19
Tailoring Nanostructured Catalysts in a Hydrogen Economy Prof. Paolo FORNASIERO Department of Chemistry University of Trieste, Italy [email protected] Le filiere dell’energia- Trieste, 26.11.2010

Tailoring Nanostructured Catalysts in a Hydrogen Economy

  • Upload
    paulos

  • View
    17

  • Download
    1

Embed Size (px)

DESCRIPTION

Tailoring Nanostructured Catalysts in a Hydrogen Economy. Prof. Paolo FORNASIERO Department of Chemistry University of Trieste, Italy [email protected]. Le filiere dell’energia- Trieste, 26.11.2010. H 2 PRODUCTION TECHNOLOGIES. Eolic. Electrolysis. Hydro- electric. Reforming. Solar. - PowerPoint PPT Presentation

Citation preview

Page 1: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Tailoring Nanostructured Catalysts in a Hydrogen Economy

Prof. Paolo FORNASIERODepartment of ChemistryUniversity of Trieste, Italy

[email protected]

Le filiere dell’energia- Trieste, 26.11.2010

Page 2: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Electrolysis

Reforming

Fermentation+ Reforming

Gasification Pyrolysis

+ Reforming

Biomass

Geothermal

Solar

CarbonOil

Gas

Hydro-electric

Eolic

H2 PRODUCTION TECHNOLOGIESH2 PRODUCTION TECHNOLOGIES

size

of

pro

du

ctio

n

cost

of

avai

lab

le f

eed

sto

cks

size

of

pro

du

ctio

n

cost

of

avai

lab

le f

eed

sto

cks

Page 3: Tailoring Nanostructured Catalysts in a Hydrogen Economy

H2 PRODUCTION & PURIFICATIONH2 PRODUCTION & PURIFICATION

Active and stable catalysts are required for large scale applications

Active and stable catalysts are required for large scale applications

Most efficient catalyst (electrodes) for H2 utilization in Fuel Cells

Most efficient catalyst (electrodes) for H2 utilization in Fuel Cells

Proton Exchange Membrane Fuel Cells

(PEM-FC)

Page 4: Tailoring Nanostructured Catalysts in a Hydrogen Economy

encapsulation of preformed metal nanoparticles into

MOx through different

methodologies

encapsulation of preformed metal nanoparticles into

MOx through different

methodologies

EMBEDDING APPROACHEMBEDDING APPROACH

Page 5: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Rh@Al2O3 FOR METHANE PARTIAL OXIDATION

Rh@Al2O3 FOR METHANE PARTIAL OXIDATION

2H 2 CO 24 O 2

1 CH 2H 2 CO 24 O 2

1 CH

Page 6: Tailoring Nanostructured Catalysts in a Hydrogen Economy

0

20

40

60

80

100

0 50 100 150 200 250

Time (h)

CH

4 c

on

vers

ion

(%

)

Impregnated

Protected

1% Rh impregnated vs 1% Rh embedded @Al1% Rh impregnated vs 1% Rh embedded @Al22OO33

Rh@Al2O3 for MPORh@Al2O3 for MPO

2H 2 CO 24 O 2

1 CH 2H 2 CO 24 O 2

1 CH

T. Montini, A. M. Condó, N. Hickey, F. Lovey, L. De Rogatis, P. Fornasiero and M. Graziani, Applied Catalysis B: Environmental 73 (2007) 84-97

T. Montini, A. M. Condó, N. Hickey, F. Lovey, L. De Rogatis, P. Fornasiero and M. Graziani, Applied Catalysis B: Environmental 73 (2007) 84-97

T = 750°CT = 750°C

Page 7: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Ru@LSZ FOR NH3 DECOMPOSITIONRu@LSZ FOR NH3 DECOMPOSITION

3NH 2 22 H 3 N kJ/mol 92 HO298K

Page 8: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Ru@LSZ for NH3 DECOMPOSITIONRu@LSZ for NH3 DECOMPOSITION

B. Lorenzut, T. Montini, C. C. Pavel, M. Comotti, F. Vizza, C. Bianchini and P. Fornasiero, ChemCatChem 2 (2010), 1096-1106 .

GHSVGHSV

4000 mL g-1 h-14000 mL g-1 h-1

30000 mL g-1 h-130000 mL g-1 h-1

Reaction with pure NH3Reaction with pure NH3

T = 500°CT = 500°C

T = 700°CT = 700°C

Page 9: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION

Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION

Page 10: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTIONCu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION

h > 3.0 eVh > 3.0 eV

Water splitting:Very low efficiency

Water splitting:Very low efficiency

Organic molecule as sacrificial agents

Organic molecule as sacrificial agents

Renewable compoundsRenewable compounds

Page 11: Tailoring Nanostructured Catalysts in a Hydrogen Economy

CO2CO2

V. Gombac, L. Sordelli, T. Montini, J. J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal and P. Fornasiero,Journal of Physical Chemistry A 114 (2010), 3916-3925

V. Gombac, L. Sordelli, T. Montini, J. J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal and P. Fornasiero,Journal of Physical Chemistry A 114 (2010), 3916-3925

Experimental condition:

- Medium pressure Hg lamp 125W

- 0.500 g catalyst

- 240 mL of solution

- Argon flow 15 mL/min

Ar in Ar in Ar out

Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTIONCu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION

0 1 2 3 4 5 60

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 500

200

400

600

800

1000

1200

1400

1600Ethanol/water 1:1Ethanol/water 1:1 Glycerol 1MGlycerol 1M

Evo

lutio

n ra

te (m

ol/h

)E

volu

tion

rate

(m

ol/h

)

Evo

lutio

n ra

te (m

ol/h

)E

volu

tion

rate

(m

ol/h

)

Time (h)Time (h)

Time (h)Time (h)

Cu@TiO2Cu@TiO2 Cu/TiO2

Cu/TiO2vsvs

H2H2

Page 12: Tailoring Nanostructured Catalysts in a Hydrogen Economy

FE-SEMFE-SEM

OO22 + H + H22OO

atmosphereatmosphere

granular Cugranular Cu22O O

films…films…

……CuO 1D CuO 1D

nanoarchitecturesnanoarchitectures

200 nm

550°C

1 μm

550°C

dry Odry O22

atmospheratmospheree

plane-viewplane-view cross-sectioncross-section

plane-viewplane-view cross-sectioncross-section

Page 13: Tailoring Nanostructured Catalysts in a Hydrogen Economy

H2 p

roduct

ion/L

h-1 m

-2 50

40

30

20

10

00 2 4 6

Cu2O

CuO

time/h

H2 p

roduct

ion/L

h-1 m

-2

0

1

2

3

4

5

0 2 4 6time/h

Cu2O

CuO

Fornasiero P. et al., ChemSusChem 2009, 2, 230

SignificantlySignificantly

betterbetter

performancesperformancesthan commercial Cuthan commercial CuxxO O

(<580 (<580 L hL h-1-1 m m--22 g g--11))

Photocatalytic splitting of HPhotocatalytic splitting of H22O/CHO/CH33OH (1:1) OH (1:1) solutionssolutions

Effect of catalyst Effect of catalyst recyclingrecycling

Radiation switched offRadiation switched offfor 12 h for 12 h

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25time / h

high time stabilityof the catalyst

H2 p

roduct

ion/L

h-1 m

-2 g

-1

HH22 production production

UV-Vis (125 W)UV-Vis (125 W)

Vis (125 W)Vis (125 W)

Activity normalized

for the catalyst amount

CuO

Page 14: Tailoring Nanostructured Catalysts in a Hydrogen Economy

DEVELOPMENT OF ADVANCED ELECTRODES FOR SOFCs

DEVELOPMENT OF ADVANCED ELECTRODES FOR SOFCs

Page 15: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Pd-S bondstable

COOH-Ce bondstableCe-OR bond

not stable

CORE-SHELL STRUCTURE DESIGNCORE-SHELL STRUCTURE DESIGN

Page 16: Tailoring Nanostructured Catalysts in a Hydrogen Economy

Pd(1%)@CeO2(9%)/Al2O3

Al2O3

CO oxidation

WGSR Methanol Steam

ReformingJACS 2010, 132, 1402-1409

Pd@CeO2 DISPERSIBLE STRUCTURES AS BUILDING BLOCKS

Pd@CeO2 DISPERSIBLE STRUCTURES AS BUILDING BLOCKS

Page 17: Tailoring Nanostructured Catalysts in a Hydrogen Economy

ZrO2-based solid electrolite 8-YSZ

Cathode:Perovskite ABO3

La1-xSrxNi0.6Fe0.4O3-

Anode:LSCM + CeO2 + Pd

LSCM =La0.8Sr0.2Cr0.5Mn0.5O3

Catalytic componentCeO2-Pd

ADVANCED ELECTRODES for SOFCsADVANCED ELECTRODES for SOFCs

Page 18: Tailoring Nanostructured Catalysts in a Hydrogen Economy

50 μm

50 μm

100 μm

ADVANCED ELECTRODES for SOFCs: ANODEADVANCED ELECTRODES for SOFCs: ANODE

Page 19: Tailoring Nanostructured Catalysts in a Hydrogen Economy

- 15%

- 26%

- 43%

Pd/CeO2-1

Pd/CeO2-2

Pd@CeO2

Maxim

um

pow

er

den

sity

(W

/cm

2)

Time (h)

- 26 %

- 42 %

- 15 %

ADVANCED ELECTRODES for SOFCs: ANODEADVANCED ELECTRODES for SOFCs: ANODE