Tanque Eten 90 Mb

Embed Size (px)

DESCRIPTION

tk90mb

Citation preview

  • Page 1 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    ETANK FULL REPORT - TANQUE DE 90MB (ETEN)ETank2000 MU 1.9.15 (20 Jan 2012)

    TABLE OF CONTENTS PAGE 1

    ETANK SETTINGS SUMMARY PAGE 2

    SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

    SUMMARY OF RESULTS PAGE 5

    ROOF DESIGN PAGE 8

    SHELL COURSE DESIGN PAGE 19

    BOTTOM DESIGN PAGE 29

    SEISMIC CALCULATIONS PAGE 34

    ANCHOR BOLT DESIGN PAGE 42

    CAPACITIES AND WEIGHTS PAGE 48

    MAWP & MAWV SUMMARY PAGE 49

  • Page 2 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    ETANK SETTINGS SUMMARY

    To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ----------------------------------------------------------------------

    No 650 Appendix F Calcs when Tank P = 0 -> Default : Falso -> This Tank : Falso Show MAWP / MAWV Calcs : Verdadero Enforce API Minimum thicknesses : Verdadero Enforce API Maximum Roof thickness : Verdadero Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Verdadero Force Non-Annular Btm. to Meet API-650 5.5.1 : Falso Set t.actual to t.required Values : Falso Maximum 650 App. S or App. M Multiplier is 1 : Verdadero Enforce API Maximum Nozzle Sizes : Verdadero Max. Self Supported Roof thickness : 1.785 in. Max. Tank Corr. Allowance : 125 in. External pressure calcs subtract C.A. per V.5 : Falso Use Gauge Material for min thicknesses : Falso Enforce API Minimum Live Load : Verdadero Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : Verdadero

  • Page 3 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    SUMMARY OF DESIGN DATA and REMARKS

    Job : TANQUE DE 90MB (ETEN) Date of Calcs. : 13/02/2015 , 03:55 Mfg. or Insp. Date : 13/02/2015 Designer : EVER BRICEO Project : INGENIERA CONCEPTUAL Tag Number : TK-31 Plant : TERMINAL ETEN Plant Location : ETEN Site : ETEN Design Basis : API-650 11th Edition, Addendum 2, Nov 2009

    ----------------------------------------------------------------------

    - TANK NAMEPLATE INFORMATION

    ----------------------------------------------------------------------

    - Operating Ratio: 0,4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - (None) - - Roof : A-36: 0,25in. - - Shell (7): A-36: 0,3125in. - - Shell (6): A-36: 0,375in. - - Shell (5): A-36: 0,375in. - - Shell (4): A-36: 0,5in. - - Shell (3): A-36: 0,5in. - - Shell (2): A-36: 0,625in. - - Shell (1): A-36: 0,75in. - - Bottom : A-36: 0,3125in. - - Annular Ring : A-36: 0,3725in. -

    ----------------------------------------------------------------------

    Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O

    MAWP = 0,1158 PSI or 3,21 IN. H2O MAWV = -0,0627 PSI or -1,74 IN. H2O

    OD of Tank = 114,8 ft Shell Height = 55,2 ft S.G. of Contents = 0,8275 Max. Liq. Level = 50 ft

    Design Temperature = 200 F Tank Joint Efficiency = 1

    Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 0 lbf/ft^2

  • Page 4 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    Basic Wind Velocity = 120 mph Wind Importance Factor = 1 Using Seismic Method: API-650 11th Ed. - Non ASCE7 (Sp) Seismic Use Group: III Site Class: E Sp = 38 %g T_L = 4 sec Av = 0 %g Q = 1 Fa = 0,96 Fv = 2,4 Importance Factor = 1,5 Rwi = 4 Rwc = 2

    DESIGN NOTES

    NOTE 1 : Tank is not subject to API-650 Appendix F.7

  • Page 5 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    SUMMARY OF RESULTS

    Shell Material Summary (Bottom is 1) Shell Width Material Sd St Weight CA # (ft) (psi) (psi) (lbf) (in) 7 7,8 A-36 23.200 24.900 35.855 0,0625 6 7,9 A-36 23.200 24.900 43.575 0,0625 5 7,9 A-36 23.200 24.900 43.575 0,0625 4 7,9 A-36 23.200 24.900 58.095 0,0625 3 7,9 A-36 23.200 24.900 58.095 0,0625 2 7,9 A-36 23.200 24.900 72.612 0,0625 1 7,9 A-36 23.200 24.900 87.127 0,0625 Total Weight 398.934

    Shell API 650 Summary (Bottom is 1) ----------------------------------------------------------------------

    Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ----------------------------------------------------------------------

    7 0,0795 0,0192 N.A. 0,1245 0,236 0,3125 6 0,1636 0,1139 N.A. 0,1972 0,236 0,375 5 0,2477 0,2086 N.A. 0,28 0,28 0,375 4 0,3318 0,3033 N.A. 0,3614 0,3614 0,5 3 0,416 0,398 N.A. 0,4384 0,4384 0,5 2 0,5001 0,4927 N.A. 0,5103 0,5103 0,625 1 0,5874 0,5874 N.A. 0,5768 0,5874 0,75 ----------------------------------------------------------------------

    Structurally Supported Conical Roof Plate Material = A-36, Struct. Material = A-36

    t.required = 0,1875 in. t.actual = 0,25 in. Roof Joint Efficiency = 1

    Plate Weight = 105.733 lbf

    Rafters: 54 Rafters at Rad. 30 ft.: C 6 X 8.2 54 Rafters at Rad. 57,4 ft.: C 8 X 13.5

    Rafters Weight = 33.296 lbf

    Girders: 54 Girders at Rad. 30 ft.: C 6 X 8.2

    Girders Weight = 1.545 lbf

  • Page 6 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    Columns: 1 Column at Center: 12 IN SCH 80 PIPE 54 Columns at Rad. 30 ft.: 10 INCH 80 PIPE

    Columns Weight = 159.232 lbf

    Bottom Type: Flat Bottom: Annular Bottom Floor Material = A-36 t.required = 0,2985 in. t.actual = 0,3125 in. Bottom Joint Efficiency = 1

    Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0,236 in. t_Annular_Ring = 0,3725 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 26,97 in.

    Total Weight of Bottom = 134.870 lbf

    ANCHOR BOLTS: (40) 1,321in. UNC Bolts, A-193 Gr B7

    TOP END STIFFENER: L4x4x5/16, A-36, 2951, lbf

  • Page 7 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    SUPPORTED CONICAL ROOF (from Brownell & Young)

    Roof Plate Material: A-36, Sd = 23.200 PSI, Fy = 36.000 PSI (API-650 Table 5-2b) Structural Material: A-36, Sd = 23.200 PSI, Fy = 36.000 PSI (API-650 Table 5-2b)

    R = 57,4 ft pt = 0,75 in/ft (Cone Roof Pitch)

    Theta = ATAN(pt/12) = ATAN(0,0625) = 3,5763 degrees

    Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0,75*114,8^2/48 = 205,923 ft^2

    Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

    Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*114,8 = 57,4 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*57,4^2 = 10.351 ft^2

    S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2

    Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (0)(0/12) + 10,1988 + 0 = 10,1988 lbf/ft^2

    Roof Loads (per API-650 Appendix R)

    Pe = PV*144 = 0*144 = 0 lbf/ft^2

    e.1b = DL + MAX(Sb,Lr) + 0,4*Pe = 10,1988 + 20 + 0,4*0 = 30,199 lbf/ft^2

    e.2b = DL + Pe + 0,4*MAX(Sb,Lr) = 10,1988 + 0 + 0,4*20 = 18,199 lbf/ft^2

    T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 30,199 lbf/ft^2

    e.1u = DL + MAX(Su,Lr) + 0,4*Pe = 10,1988 + 20 + 0,4*0 = 30,199 lbf/ft^2

    e.2u = DL + Pe + 0,4*MAX(Su,Lr) = 10,1988 + 0 + 0,4*20 = 18,199 lbf/ft^2

  • Page 8 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 30,199 lbf/ft^2

    Lr_1 = MAX(T,U) = 30,199 lbf/ft^2

    P = Max. Design Load = Lr_1 = 30,199 lbf/ft^2 = 0,2097 PSI

    ( Frangible Roof Design per API-650 Section 5.10.2.6.a.5 ) Afr = Maximum Participating Area

    = W/[201000*TAN(Theta)] = (348.209)/[201000*0,0625] = 27,718 in^2

    l = Maximum Rafter Spacing (Per API-650 5.10.4.4) = (t - ca) * SQRT(1.5 * Fy / P) = (0,25 - 0)*SQRT(1,5*36.000/0,2097) = 126,86 in.

    MINIMUM # OF RAFTERS

    < FOR OUTER SHELL RING >

    l = 84 in. since calculated l > 84 in. (7 ft)

    N_min = 2*PI*R/l = 2*PI*(57,4)(12)/84 = 51,52

    N_min must be a multiple of 54, therefore N_min = 54

    Actual # of Rafters = 54

    Minimum roof thickness based on actual rafter spacing

    l = 80,15 in. (actual rafter spacing)

    t-Calc = l/SQRT(1.5*Fy/p) + CA = 80,15/SQRT(1.5*36.000/0,2097) + 0 = 0,158 in. NOTE: Governs for roof plate thickness.

    RLoad_Max = Maximum Roof Load based on actual rafter spacing

    RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(36.000)/(80,15/(0,25 - 0))^2 = 100,87 lb/ft^2

    Let Max_T1 = RLoad_Max

    P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[100,87 - 10,1988 - 0,4 * Max(0,20)]/144 = -0,5741 PSI or -15,91 IN. H2O

    Pa_rafter_2 = P_ext_1 = -0,5741 PSI or -15,91 IN H2O.

  • Page 9 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    < FOR GIRDER RING Outer Radius = 30 ft > # of Girders (N) = 54

    l = 84 in. since calculated l > 84 in. (7 ft) N_min = (24*N*R/l)*SIN(360/2N) = ((24*54*30)/84)*SIN(360/(2*54)) = 26,91

    N_min must be a multiple of 54, therefore N_min = 54

    Actual # of Rafters = 54

    Minimum roof thickness based on actual rafter spacing

    l = 41,89 in. (actual rafter spacing)

    t-Calc = l/SQRT(1.5*Fy/p) + CA = 41,89/SQRT(1.5*36.000/0,2097) + 0 = 0,0826 in. NOTE: Does not govern for roof plate thickness.

    RLoad_Max = Maximum Roof Load based on actual rafter spacing

    RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(36.000)/(41,89/(0,25 - 0))^2 = 369,28 lb/ft^2

    Let Max_T1 = RLoad_Max

    P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[369,28 - 10,1988 - 0,4 * Max(0,20)]/144 = -1 PSI (per API-650 Section V.1)

    Pa_rafter_1 = P_ext_1 = -1 PSI or -27,71 IN H2O.

    t.required = MAX(t-Calc, 0,1875 + 0) = MAX(0,158,0,1875) = 0,1875 in.

  • Page 10 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:56

    RAFTER DESIGN

    < SPAN TO SHELL >

    Maximum Rafter Span = 27,451 ft Average Rafter Spacing on Inner Girders = 3,489 ft Average Rafter Spacing on Shell = 6,675 ft Average Plate Width = (3,489 + 6,675)/2 = 5,082 ft

    Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0,2097)(5,082)*12 + 13,5/12 = 13,91 lbf/in l = (27,451)(12) = 329,41 in. Mmax = (13,91)(329,41)^2/8 = 188676, in-lbf

    Z req'd = Mmax/23.200 = 188676,/23.200 = 8,13 in^3 Actual Z = 9,03 in^3 using C 8 X 13.5

    W_Max (Max. stress allowed for each rafter in ring 2) = Z * Sd * 8 / l^2 = 9,03 * 23.200 * 8 / 329,41^2 = 15,445 lbf/in.

    Max_P (Max. Load allowed for each rafter in ring 2) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (15,445 - 13,5/12)/(5,082*12) = 0,2348 PSI

    Let Max_T1 = Max_P * 144

    P_ext_2 (Vacuum limited by Rafter Type) = -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144 = -2.5 * [(33,8112 - 10,1988 - Max(0,20)] / 144 = -0,0627 PSI or -1,74 IN. H2O Pa2_rafter_2 = P_ext_2 (limited by Rafter Type)

    < TO GIRDER RING Outer Radius = 30 ft >

    Maximum Rafter Span = 30 ft Average Rafter Spacing on Outer Girders = 3,489 ft Average Plate Width = (0 + 3,489)/2 = 1,745 ft

    Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0,2097)(1,745)*12 + 8,2/12 = 5,07 lbf/in l = (30)(12) = 360,00 in. Mmax = (5,07)(360,00)^2/8 = 82134, in-lbf

    Z req'd = Mmax/23.200 = 82134,/23.200 = 3,54 in^3 Actual Z = 4,38 in^3 using C 6 X 8.2

    W_Max (Max. stress allowed for each rafter in ring 1) = Z * Sd * 8 / l^2 = 4,38 * 23.200 * 8 / 360,00^2 = 6,2726 lbf/in.

  • Page 11 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    Max_P (Max. Load allowed for each rafter in ring 1) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (6,2726 - 8,2/12)/(1,745*12) = 0,2669 PSI

    Let Max_T1 = Max_P * 144

    P_ext_2 (Vacuum limited by Rafter Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[38,4336 - 10,1988 - 0,4 * Max(0,20)]/144 = -0,1405 PSI or -3,89 IN. H2O Pa2_rafter_1 = P_ext_2 (limited by Rafter Type)

  • Page 12 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    GIRDER DESIGN

    < AT GIRDER RING Outer Radius = 30 ft > Number of Girders = 54 Girder Length = 3,489 ft

    Wi = Load due to inner rafters and roof = (RaftLoad_inner)(RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (5,07)(15)(12)(1) = 913 lbf Wo = Load due to outer rafters & roof = (RaftLoad_outer)(RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (13,91)(13,7)(12)(1) = 2.287 lbf W1 = (Wi + Wo)/L_gird (Total rafter and roof load per girder length) = (913 + 2.287)/(3,489*12) = 76,43 lbf/in

    w = Total load including weight of girder = 76,43 + (8,2/12) = 77,11 lbf/in

    Mmax = Maximum Bending Moment Mmax = wl^2/8 Mmax = (77,11)(41,87)^2/8 = 16896, in-lbf

    Z req'd = Mmax/Sd = 16896,/23.200 = 0,73 in^3 Actual Z = 4,38 in^3 using C 6 X 8.2

    W_Max (Max. stress allowed for each girder in ring 1) = Z * Sd * 8 / l^2 = 4,38 * 23.200 * 8 / 41,868^2 = 463,754 lbf/in.

    let C1 = (RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (15)(12)(1) = 180in. let C2 = (RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (13,7)(12)(1) = 164,4in.

    F_Max (Max. Load allowed for each girder in ring 1) = W1_Max + GirdLen*12 = 19.388 lbf

    Back calculate Max_P from F_Max, using: F_Max = [Max_P*(RafterSpacing_inner*12) + RWgt_inner/12]*C1 + [Max_P*(RafterSpacing_outer*12) + RWgt_outer/12]*C2

    Solve for Max_P: Max_P = [12*F_max - R1wgt*C1 - R2wgt*C2] / 144* [X1*C1 + X2*C2] = [12*19.388 - 8,2*180 - 13,5*164,4] / 144*[1,745*180 + 5,082*164,4] = 1,3884 PSI

    Let Max_T1 = Max_P * 144

  • Page 13 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    P_ext_4 (Vacuum limited by Girder Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[199,9296 - 10,1988 - 0,4 * Max(0,20)]/144 = -1 PSI (per API-650 Section V.1) Pa_girder_1 = P_ext_4 (limited by Girder Type)

  • Page 14 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    COLUMN DESIGN

    < AT GIRDER RING Outer Radius = 30 ft > Number of Columns = 54

    l = Column Length = 631,6119 in = 52,63 ft (as computed)

    r = Radius of gyration

    if l/r must be less than 180, then

    r req'd = l/180 = 631,6119/180 = 3,51 in. Actual r = 3,63 in. using 10 INCH 80 PIPE

    P = Total roof load supported by each column = (77,11)(3,489)(12) = 3.228 lbf

    Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

    Per API-650 5.10.3.3, R = L/r = 174 (actual)

    Cc = Column Slenderness Ratio = SQRT[2PI^2E/Fy] = SQRT[2PI^2(28.799.999)/(36.000)] = 125,7

    FS = Factor of Safety = 5/3 + 3*(174)/(8*(125,7)) - (174)^3/(8*(125,7)^3) = 1,8542

    Since R

  • Page 15 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    P_ext_3 (Vacuum limited by Column Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[518,688 - 10,1988 - 0,4 * Max(0,20)]/144 = -1 PSI (per API-650 Section V.1) Pa_column_2 = P_ext_3 (limited by Column Type)

    CENTER COLUMN

    l = Column Length = 669 in = 55,75 ft (user specified)

    r = Radius of gyration

    if l/r must be less than 180, then

    r req'd = l/180 = 669/180 = 3,72 in. Actual r = 4,33 in. using 12 IN SCH 80 PIPE

    P = Total load supported by center column = [(rafter length)(rafter load)(# of inner rafters)]/2 = [(30 ft)(12 in/ft)(5,07 lbf/in)(54)]/2 = 49.280 lbf

    Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

    Per API-650 5.10.3.3, R = L/r = 154,5 (actual)

    Cc = Column Slenderness Ratio = SQRT[2PI^2E/Fy] = SQRT[2PI^2(28.799.999)/(36.000)] = 125,7

    FS = Factor of Safety = 5/3 + 3*(154,5)/(8*(125,7)) - (154,5)^3/(8*(125,7)^3) = 1,8955

    Since R

  • Page 16 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    W_Max (Max. weight allowed for each column in ring 1) = 115.642 lbf

    Max_P (Max. Load allowed for each column in ring 1) Let Max_T1 = Max_P * 144

    P_ext_3 (Vacuum limited by Column Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[77,1408 - 10,1988 - 0,4 * Max(0,20)]/144 = -0,4093 PSI or -11,34 IN. H2O Pa_column_1 = P_ext_3 (limited by Column Type)

    Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(114,8)^2/COS() = 1.493.423 in^2

    ROOF WEIGHT

    Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS(Theta) = (0,2833)(0,25)(PI/4)(1.378 - 0,25)^2/COS(3,5763) = 105.733 lbf (New) = 105.733 lbf (Corroded)

    Weight of Roof Plates supported by shell = 44.427 lbf (New) = 44.427 lbf (Corroded)

    Weight of Rafters = 33.296 lbf (New) Weight of Girders = 1.545 lbf (New) Weight of Columns = 159.232 lbf (New)

    Total Weight of Roof = 299.806 lbf (New) = 299.806 lbf (Corroded)

    (From API-650 Figure F-2) Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0,6 * SQRT[688,4875 * (0,3125 - 0,0625)] = 7,8717 in.

    (From API-650 Figure F-2) Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0,3 * SQRT[11.042 * (0,25 - 0)] = MIN(15,7624, 12) = 12 in.

    Top End Stiffener: L4x4x5/16 Aa = (Cross-sectional Area of Top End Stiffener) = 2,4 in^2

    Using API-650 Fig. F-2, Detail b End Stiffener Detail

  • Page 17 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 7,8717 * (0,3125 - 0,0625) = 1,968 in^2

    Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 12 * (0,25 - 0) = 3 in^2

    A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 2,4 + 3 + 1,968 = 7,368 in^2

    < Uplift on Tank > (per API-650 F.1.2)

    NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only.

    For flat bottom tank with structural roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and corroded roof weight.

    = P * PI / 4 * D ^ 2 * 144 - Corr. shell - [Corr. roof weight + Structural weight] = 0 * 3,1416 / 4 * 13.179 * 144 - 348.209 - [105.733 + 33.296 + 1.545 + 159.232] = -648.015 lbf

    < Uplift Case per API-650 1.1.1 >

    P_Uplift = 0 lbf W_Roof_Plates (corroded) = 105.733 lbf W_Roof_Structure = 194.073 lbf W_Shell (corroded) = 348.209 lbf Since P_Uplift

    Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(36.000,36.000,36.000) = 36.000 psi

    A_min_a = Min. Participating Area due to full Design Pressure. (per API-650 F.5.1, and Fig. F-2)

    (using API assumption internal P of 1/32 PSI)

    = [OD^2(P - 8*t)]/[0,962*36.000*TAN(Theta)] = [114,8^2(0,0313 - 8*0,25)]/[0,962*36.000*0,0625] = -6,88 in^2 = 0 in^2 (since can't be negative)

  • Page 18 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0,962*36.000*TAN(Theta)]/OD^2 + 8*t_h = 7,368 * [0,962*36.000*0,0625]/114,8^2 + 8*0,25 = 0,1158 PSI or 3,21 IN. H2O

    Since Tank Roof is Frangible and net uplift exists, calculating failure pressure per F.6, which is based on calculated Max. Design Pressure of F.4.1.

    < Maximum Design Pressure > (per F.4.1)

    P_F41 = 0,962*36.000*A*TAN(Theta)/D^2 + 8*t_h = 0,962*36.000*(7,368)*(0,0625)/(114,8^2) + 8*(0,25) = 0,1158 PSI or 3,21 IN. H2O

    < Calculated Failure Pressure > (Per API-650 F.6.1, for Frangible Roof Tanks per 5.10.2.6)

    P_F6 = 1,6 * P_max_internal - 4,8 * t_h = 1,6 * 3,21(IN. H2O) - 4,8 * (0,25) = 3,94 IN. H2O or 0,1422 PSI

    Pf_anchor (Failure Pressure for Anchor Design) (per API-650 Table 5-21b) = 1,5*(1,6*P_max_internal - 4,8*t) = 1,5*(1,6*3,21 - 4.8*0,25) = 5,904 IN. H2O or 0,2130 PSI

    P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2,5 PSI or 69,28 IN. H2O

    P_max_internal = MIN(P_F51, P_F41, P_Std) = MIN(3,21, 3,21, 69,28) = 0,1158 PSI or 3,21 IN. H2O

    P_max_external = -0,0627 PSI or -1,74 IN. H2O

  • Page 19 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    SHELL COURSE DESIGN (Bottom Course is #1)

    VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0,5 = (6*114,8*(0,75-0,0625))^0,5 = 21,7612 H = Max Liquid Level =50 ft L / H

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 50 + 2.31*0/0,8275 = 50ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(50 - 1)*0,8275/(23.200*1) + 0,0625 = 0,5842 in.

    hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 1*23.200*(0,75 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 65,5769 ft.

    Pmax_1 = (hMax_1 - H) * 0,433 * G = (65,5769 - 50) * 0,433 * 0,8275 = 5,5813 PSI

    Pmax_int_shell = Pmax_1

    Pmax_int_shell = 5,5813 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 50 + 2.31*0/1 = 50ft

    t.test = 2,6*114,8*(50 - 1)/(24.900*1) = 0,5874 in.

    Course # 2 Material: A-36; Width = 7,9 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

  • Page 20 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 42,1 + 2.31*0/0,8275 = 42,1ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(42,1 - 1)*0,8275/(23.200*1) + 0,0625 = 0,5001 in.

    hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 1*23.200*(0,625 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 53,8357 ft.

    Pmax_2 = (hMax_2 - H) * 0,433 * G = (53,8357 - 42,1) * 0,433 * 0,8275 = 4,205 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(5,5813, 4,205)

    Pmax_int_shell = 4,205 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 42,1 + 2.31*0/1 = 42,1ft

    t.test = 2,6*114,8*(42,1 - 1)/(24.900*1) = 0,4927 in.

    Course # 3 Material: A-36; Width = 7,9 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 34,2 + 2.31*0/0,8275 = 34,2ft

  • Page 21 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(34,2 - 1)*0,8275/(23.200*1) + 0,0625 = 0,416 in.

    hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 1*23.200*(0,5 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 42,0944 ft.

    Pmax_3 = (hMax_3 - H) * 0,433 * G = (42,0944 - 34,2) * 0,433 * 0,8275 = 2,8286 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(4,205, 2,8286)

    Pmax_int_shell = 2,8286 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 34,2 + 2.31*0/1 = 34,2ft

    t.test = 2,6*114,8*(34,2 - 1)/(24.900*1) = 0,398 in.

    Course # 4 Material: A-36; Width = 7,9 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 26,3 + 2.31*0/0,8275 = 26,3ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(26,3 - 1)*0,8275/(23.200*1) + 0,0625 = 0,3318 in.

    hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 1*23.200*(0,5 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 42,0944 ft.

    Pmax_4 = (hMax_4 - H) * 0,433 * G = (42,0944 - 26,3) * 0,433 * 0,8275 = 5,6593 PSI

  • Page 22 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(2,8286, 5,6593)

    Pmax_int_shell = 2,8286 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 26,3 + 2.31*0/1 = 26,3ft

    t.test = 2,6*114,8*(26,3 - 1)/(24.900*1) = 0,3033 in.

    Course # 5 Material: A-36; Width = 7,9 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 18,4 + 2.31*0/0,8275 = 18,4ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(18,4 - 1)*0,8275/(23.200*1) + 0,0625 = 0,2477 in.

    hMax_5 = E*Sd*(t_5 - CA_5)/(2,6*OD*G) + 1 = 1*23.200*(0,375 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 30,3532 ft.

    Pmax_5 = (hMax_5 - H) * 0,433 * G = (30,3532 - 18,4) * 0,433 * 0,8275 = 4,2829 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(2,8286, 4,2829)

    Pmax_int_shell = 2,8286 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 18,4 + 2.31*0/1 = 18,4ft

  • Page 23 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    t.test = 2,6*114,8*(18,4 - 1)/(24.900*1) = 0,2086 in.

    Course # 6 Material: A-36; Width = 7,9 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 10,5 + 2.31*0/0,8275 = 10,5ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(10,5 - 1)*0,8275/(23.200*1) + 0,0625 = 0,1636 in.

    hMax_6 = E*Sd*(t_6 - CA_6)/(2,6*OD*G) + 1 = 1*23.200*(0,375 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 30,3532 ft.

    Pmax_6 = (hMax_6 - H) * 0,433 * G = (30,3532 - 10,5) * 0,433 * 0,8275 = 7,1135 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(2,8286, 7,1135)

    Pmax_int_shell = 2,8286 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 10,5 + 2.31*0/1 = 10,5ft

    t.test = 2,6*114,8*(10,5 - 1)/(24.900*1) = 0,1139 in.

    Course # 7 Material: A-36; Width = 7,8 ft.

    Corrosion Allow. = 0,0625 in. Joint Efficiency = 1

    API-650 ONE FOOT METHOD

    Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)

  • Page 24 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    DESIGN CONDITION G = 0,8275 (per API-650)

    < Design Condition G = 0,8275 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 2,6 + 2.31*0/0,8275 = 2,6ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*114,8*(2,6 - 1)*0,8275/(23.200*1) + 0,0625 = 0,0795 in.

    hMax_7 = E*Sd*(t_7 - CA_7)/(2,6*OD*G) + 1 = 1*23.200*(0,3125 - 0,0625) / (2,6 * 114,8 * 0,8275) + 1 = 24,4825 ft.

    Pmax_7 = (hMax_7 - H) * 0,433 * G = (24,4825 - 2,6) * 0,433 * 0,8275 = 7,8407 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_7) = Min(2,8286, 7,8407)

    Pmax_int_shell = 2,8286 PSI

    HYDROSTATIC TEST CONDITION

    < Design Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 2,6 + 2.31*0/1 = 2,6ft

    t.test = 2,6*114,8*(2,6 - 1)/(24.900*1) = 0,0192 in.

    Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5

    Transforming Courses (1) to (7)

    Wtr(1) = 7,9*[ 0,3125/0,75 ]^2.5 = 0,8853 ft Wtr(2) = 7,9*[ 0,3125/0,625 ]^2.5 = 1,3965 ft Wtr(3) = 7,9*[ 0,3125/0,5 ]^2.5 = 2,4396 ft Wtr(4) = 7,9*[ 0,3125/0,5 ]^2.5 = 2,4396 ft Wtr(5) = 7,9*[ 0,3125/0,375 ]^2.5 = 5,0081 ft Wtr(6) = 7,9*[ 0,3125/0,375 ]^2.5 = 5,0081 ft Wtr(7) = 7,6333*[ 0,3125/0,3125 ]^2.5 = 7,6333 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 24,8105 ft

    INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 120 mph Ve = vf = Velocity Factor = (vs/120)^2 = (120/120)^2 = 1 Design PV = 0 PSI, OR 0 In. H2O

  • Page 25 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    Actual Z = 1,629 in^3 Using L4x4x5/16, Wc = 8,8047

    (PER API-650 Section 5.9.7)

    * * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course.

    * * * NOTE: Not subtracting corrosion allowance per user setting.

    ME = 28.799.999/28.799.999 = 1

    Hu = Maximum Height of Unstiffened Shell = {ME*600.000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600.000*0,3125*SQRT[0,3125/114,8]^3} / 1 = 26,6295 ft

    Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5

    Transforming Courses (1) to (7)

    Wtr(1) = 7,9*[ 0,3125/0,75 ]^2.5 = 0,8853 ft Wtr(2) = 7,9*[ 0,3125/0,625 ]^2.5 = 1,3965 ft Wtr(3) = 7,9*[ 0,3125/0,5 ]^2.5 = 2,4396 ft Wtr(4) = 7,9*[ 0,3125/0,5 ]^2.5 = 2,4396 ft Wtr(5) = 7,9*[ 0,3125/0,375 ]^2.5 = 5,0081 ft Wtr(6) = 7,9*[ 0,3125/0,375 ]^2.5 = 5,0081 ft Wtr(7) = 7,6333*[ 0,3125/0,3125 ]^2.5 = 7,6333 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 24,8105 ft

    L_0 = Hts/# of Stiffeners + 1 = 24,8105/1 = 24,81 ft.

    No Intermediate Wind Girders Needed Since Hu >= L_0

    SHELL COURSE #1 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,5874, 0, 0,5768) = 0,5874 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,5874 in. t.actual = 0,75 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,75]*12*7,9*0,75 = 87.127 lbf (New) = 79.870 lbf (Corroded)

  • Page 26 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:57

    SHELL COURSE #2 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,5001, 0, 0,5103) = 0,5103 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,5103 in. t.actual = 0,625 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,625]*12*7,9*0,625 = 72.612 lbf (New) = 65.354 lbf (Corroded)

    SHELL COURSE #3 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,416, 0, 0,4384) = 0,4384 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,4384 in. t.actual = 0,5 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,5]*12*7,9*0,5 = 58.095 lbf (New) = 50.836 lbf (Corroded)

    SHELL COURSE #4 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,3318, 0, 0,3614) = 0,3614 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,3614 in. t.actual = 0,5 in.

  • Page 27 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,5]*12*7,9*0,5 = 58.095 lbf (New) = 50.836 lbf (Corroded)

    SHELL COURSE #5 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,2477, 0, 0,28) = 0,28 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,28 in. t.actual = 0,375 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,375]*12*7,9*0,375 = 43.575 lbf (New) = 36.314 lbf (Corroded)

    SHELL COURSE #6 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1636, 0, 0,1972) = 0,1972 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

    t.required = MAX(t.design, t.test, t.min650) = 0,236 in. t.actual = 0,375 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,375]*12*7,9*0,375 = 43.575 lbf (New) = 36.314 lbf (Corroded)

    SHELL COURSE #7 SUMMARY -------------------------------------------

    t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0795, 0, 0,1245) = 0,1245 in.

    t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4)

  • Page 28 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    t.required = MAX(t.design, t.test, t.min650) = 0,236 in. t.actual = 0,3125 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*114,8)-0,3125]*12*7,8*0,3125 = 35.855 lbf (New) = 28.685 lbf (Corroded)

  • Page 29 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    FLAT BOTTOM: ANNULAR PLATE DESIGN

    Bottom Plate Material : A-36 Annular Bottom Plate Material : A-36

    Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2 = PI/4*(1.378 - 2*0,75 - 2*26,97)^2 = 1.372.960 in^2

    Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area = PI/4*(1.382)^2 - 1.372.960 = 126.223 in^2

    Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * Annular_Area) = 0,2833 * 0,3125*1.372.960 + 0,2833 * 0,3725*126.223 = 134.870 lbf (New) = 110.560 lbf (Corroded)

    < API-650 >

    Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1)

    t_1 : Bottom (1st) Shell Course thickness.

    H'= Max. Liq. Level + P(psi)/(0,433) = 50 + (0)/(0,433) = 50 ft

    St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(114,8)(50 - 1)/(0,75) = 19.501 PSI

    Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(114,8)(50 - 1)(0,8275)/(0,6875) = 17.604 PSI

    --------------------------

    t_min = 0,236 + CA = 0,236 + 0,0625 = 0,2985 in. (per Section 5.4.1)

    t-Calc = t_min = 0,2985 in.

    t-Actual = 0,3125 in.

    (per API-650 5.5.3 TABLE 5-1b),

    t_Min_Annular_Ring = 0,236 + 0 = 0,236 in.

    t_Annular_Ring = Actual Annular Ring Thickness = 0,3725 in.

  • Page 30 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    W_Annular_Ring = Actual Annular Ring Width = 26,97 in.

    (per API-650 Section 5.5.2),

    W_int = Minimum Annular Ring Width (from Shell ID to Any Lap-Welded Joint) (t_Min_Annular_Ring exclusive of corrosion) = 390*t_Min_Annular_Ring/SQRT(H*G) = 390(0,236)/SQRT(50*0,8275) = 14,31 in.

    W_int = 24 in.

    < FLAT BOTTOM: ANNULAR SUMMARY >

    Bottom Plate Material : A-36 t.required = 0,2985 in. t.actual = 0,3125 in.

    Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0,236 in. t_Annular_Ring = 0,3725 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 26,97 in.

  • Page 31 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -648.015 lbf Anchorage NOT required for internal pressure.

    WIND MOMENT (Per API-650 SECTION 5.11)

    vs = Wind Velocity = 120 mph vf = Velocity Factor = (vs/120)^2 = (120/120)^2 = 1

    Wind_Uplift = Iw * 30 * vf = 1 * 30 * 1 = 30 lbf/ft^2

    API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0,962*36.000*7,368*0,0625/114,8^2 + 8*0,25) = 0,1158 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,2083 PSI 1.6*P_F41 = 0,1853 PSI

    Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(30,26,6803) = 26,6803 lbf/ft^2

    Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0,75*114,8^2/48 = 205,923 ft^2

    Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

    Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*114,8 = 57,4 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*57,4^2 = 10.351 ft^2

    M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (26,6803)(10.351)(57,4) = 15.851.728 ft-lbf

    Xs (Moment Arm of Wind Force on Shell) = H/2 = (55,2)/2 = 27,6 ft

    As (Projected Area of Shell) = H*(OD + t_ins / 6) = (55,2)(114,8 + 0/6) = 6.337 ft^2

    M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(1)(18)(6.337)(27,6) = 3.148.202 ft-lbf

  • Page 32 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    Mw (Wind moment) = M_roof + M_shell = 15.851.728 + 3.148.202 = 18.999.930 ft-lbf

    W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.)

    = W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2) = 348.209 + 44.427 - 0*(PI/4)(144)(114,8^2) = 392.636 lbf

    RESISTANCE TO OVERTURNING (per API-650 5.11.2)

    An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < MDL/1,5 2) Mw + 0,4MPi < (MDL + MF)/2

    Mw = Destabilizing Wind Moment = 18.999.930 ft-lbf

    MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3,1416*114,8^2/4)*(144)*(57,4) = 0 ft-lbf

    MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (348.209 + 44.427)*57,4 = 22.537.307 ft-lbf

    tb = Annular Bottom Ring thickness less C.A. = 0,3725 in.

    Lb = Minimum bottom annular ring width

    Lb = greater of 18 in. or 0,365*tb*SQRT(Sy_btm/H_liq) = 18 in.

    wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*0,3725*SQRT(36.000*50) = 2.334 lbf/ft

    MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (57,4)(2.334)(3,1416)(114,8) = 48.315.021 ft-lbf

    Criteria 1 0,6*(18.999.930) + 0 < 22.537.307/1,5 Since 11.399.960 < 15.024.870, Tank is stable.

    Criteria 2 18.999.930 + 0,4 * 0 < (22.537.307 + 48.315.021)/2 Since 18.999.930 < 35.426.160, Tank is stable.

  • Page 33 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    RESISTANCE TO SLIDING (per API-650 5.11.4)

    F_wind = vF * 18 * As = 1 * 18 * 6.337 = 114.065 lbf

    F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + RoofStruct + W_min_Liquid) = 0,4 * (44.427 + 348.209 + 110.560 + 194.073 + 0) = 278.908 lbf

    No anchorage needed to resist sliding since

    F_friction > F_wind

    Anchorage NOT required since Criteria 1, Criteria 2, and Sliding ARE acceptable.

  • Page 34 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2

    < Non ASCE7 (Sp) Method >

    WEIGHTS Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.) = 401.885 lbf Wf = Weight of Floor (Incl. Annular Ring) = 134.870 lbf Wr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul. = 320.548 lbf

  • Page 35 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    SEISMIC VARIABLES SUG = Seismic Use Group (Importance factor depends on SUG) = III Site Class = E Sp = Design level peak ground acceleration parameter for sites not addressed by ASCE methods = 0,38 Decimal %g Ss = Design Spectral Response Param. (5% damped) for Short Periods (T=0.2 sec)(Ss = 2.5*Sp per E.4.3 formula E.4.3-1) = 0,95 Decimal %g S1 = Design Spectral Response Param. (5% damped) for 1-Second Periods (T=1.0 sec)(S1 = 1.25*Sp per E.4.3 formula E.4.3-2) = 0,475 Decimal %g T_L = Regional Dependent Transition Period for Long Period Ground Motion (per API-650 E.4.6.1 for regions outside the USA) = 4 sec. Av = Vertical Earthquake Acceleration Coefficient = 0 Decimal %g Q = Scaling factor from the MCE to design level spectral accelerations = 1 Fa = Acceleration-based site coefficient (at .2 sec period)(Table E-1) = 0,96 Fv = Velocity-based site coefficient (at 1 sec period)(Table E-2) = 2,4 I = Importance factor defined by Seismic Use Group = 1,5 Rwi = Force reduction factor for the impulsive mode using allowable stress design methods. = 4 Rwc = Force reduction factor for the convective mode using allowable stress design methods. = 2 Ci = Coefficient for impulsive period of tank system (Fig E-1) = 6,56 tu = Equivalent uniform thickness of tank shell = 0,4914 in. Density = Density of tank product. SG*62.4 = 51,636 lbf/ft^3 E = Elastic modulus of tank material (bottom shell course) = 28.799.999 PSI Sds = The design spectral response acceleration param. (5% damped) at short periods (T = 0.2 sec) based on ASCE7 methods. = Q*Fa*Ss = 1*0,96*0,95 = 0,912 decimal %g Sd1 = The design spectral response acceleration param. (5% damped) at 1 second based on ASCE7 methods. = Q*Fv*S1 = 1*2,4*0,475 = 1,14 decimal %g

  • Page 36 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    E.4.5 STRUCTURAL PERIOD OF VIBRATION E.4.5.1 Impulsive Natural Period Ti = (1/27,8)*(Ci*H)/((tu/D)^0,5)*(Density^0,5/E^0,5) = 0,24 sec. E.4.5.2 Convective (Sloshing) Period Ks = 0,578/SQRT(TANH(3,68*H/D)) = 0,578/SQRT(TANH(3,68/2,296)) = 0,6019 Tc = Ks*SQRT(D) = 0,6019*SQRT(114,8) = 6,45 sec. E.4.6.1 Spectral Acceleration Coefficients Ai = Impulsive spectral acceleration parameter = MAX(2.5*Q*Fa*Sp*I/Rwi,0,007,0,6255*Sp*I/Rwi) = MAX(2,5*1*0,96*0,38*1,5/4,0,007,0,6255*0,38*1,5/4) = MAX(0,342,0,007,0,0891) = 0,342 decimal %g K = Coefficient to adjust spectral acceleration from 5% - 0.5% damping = 1,5 Ac = Convective spectral acceleration parameter = 2,5*K*Q*Fa*Sp*TS*T_L/Tc^2*I/Rwc = 2,51,5*1*0,96*0,38*1,25*4/6,45^2*1,5/2 = 0,1233 decimal %g

    E.6.1.1 EFFECTIVE WEIGHT OF PRODUCT D/H = Ratio of Tank Diameter to Design Liquid Level = 2,296 Wp = Total Weight of Tank Contents based on S.G. = 26.730.530 lbf Wi = Effective Impulsive Portion of the Liquid Weight = TANH(0,866*D/H)/(0,866*D/H)*Wp = TANH(0,866*2,296)/(0,866*2,296)*26.730.530 = 12.948.860 lbf Wc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0,23*D/H*TANH(3,67*H/D)*Wp = 0,23*2,296*TANH(3,67/2,296)*26.730.530 = 13.006.810 lbf Weff = Effective Weight Contributing to Seismic Response = Wi + Wc = 25.955.670 lbf Wrs = Roof Load Acting on Shell, including 10% of Live Load = 63.174 lbf

    E.6.1 DESIGN LOADS Vi = Design base shear due to impulsive component from effective weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0,342*(401.885 + 320.548 + 134.870 + 12.948.860) = 4.721.709 lbf Vc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0,1233*13.006.810 = 1.603.869 lbf V = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(4.721.709^2 + 1.603.869^2) = 4.986.675 lbf

  • Page 37 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCES Xs = Height from Bottom to the Shell's Center of Gravity = 23,162 ft RCG = Height from Top of Shell to Roof Center of Gravity = 0,897 ft Xr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 55,2 + 0,897 = 56,097 ft

    E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENT Xi = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for Ringwall Moment = 0,375*H = 0,375*50 = 18,75 ft Xc = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for Ringwall Moment = (1-(COSH(3,67*H/D)-1)/((3,67*H/D)*SINH(3,67*H/D)))*H = (1-(COSH(1,5984)-1)/((1,5984)*SINH(1,5984)))*50 = 29,24 ft

    E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENT Xis = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for the Slab Moment = 0,375*[1 + 1,333*[(0,866*D/H)/TANH(0,866*D/H)-1]]*H = 0,375*[1 + 1,333*[(0,866*2,296)/TANH(0,866*2,296)-1]]*50 = 45,35 ft Xcs = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for the Slab Moment = (1-(COSH(3,67*H/D)-1,937)/((3,67*H/D)*SINH(3,67*H/D)))*H = (1-(COSH(1,5984)-1,937)/((1,5984)*SINH(1,5984)))*50 = 41,6 ft

    E.6.1.4 Dynamic Liquid Hoop Forces 0,75 * D = 86,1 D/H = 2,296 SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT- ft ft lbf/in lbf/in lbf lbf/in lbf/in Shell #1 7,9 49 3519,08 510,259 12350 23136 12791 Shell #2 7,9 41,1 3408,94 530,893 10398 24619 12352 Shell #3 7,9 33,2 3123,04 585,757 8447 26570 12045 Shell #4 7,9 25,3 2661,36 678,386 6496 21126 8570 Shell #5 7,9 17,4 2023,91 814,754 4545 21526 7562 Shell #6 7,9 9,5 1210,691003,653 2593 13330 3265 Shell #7 7,8 1,6 221,711257,261 642 7675 -2539

  • Page 38 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    E.6.1.5 Overturning Moment Mrw = Ringwall momentPortion of the total overturning moment that acts at the base of the tank shell perimeter Mrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0,5 = ((0,342*(12.948.860*18,75+401.885*23,162+320.548*56,097))^2 + (0,1233*13.006.810*29,24)^2)^0,5 = 103.591.300 lbf-ft Ms = Slab moment (used for slab and pile cap design) Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0,5 = ((0,342*(12.948.860*45,35+401.885*23,162+320.548*56,097))^2 + (0,1233*13.006.810*41,6)^2)^0,5 = 220.502.900 lbf-ft

    E.6.2 RESISTANCE TO DESIGN LOADS E.6.2.1.1 Self-Anchored Fy = Minimum yield strength of bottom annulus = 36.000 psi Ge = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0,4*Av) = 0,8275*(1 - 0,4*0) = 0,827 1,28*H*D*Ge = 6.076 lbf/ft

    wa = Force resisting uplift in annular region = 7,9*ta*(Fy*H*Ge)^0,5

  • Page 39 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    E.7.3 Piping Flexibility E.7.3.1 Estimating tank uplift Annular Plate: A-36 Fy = 36.000 PSI yu = Estimated uplift displacement for self-anchored tank = Fy*L^2/(83300*ta) = 36.000*2,3741^2/(83300*0,3725) = 6,5391 in.

    E.6.2.1.1.1 Anchorage Ratio J = Mrw/(D^2*[wt*(1-0,4*Av)+wa-0,4*wint]) = 103.591.300/(114,8^2*[1.289*(1-0,4*0)+3.392-0,4*0]) = 1,679 The tank not stable and cannot be self anchored for design load.

    E.6.2.2 Maximum Longitudinal Shell-Membrane Compressive Stress E.6.2.2.1 Shell Compression in Self-Anchored Tanks ts1 = Thickness of bottom shell course minus C.A. = 0,6875 in. SigC = Maximum longitudinal shell compression stress = ((Wt*(1+0,4*Av) + wa)/(0,607-0,1867*J^2.3) - wa)/(12*ts1) = ((1.289*(1+0,4*0) + 3.392)/(0,607-0,1867*1,679^2.3) - 3.392)/(12*0,6875) = -73.846 psi

    E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression Stress Fty = Minimum specified yield strength of shell course = 36.000 psi G*H*D^2/ts1^2 = 1.153.656 Fc = Allowable longitudinal shell-membrane compressive stress = 10^6*ts1/D = 10^6*0,6875/114,8 = 5.989 psi Shell Membrane Compressive Stress OK

    E.6.2.4 Hoop Stresses Shell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK Membrane Stress Shell #1 23136 30926, 32400, 30926, 0,5768 Yes Shell #2 24619 30926, 32400, 30926, 0,5103 Yes Shell #3 26570 30926, 32400, 30926, 0,4384 Yes Shell #4 21126 30926, 32400, 30926, 0,3614 Yes Shell #5 21526 30926, 32400, 30926, 0,28 Yes Shell #6 13330 30926, 32400, 30926, 0,1972 Yes Shell #7 7675 30926, 32400, 30926, 0,1245 Yes

    Shell Membrane Hoop Stress OK? Verdadero

    Tank Adequate with No Anchors? Falso Using 10 ft spacing, Min. # of Anchor Bolts = 36

  • Page 40 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:58

    E.6.2.1.2 Mechanically-Anchored Number of Anchors = 40 Max Spacing = 10 ft Actual Spacing = 9,02 ft Minimum # Anchors = 36 Wab = Design Uplift Load on Anchors per unit circumferential length = (1,273*Mrw)/D^2 - wt*(1-0,4*Av) + wint = (1,273*103.591.300)/114,8^2 - 1.289*(1-0,4*0) + 0 = 8.717 lbf/ft Pab = Anchor seismic design load = Wab*PI*D/Na = 8.717*PI*114,8/40 = 78.596 lbf Pa = Anchorage chair design load = 3 * Pab = 3*78.596 = 235.788 lbf

    E.6.2.2.2 Shell Compression in Mechanically-Anchored Tanks SigC_anchored = Maximum longitudinal shell compression stress = (Wt*(1+0,4*Av) + 1,273*Mrw/D^2)/(12*ts1) = (1.289*(1+0,4*0) + 1,273*103.591.300/114,8^2)/(12*0,6875) = 1.369 psi Fc = longitudinal shell-membrane compression stress = 5.989 psi Shell Membrane Compressive Stress OK

    Shell Membrane Hoop Stress OK? Verdadero

    Tank Adequate with Anchors? Verdadero

    E.7 Detailing Requirements E.7.1 Anchorage SUG = III Sds = 0,912 decimal %g E.7.1.1 Self Anchored NOTE: Butt-welded annular plates are required. Annular plates exceeding 3/8 in. thickness shall be butt-welded The weld of the shell to annular plate shall be checked for the design uplift load.

    E.7.1.2 Mechanically Anchored Minimum # anchors OK = True

  • Page 41 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:59

    E.7.2 Freeboard - Sloshing TL_sloshing = 4 sec. I_sloshing = 1,5 Tc = 6,45 K = 1,5 Sd1 = 1,14 Af = K*Sd1*TL/Tc^2 = 1,5*1,14*4/6,45^2 = 0,1644 Delta_s = Height of sloshing wave above max. liquid level = 0,5*D*Af = 0,5*114,8*0,1644 = 9,4373 ft 0,7*Delta_s = 6,6061 ft Per Table E-7, A freeboard equal to Delta_s is required unless one of the following alternatives are provided: 1. Secondary containment is provided to control product spill. 2. The roof and tank shell are designed to contain sloshing liquid.

    E.7.6 Sliding Resistance mu = 0,4 Friction coefficient V = 4.986.675 lbf Vs = Resistance to sliding = mu*(Ws + Wr + Wf + Wp)*(1 - 0,4*Av) = 0,4*(401.885+320.548+134.870+26.730.530)*(1-0,4*0) = 11.035.130 lbf

    E.7.7 Local Shear Transfer Vmax = 2*V/(PI*D) = 2*4.986.675/(PI*114,8) = 27.653 lbf/ft

  • Page 42 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:59

    ANCHOR BOLT DESIGN

    Bolt Material : A-193 Gr B7 Sy = 105.000 PSI

    < Uplift Load Cases, per API-650 Table 5-21b >

    D (tank OD) = 114,8 ft P (design pressure) = 0 INCHES H2O Pt (test pressure per F.4.4) = P = 0 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0,25 in. Mw (Wind Moment) = 18.999.930 ft-lbf Mrw (Seismic Ringwall Moment) = 103.591.300 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell)

    W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell)

    W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell)

    For Tank with Structural Supported Roof, W1 = Corroded Shell + Shell Insulation = 348.209 + 0 = 348.209 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates Supported by Shell + Roof Dead Load Supported by Shell = 348.209 + 0 + 44.427 * [1 + 1.493.423*-0,0000004/(144 * 105.733)] = 392.636 lbf W3 = New Shell + Shell Insulation = 398.934 + 0 = 398.934 lbf

    Uplift Case 1: Design Pressure Only U = [(P - 8*t_h) * D^2 * 4,08] - W1 U = [(0 - 8*0,25) * 114,8^2 * 4,08] - 348.209 = -455.750 lbf bt = U / N = -11.394 lbf

    Sd = 15.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

    Uplift Case 2: Test Pressure Only U = [(Pt - 8*t_h) * D^2 * 4,08] - W1 U = [(0 - 8*0,25) * 114,8^2 * 4,08] - 348.209 = -455.750 lbf bt = U / N = -11.394 lbf

    Sd = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

  • Page 43 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:59

    Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

    Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5,208 = 26,6803/5,208 = 5,123 IN. H2O PWS = vF * 18 = 1 * 18 = 18 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 18*(114,8+0/6)*55,2^2/2 = 3.148.202 ft-lbf U = PWR * D^2 * 4,08 + [4 * MWH/D] - W2 = 5,123*114,8^2*4,08+[4*3.148.202/114,8]-392.636 = -7.479 lbf bt = U / N = -187 lbf

    Sd = 0,8 * 105.000 = 84.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

    Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0,4*Av) U = [4 * 103.591.300 / 114,8] - 392.636*(1-0,4*0) = 3.216.818 lbf bt = U / N = 80.420 lbf

    Sd = 0,8 * 105.000 = 84.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 80.420/84.000 = 0,957 in^2

    Uplift Case 6: Design Pressure + Wind Load U = [(0,4*P + PWR - 8*t_h) * D^2 * 4,08] + [4 * MWH / D] - W1 = [(0,4*0+5,123-8*0,25)*114,8^2 * 4,08]+[4*3.148.202 / 114,8] - 348.209 = -70.593 lbf bt = U / N = -1.765 lbf

    Sd = 20.000 = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

    Uplift Case 7: Design Pressure + Seismic Load U = [(0,4*P - 8*t_h)*D^2 * 4,08] + [4*Mrw/D] - W1*(1-0,4*Av) = 3.153.704 lbf bt = U / N = 78.843 lbf

    Sd = 0,8 * 105.000 = 84.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 78.843/84.000 = 0,939 in^2

  • Page 44 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:59

    Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

    < ANCHOR BOLT SUMMARY >

    Bolt Root Area Req'd = 0,957 in^2

    d = Bolt Diameter = 1,321 in. n = Threads per inch = 8 A_s = Actual Bolt Root Area = 0,7854 * (d - 1,3 / n)^2 = 0,7854 * (1,321 - 1,3 / 8)^2 = 1,0541 in^2

    Exclusive of Corrosion, Bolt Diameter Req'd = 1,321 in. (per ANSI B1.1)

    Actual Bolt Diameter = 1,321 in.

    Bolt Diameter Meets Requirements.

    Seismic calculations require anchorage, Minimum # Anchor Bolts = 36 per API-650 E.6.2.2.

    Actual # Anchor Bolts = 40 Anchorage Meets Spacing Requirements.

  • Page 45 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:55:59

    ANCHOR CHAIR DESIGN (from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII)

    Entered Parameters

    Chair Material: A-36 Top Plate Type: DISCRETE Chair Style: VERT. TAPERED

    a : Top Plate Width = 4,000 in. b : Top Plate Length = 3,876 in. k : Verical Plate Width = 2,500 in.

    m : Bottom Plate Thickness = 0,3125 in. t : Shell Course + Repad Thickness = 1,5000 in.

    r : Nominal Radius to Tank Centerline = 688,800 in.

    Design Load per Bolt: P = 120,63 KIPS (1.5 * Maximum from Uplift Cases)

    d = Bolt Diameter = 1,321 in. n = Threads per unit length = 8 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1,321 - 1.3 / 8)^2 = 1,054 in^2

    Bolt Yield Load = A*Sy/1000 (KIPS) = 1,054*105.000/1000 = 110,67 KIPS

    Seismic Design Bolt Load = Pa = 3*Pab = 235,788 KIPS

    Anchor Chairs will be designed to withstand Design Load per Bolt.

    Anchor Chair Design Load, P = 120,63 KIPS

    For Anchor Chair material: A-36 Per API-650 Table 5-2b, Sd_Chair = 20 KSI

    Since bottom t = 100 mph, h_min is 12 in.

    For Discrete Top Plate, Max. Chair Height Recommended : h

  • Page 46 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:56:00

    f_min = d/2 + 0,125 = 0,786 in. f = f_min = 0,786 in.

    c_min = SQRT[P / Sd_Chair / f * (0,375 * g - 0,22 * d)] = SQRT[120,63 / 28,8 / 0,786 * (0,375 * 2,321 - 0,22 * 1,321)] = 1,758 in. c >= c_min = 1,758 in.

    j_min = MAX(0,5, [0,04 * (h - c)]) = MAX(0,5, [0,04 * (12,000 - 1,758)]) = 0,5 in. j = j_min = 0,5 in.

    b_min = e_min + d + 1/4 = 1,743 + 1,321 + 1/4 = 3,314 in.

    S_actual_TopPlate = P / f / c^2 * (0,375 * g - 0,22 * d) = 120,63/0,786/1,758^2 * (0,375 * 2,321 - 0,22 * 1,321) = 28,79 KSI

    ClearX = Minimum Clearance of Repad from Anchor Chair = MAX(2, 6*Repad_t, 6*t_Shell_1) = MAX(2, 6*0,75, 6*0,75) = 4,5 in.

    Minimum Height = h + ClearX = 16,5 in. Minimum Width = a + 2*ClearX = 13 in.

    (For Discrete Top Plate) S_actual_ChairHeight = P * e / t^2 * F3 where F3 = F1 + F2,

    now F1 = (1,32 * z) / (F6 + F7) where F6 = (1,43 * a * h^2) / (r * t) and F7 = (4 * a * h^2)^(1/3) and z = 1 / (F4 * F5 + 1) where F4 = (0,177 * a * m) / SQRT(r * t) and F5 = (m / t)^2

    yields F5 = (0,3125 / 1,5)^2 = 0,0434 yields F4 = (0,177 * 4, * 0,3125) / SQRT(688,8 * 1,5) = 0,0069 yields z = 1 / (0,0069 * 0,0434 + 1) = 0,9997 yields F7 = (4 * 4, * 12,^2)^(1/3) = 13,2077 yields F6 = (1,43 * 4, * 12,^2) / (688,8 * 1,5) = 0,7972 yields F1 = (1,32 * z) / (0,7972 + 13,2077) = 0,0942

  • Page 47 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:56:00

    now F2 = 0,031 / SQRT(r * t) yields F2 = 0,031 / SQRT(688,8 * 1,5) = 0,001 yields F3 = 0,0942 + 0,001 = 0,0952 yields S_actual_ChairHeight = 120,63 * 1,743 / 1,5^2 * 0,0952 = 8,8952 KSI

    Maximum Recommended Stress is 25 KSI for the Shell (per API-650 E.6.2.1.2) Sd_ChairHeight = 25 KSI

    < ANCHOR CHAIR SUMMARY >

    S_actual_TopPlate Meets Design Calculations (within 105% of Sd_Chair) S_actual_TopPlate/Sd_Chair = 28,79/30,856 = 93,3% S_actual_ChairHeight Meets Design Calculations (within 105% of Sd_ChairHeight) S_actual_ChairHeight/Sd_ChairHeight = 8,8952/25 = 35,6%

  • Page 48 of 49CE&SAC - TANQUE DE 90MB (ETEN)

    TANK REPORT: Printed - 13/02/2015 15:56:00

    CAPACITIES and WEIGHTS

    Maximum Capacity (to upper TL) : 4.268.003 gal Design Capacity (to Max Liquid Level) : 3.863.040 gal Minimum Capacity (to Min Liquid Level) : 0 gal NetWorking Capacity (Design - Min.) : 3.863.040 gal

    New Condition Corroded -----------------------------------------------------------

    Shell 398.934 lbf 348.209 lbf Roof Plates 105.733 lbf 105.733 lbf Rafters 33.296 lbf 33.296 lbf Girders 1.545 lbf 1.545 lbf Columns 159.232 lbf 159.232 lbf Bottom 134.870 lbf 110.560 lbf Stiffeners 2.951 lbf 2.951 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf -------------------------------------