0

0

+ + − − − =+ − − =− =+

x x

x x

x

35 45

36

7,10

xx

x

x

68

69

8,10

− =

+ − =+ + − =

x

x x

x x x

8 10

59 9 10

7 10 9 10 10 1

0

0

0

,

,

, , ,

110

36.

Page 29: Taylch07

111

37. 1–2–6–10–12–13–15 = 25

1–2–6–12–13–15 = 35

1–2–9–12–15 = 10

1–3–6–10–12–15 = 30

1–3–7–10–13–15 = 20

1–4–7–10–13–15 = 20

1–4–7–6–10–13–15 = 10

1–4–7–6–12–15 = 5

1–4–8–13–15 = 25

1–5–8–13–15 = 35

1–5–8–14–15 = 5

1–5–11–14–15 = 30

maximum flow = 250

Branch Allocation Branch Allocation

1–2 70 7–6 151–3 50 8–13 601–4 60 8–14 51–5 70 9–12 452–6 25 10–12 552–9 45 10–13 503–6 30 11–14 303–7 20 12–13 604–7 35 12–15 454–8 25 13–15 1705–8 40 14–15 355–11 306–10 656–12 57–10 40

38. 1–2 = 16 3–4 = 162–5 = 12 4–10 = 45–7 = 12 9–10 = 42–6 = 12 10–13 = 86–7 = 4 13–14 = 47–12 = 16 4–8 = 1212–15 = 22 8–14 = 121–3 = 22 14–15 = 163–9 = 69–11 = 211–12 = 213–12 = 4

Total traffic = 38,000 cars.

Page 30: Taylch07

112

CASE SOLUTION: AROUND THEWORLD IN 80 DAYS

Using QSB + the following optimal route for PhileasFogg was determined (which is approximately the sameroute he travelled in the book).

1(London) – 6(Paris) – 7(Barcelona) – 12(Naples)– 17(Athens) – 22(Cairo) – 23(Aden) –28(Bombay) – 31(Calcutta) – 33(Singapore) –35(Hong Kong) – 37(Shanghai)– 39(Yokohama) – 41(San Francisco) –47(Denver) – 50(Chicago) – 53(New York)– 1(London) = 81 days

Note that 3 additional “end” nodes were added to thenetwork for computer solution – 55, 56 and 57. Node 55replaced node 3 (Casablanca); node 56 replaced node 2(Lisbon), and node 57 replaced node 1 (London) at the

end of the network. Additional branches were added toconnect Casablanca with Lisbon (56–57) and Lisbonwith London (56–57).

Although it appears that Phileas Fogg lost his wager,recall that, as in the novel, he travelled toward the eastand eventually crossed the international date line. Thissaved him one day and allowed him to win his wageronce he realized (just in time) the error in hiscalculations.

CASE SOLUTION: BATTLE OF THEBULGE

(1) Verdun – (2) Stenay = 8(1) Verdun – (3) Montmedy = 23(1) Verdun – (5) Etain = 26(2) Stenay – (11) Bouillon = 8(3) Montmedy – (6) Virton = 10

Page 31: Taylch07

113

(3) Montmedy – (11) Bouillon = 15(4) Longuyon – (3) Montmedy = 2(4) Longuyon – (7) Longwy = 5(5) Etain – (4) Longuyon = 7(5) Etain – (8) Briey = 10(5) Etain – (9) Havange = 9(6) Virton – (13) Tintigny = 10(7) Longwy – (14) Arlon = 9(8) Briey – (10) Thionville = 10(9) Havange – (15) Luxembourg = 8(10) Thionville – (15) Luxembourg = 7(10) Thionville – (9) Havange = 3(11) Bouillon – (12) Florenville = 7(11) Bouillon – (16) Paliseul = 16(12) Florenville – (13) Tintigny = 7(13) Tintigny – (17) Neufchateau = 12(14) Arlon – (18) Martelange = 8(15) Luxembourg – (19) Diekirch = 21(16) Paliseul – (20) Recogne = 16(17) Neufchateau – (18) Martelange = 12(18) Martelange – (21) Bastogne = 23(19) Diekirch – (21) Martelange = 3(19) Diekirch – (21) Bastogne = 18(19) Diekirch – (18) Martelange = 3(20) Recogne – (21) Bastogne = 16

Total flow = 57,000 troops

CASE SOLUTION: NUCLEAR WASTEDISPOSAL AT PAWV POWER ANDLIGHT

This is a “modified” shortest route problem. Instead ofthe minimum time as the objective function thepopulation traveled through should be minimized. Thetime (which would normally be the objective function)should be a constraint ≤ 42 hours.

Solution:

(1) Pittsburgh - (4) Akron

(4) Akron - (6) Toledo

(6) Toledo - (10) Chicago

(10) Chicago - (16) Davenport/Moline/Rock Island

(16) Davenport/Moline/Rock Island - (19) Des Moines

(19) Des Moines - (23) Omaha

(23) Omaha - (28) Cheyenne

(28) Cheyenne - (31) Salt Lake City

(31) Salt Lake City - (33) Nevada Site

Total time = 39.95 hours

Total population (Z) = 15.83 million