26
Institute for Micro Process Engineering (IMVT) www.kit.edu Synthetic fuels from carbon dioxide and renewable electrical energy (e-fuels) enabled by compact microchannel reactors 9th International Freiberg Conference on IGCC/XTL Technologies Berlin, June 4-6, 2018, Berlin, Germany R. Dittmeyer KIT – The Research University of the Helmholtz Association

Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

www.kit.edu

Synthetic fuels from carbon dioxide and renewable electrical energy (e-fuels) enabled by compact microchannel reactors

9th International Freiberg Conference on IGCC/XTL Technologies Berlin, June 4-6, 2018,Berlin, Germany

R. Dittmeyer

KIT – The Research University of the Helmholtz Association

Page 2: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Outline

R. Dittmeyer04.06.2018

Why e-fuels?

Technical and economic challenges

Modular technology for decentralised production of e-fuels via Fischer-Tropsch synthesis

Advanced reactor technology for methanation

Conclusion

�2

Page 3: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Current Status vs. Goals of the Energiekonzept 2050

R. Dittmeyer04.06.2018�3

Development of renewable

energiesMore efficient use of energy

Symbolic signing of the Paris Agreement by Secretary Kerry at the Assembly of the United Nations on the Day-of-the-Earth April 22, 2016 in New York Source: Wikipedia

UN COP 21 Agreement (12.12.2015)- global warming shall be limited to „well below“ 2°C - signed by all Nations

Page 4: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Greenhouse Gas Emissions in Germany (Mio. t CO2 Equiv.)

R. Dittmeyer04.06.2018�4

Data source: Umweltbundesamt, Berlin, 2017

613880

66

132

164

283

427

EnergyIndustryTransportHouseholdsTrade, Commerce & ServicesAgricultureWaste & WastewaterOther

1990 Σ 1.251

Huge efforts needed in all sectors!

2050

250

63

Target

Energy

Transport

Industry

Reduction by 80 to 95%

Chemical: 65.4

531167

88

166

188

332

2016 Σ 906#

#: Estimate for Trade, Commerce & Services included in Other

Energy

Industry

Transport

Chemical: 44.4

House-holds

Households

2017: 170,6

2017: 318,4

2017: 192,9

2017: 904,7

Page 5: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Renewable Energy in Transport in Germany

R. Dittmeyer04.06.2018�5

Source: “Erneuerbare Energien in Zahlen - Nationale und internationale Entwicklung in 2016“, Bundesministerium für Wirtschaft und Energie (BMWi), Berlin, September 2017

Final energy consumption, TWh

Options:e-mobility Hydrogen in fuel cells 2nd generation biofuels Synthetic fuels from CO2, i.e., e-fuels or direct solar fuels

6.1 Energieverbrauch im Verkehrssektor

Der Endenergieverbrauch im Verkehr hat sich im Jahr 2015 leicht erhöht. In der Summe aller Verkehrsträger ist der Endenergieverbrauch im Verkehrssektor im Jahr 2015 mit 2.619 PJ gegenüber dem Vorjahr um 0,1 Prozent gestiegen (siehe Abbildung 6.1). Der Verkehrssektor macht damit etwa 30 Prozent des gesamten Endenergieverbrauchs in Deutsch-land aus.

Bis auf den Schienenverkehr stagniert der Energiever-brauch in allen Verkehrsträgern oder steigt an. Wie Tabelle 6.1 zeigt, sind die Verbräuche auf der Straße und bei der Binnenschifffahrt gestiegen – sowohl im Vergleich zum Vorjahr als auch gegenüber 2005. Im Luftverkehr (interna-tional und national) zeigen sich steigende Verbräuche gegenüber 2005 und kaum Veränderung gegenüber dem Vorjahr. Im Schienenverkehr nahm der Verbrauch gegen-über 2014 ab. Eine direkte Vergleichbarkeit gegenüber 2005 ist aufgrund einer Datenrevision bei der Schiene nicht gegeben, es kann aber von einer Abnahme ausgegangen werden.

Der Endenergieverbrauch im Verkehr ist gegenüber dem Basisjahr 2005 insgesamt um 1,3 Prozentpunkte angestie-gen. Im Durchschnitt hat der Endenergieverbrauch im Ver-kehr damit bisher seit 2005 jährlich etwa um rund 0,1 Pro-

in Europa seit 1997 bei der Fahrzeugeffizienz von Bestands-fahrzeugen, gemessen am Durchschnittsverbrauch je 100 Kilometer, und unabhängig von der Auslastung, keine nen-nenswerte Steigerung erreicht wurde (Lastauto-Omnibus 2015 in ICCT 2015). Insbesondere eine steigende Nachfrage nach höherer Motorleistung hat dies verhindert.

Effizienzgewinne verteilen sich ungleich auf die Verkehrs-träger. Ein Vergleich der spezifischen Verbräuche über alle Verkehrsträger auf Basis des TREMOD-Modells des Umwelt bundesamtes zeigt die größten Effizienzgewinne bei der Schiene, die den Effizienzzuwachs auf der Straße deutlich übertreffen: Im Güterverkehr sind die spezifischen Verbräuche auf der Schiene zwischen 2005 und 2014 um mehr als 30 Prozent zurückgegangen, im Personenverkehr sogar um mehr als 40 Prozent. Diese Methode basiert auf den Durchschnittsverbräuchen je Personenkilometer im Personenverkehr bzw. je Tonnenkilometer im Güterverkehr und bezieht somit auch Effizienzverbesserungen durch Lastmanagement und die Verringerung von Leerfahrten im Güterverkehr mit ein.

Der durchschnittliche Kraftstoffverbrauch von neu zuge-lassenen Pkw und Kombis ist in den letzten Jahren zurück-gegangen. Zwischen den Jahren 2008 und 2015 sank der Durchschnittsverbrauch insgesamt um 20 Prozent, wie die

offiziellen Zahlen des Kraftfahrtbundesamt zeigen. Diese auf modellierten Herstellerangaben beruhenden Zahlen zum Kraftstoffverbrauch neu zugelassener Fahrzeuge sind noch die einzig verfügbaren offiziellen Zahlen. Die Bundes-regierung setzt sich daher insbesondere auf der EU- und internationalen Ebene dafür ein, dass die neue WLTP-Typ-genehmigung für Pkw und leichte Nutzfahrzeuge mit ver-besserten Testverfahren und –parametern nun rasch zum Einsatz kommt, um die Repräsentativität der CO2-Typprüf-werte zu erhöhen und eine verbesserte Reproduzierbarkeit zu gewährleisten. Im Ergebnis sollen sich die Verbraucher beim Fahrzeugkauf wieder stärker auf die Prüfdaten verlas-sen können.

Eine Trendwende im Verkehr durch einen deutlich verrin-gerten Energieverbrauch ist und bleibt ein Langzeitprojekt. Der Endenergieverbrauch im Verkehr entwickelt sich ins-gesamt gegenläufig zu den Zielen des Energiekonzepts. Effizienzsteigerungen konnten dabei bislang die Zunahme des Energieverbrauchs im Verkehr durch die deutlich gestiegenen Verkehrsleistungen nicht kompensieren. Die Bundesregierung hat mit der Mobilitäts- und Kraftstoff-strategie (MKS) und dem Aktionsprogramm Klimaschutz 2020 daher bereits 2014 einen Mix aus Förderung, Bera-tung, Finanzierung und verbessertem Ordnungsrahmen geschaffen, der den Endenergieverbrauch im Verkehrssek-

6 VERKEHR 45

Tabelle 6.1: Energieverbräuche nach Verkehrsträger und Anstieg im Vergleich zum Basisjahr und zum Vorjahr

Quelle: AG Energiebilanzen 08/2016

2015 in PJ 2015 Anteil in % Änderung ggü. 2014 in %

Änderung ggü. 2005 in %

Straße 2.188,4 83,6 0,1 1,8

Luftverkehr 362,2 13,8 0,0 5,1

Schiene 54,2 2,1 -0,4 Datenrevision

Binnenschifffahrt 14,0 0,5 15,5 3,1

Gesamt 2.618,8 100 0,1 1,3

Source: “Die Energie der Zukunft“, Fünfter Monitoring-

Bericht zur Energiewende, Bundesministerium für

Wirtschaft und Energie (BMWi), Berlin, Dezember 2016

Share in gross consumption0

12,5

25

37,5

50

2005 2007 2009 2011 2013 2015

Biodiesel Vegetable oilBioethanol BiomethaneRenewable power

10

5

7,5

2,5

0

Share in total transport, %

Page 6: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Main Routes to CO2-Based e-Fuels and e-Chemicals

R. Dittmeyer04.06.2018�6�6

Resources Activation Catalytic syntheses

Renewable power

CO2 from ambient air

Non-food biomass

Unavoidable CO2

H2O

Non-equilibrium plasma

H2O/CO2-Co Electrolysis

Electrochemical CO2 reduction

FT route

MTG route

Oxygenate routes

CO/H2

Fuels / Chemicals

Kerosene

Wax

OME

Gasoline

Olefins

SNG Methanation

Hydrogenation LOHC

MeOH

DME

Building blocks

CH2O

H2O Electrolysis

CO

H2

Diesel

Page 7: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Outline

R. Dittmeyer04.06.2018

Why e-fuels?

Technical and economic challenges

Modular technology for decentralised production of e-fuels via Fischer-Tropsch synthesis

Advanced reactor technology for methanation

Conclusion

�7

Page 8: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Converting Renewable Power into Chemical Fuels

R. Dittmeyer04.06.2018

Challenges Approach / Breakthroughs Needed

Economics

Efficiency

Stability

Product Quality

Simpler and more compact plants through process integration Modular cost-effective technologies with good scalability Maximised reuse of heat and waste materials Improved catalysts and intensified reactors Reliability in dynamic operation

�8

Page 9: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Outline

R. Dittmeyer04.06.2018

Why e-fuels?

Technical and economic challenges

Modular technology for decentralised production of e-fuels via Fischer-Tropsch synthesis

Advanced reactor technology for methanation

Conclusion

�9

Page 10: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Low-Temperature Fischer-Tropsch Synthesis

R. Dittmeyer04.06.2018�10

FT Synthesis Product Recovery

Power Generation

Hydrogen Recovery

Wax Cracking

Liquid Storage

Syngas Preparation

Syngas Tail gas

Wax

Liquids

Hydrogen

Liquids

Associated Gas Biogas

CO2 / H2

Water

Steam / Heat

nCO + 2nH2 � -(CH2)n- + nH2O ΔHR = - 158 kJ/mol(CO)

Co catalyst

Low-T process (220°C, 30 bar)

CH4, C2H6, C3H8, ……C50H102

C1-C4 C5+

C5-C22 (liquid) C23-C50 (wax)

Syngas

Wax cracking:

C2nH4n+2 +H2Pt/ZSM−5! ⇀!!!!!↽ !!!!!! 2C2nH2n+2

n− paraffin isomerisation! ⇀!!!!!!↽ !!!!!!! i− paraffini− paraffin cracking! ⇀!!!!↽ !!!!! i− paraffin+ olefinolefin+H2

hydrogenation! ⇀!!!!!!↽ !!!!!!! i− paraffin

FT Synthesis:

Conventional GTL process scheme:

Page 11: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Reactor Design for Lab-Scale Testing

R. Dittmeyer04.06.2018�11

Outlet

Inlet

Heat transfer medium in

Heat transfer medium out

Slits for thermo-couples

Cover plate with optional heating

cartridges

Catalyst plates

Cooling plate

Cover plate with optional

heating cartridges

Heat transfer medium flow

Feed gas flow

ca. 30 cm

mm

Phase 1: Lab Reactor System

for details on the reactor, see: Myrstad et al., Catal. Today 2009, 147, 301-304.

Catalyst stop

Page 12: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Phase 1: Performance Assessment

R. Dittmeyer04.06.2018

Catalytic activity (C5+ per catalyst mass)

Reactor productivity (C5+ per reactor weight)

Space time yield (C5+ per reaction volume)

KIT (IMVT) 2.1 g/gh 16.7 bpd/t 1785 kg/m3h

velocys - 13 bpd/t 1600 kg/m3h

Oryx GTL – Sasol - 8 bpd/t 20.6 kg/m3h

Literature Review 1.4 g/gh (Pat.) or 2 g/gh (Lit.)

- -

1) S. LeViness, FT Product Manager, Presentation "Velocys Fischer-Tropsch Synthesis Technology – Comparison to Conventional FT Technologies”, AIChE Spring Meeting, San Antonio, Texas/USA (30-Apr-2013)

2) "2012 Interim Results”, Presentation to analysts of the Oxford Catalysts Group 2012, www.velocys.com

3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013

Lab system 2g/h

1 1

12

3

�12

KIT’s microchannel technology compared to conventional large-scale reactors

Page 13: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)R. Dittmeyer04.06.2018�13

Reaction plate

IMVT /

Phase 2: Validation and Scale-up

Cooled via a closed water/steam cycle (20 – 40 bar) 30 – 40 l/min input ~ 5 kg/d FT output

Cooled via a closed water/steam cycle (20-40 bar) 30-40 l/min syngas 5 kg/d FT products

Cooled via a closed water/steam cycle (20 – 40 bar) 30 – 40 l/min input ~ 5 kg/d FT output

Catalyst is applied in powder form (e.g. 50 - 200 µm) and undiluted

R. Dittmeyer et al., Curr. Opin. Chem. Eng. 2017, 17, 108-125. doi:10.1016/j.coche.2017.08.001

see also: www.ineratec.com

Combustion test at DLR

Page 14: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)R. Dittmeyer04.06.2018�14

Phase 2: Process Development Unit at IMVT

FTS pilot plant RWGS unit and FTS pilot plant

Page 15: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Phase 3: Demonstration with spin-off INERATEC

R. Dittmeyer04.06.2018�15

Kerosene synthesis unit for Energy Lab 2.0 (200 L/day)

Winner of the Cleantech Open Global Ideas Challenge,

San Francisco/USA, Jan. 22-24, 2018

up to 8 modules per container (1.600 L/day) ca. 1 MW H2 demand

Deutscher Gründerpreis TOP 3 StartUp’s 2018

Page 16: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Energy Lab 2.0 - Helmholtz Large-Scale R&D Infrastructure

R. Dittmeyer04.06.2018�16

Installation and „pilot“ operation of a plant network for power generation, energy storage, and energy use as a validation platform for new energy chains (9.75 Mio. €)

- Different (mainly renewable) primary energy carriers

- Energy storage systems using different technologies, i.e., battery system, power to gas, power to fuels

- Linking the electrical, heat and gas grid

BEHNISCH A R C H I T E K T E N

see also: https://www.elab2.kit.edu

Installation of a Simulation and Control Center for investigation of „smart“ energy systems (10 Mio. €)

- Smart energy system control laboratory

- Energy grids simulation and analysis laboratory

- Power hardware in-the-loop test facility

- Control, monitoring and visualisation center

Page 17: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Energy Lab 2.0 at KIT - Plant Network

R. Dittmeyer04.06.2018�17

Gasturbine/generator

<700Nm3/h<80bar;350°CCO/H2ca.1:1;1.4MWbioliqHPEntrained

flowgasifier5MWtherm.

Naturalgas

Methana?on(5-10Nm3/h)

Jetfuelsynthesis(FTS;5-10kg/h)

BaOerystorage(1MWh)

PVfield(1MW)

30bar40-70Nm3/h;H2/COx=2-3

H2-Tank

Hotgascleaning

CO2-Tank(Backup)

Gasolinesynthesis

Torch

10bar25-50Nm3/h;H2/COx=3-4

<40Nm3/h

PowertoGas

PowertoFuels

<1600Nm3/h40/80barCO/H2ca.1:1

<15Nm3/h

<50Nm3/h

<30Nm3/h

Powergrid/consumers(KIT)

100kWPEMElectrolyzer

CO2capture

100kWel.

100kWel.

100kWel.

Page 18: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Energy Lab 2.0 at KIT - Plant Network

R. Dittmeyer04.06.2018�18

1MWPVplant

1,3MWhLi-Ionbatterysystem

800m²SEnSSiCCLabs

bioliq®pilotplant

3„LivingLabs“

Power-to-Xcomplex

April6,2018

Page 19: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Outline

R. Dittmeyer04.06.2018

Why e-fuels?

Technical and economic challenges

Modular technology for decentralised production of e-fuels via Fischer-Tropsch synthesis

Advanced reactor technology for methanation

Conclusion

�19

Page 20: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Phase 1: Screening of Methanation Catalysts

R. Dittmeyer04.06.2018�20

Main reactions :

CO methanation: CO + 3H2! CH4 + H2O ΔHR0 = −206.3 kJ

mol

CO2 methanation: CO2 + 4H2! CH4 + 2H2O ΔHR0 = −165.1 kJ

mol

Side reactions :

Watergas-shift reaction: CO + H2O! CO2 + H2 ΔHR0 = −41.2 kJ

mol

Boudouard reaction: 2CO! C +CO2 ΔHR0 = −172.5 kJ

mol

Accomplished tasks: Evaluation of different catalysts regarding kinetics and operational stability Detailed assessment of the thermodynamics (conversion, carbon formation) Identification of a suitable window of operation for methanation of CO/CO2 mixtures

1 Step

Operation Regime XCO2

XCO

Page 21: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

350

400

450

500

0 20 40 60 80 100

Tem

pera

ture

(°C

)

Reactor axial position (L/L0)

27

21.1

15

10

Throughput [NL/min]

Institute for Micro Process Engineering (IMVT)�21

Phase 2: Conceptual Reactor Design

R. Dittmeyer04.06.2018�21

Geometry2 Slits; micro structured plates; filled with catalyst; particle size 400 - 500 µm 5 g commercial Ni/Al2O3-catalyst; diluted with SiC (300 - 400 µm)

Cooling2 Sections; micro channels 500 x 500 µm, co-current with pre-heated air, steam or water

Inlet Outlet

Heating cartridges

Cooling

TF ,in

TF ,in

2 mm

100 mm

50 mmTC ,in TC ,out

Th1 Th2 Th3 Th4 Th5

see also: M. Belimov et al., AIChE J. 2017, 63, 120-129.

!VSG >1mN3 h

2nd Prototype

Pwater = 20 bar, H2/CO2 = 4

ṁ1=19.0 g.min-1, ṁ2= 7 g.min-1

ṁ1=13.5 g.min-1, ṁ2=1.0 g.min-1

ṁ1=9.0 g.min-1, ṁ2= 0.1 g.min-1

ṁ1=3.0 g.min-1, ṁ2= 0.0 g.min-1

Page 22: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)�22

Phase 3: Validation and Scale-up

R. Dittmeyer04.06.2018�22

Überarbeitetes Reaktordesign im Labor validiert

Phase 3: Validation and Scale-up

Scale-up to 100 mN3/d together with INERATEC Successful start-up of power-to-gas pilot plant by gasNatural fenosa at a waste water treatment plant close to Barcelona, Spain (press release from May 31, 2018 at GNF website)

Slurry bubble column reactor

Micro-structured reactor

Testing at 10 mN3/h scale in the Energy Lab 2.0Pressure: 20 bar Temperature: 300°C

Assembled power-to-gas pilot plant at INERATEC site in Karlsruhe before shipping

http://www.prensa.gasnaturalfenosa.com/en/gas-natural-fenosa-launches-pilot-project-to-produce-renewable-gas-in-catalonia/

Synthetic Fuels – Combustibles Sintètics (CoSin), Grant No. COMRDI15-1-0037

Page 23: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Outline

R. Dittmeyer04.06.2018

Why e-fuels?

Technical and economic challenges

Modular technology for decentralised production of e-fuels via Fischer-Tropsch synthesis

Advanced reactor technology for methanation

Conclusion

�23

Page 24: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Conclusion

R. Dittmeyer04.06.2018

Substantial progress has been made recently in the development of modular intensified reactors for Fischer-Tropsch synthesis and similar reactions

Container or skid-based plants are proposed for decentralised conversion of (syn)gas into chemical energy carriers. The concept is: many plants instead of few large ones. Cost-effective fabrication methods and digitalisation support this.

Micro process technology is a key enabler for such concepts. Benefits include: excellent command over the local reaction conditions, reduced plant footprint and complexity, dynamic operation more feasible…

Renewable energy-powered conversion of carbon dioxide and water into synthetic fuels and chemicals (e-fuels / e-chemicals) is most likely needed to decrease carbon dioxide emissions in transport and industry to the required levels

An appropriate regulatory framework based on broad societal consensus (worldwide) is needed to support the transition to a post-fossil circular economy

�24

Page 25: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

More about Microchannel Technology…

R. Dittmeyer04.06.2018!25

http://dechema.de/en/IMRET2018.html

visit us at KIT (http://www.imvt.kit.edu)

visit us at the ACHEMA – World Forum and Leading Show for the Process Industries, 11 - 15 June 2018, Frankfurt am Main, Germany Hall 9.1 booth E41; Hall 9.2 booth A80 or Hall 9.2 booth E83

join us at the 15th International Conference on Micro Reaction Technology IMRET-15, Oct. 21-24, 2018, Karlsruhe, Germany

Page 26: Synthetic fuels from carbon dioxide and renewable ... · 3) C.H. Bartholomew, B. Young, History of Cobalt Catalyst Design for Fischer-Tropsch Synthesis, NGCS, Doha 2013 Lab system

Institute for Micro Process Engineering (IMVT)

Many thanks to…

R. Dittmeyer04.06.2018

the colleagues at IMVT for extensive efforts in the different projects

the KIC InnoEnergy for funding of the project SYNCON

the China Scholarship Council (CSC) for a scholarship (Chenghao Sun)

the Peter and Luise Hager Foundation for funding of a doctoral researcher (Hannah Kirsch)

the Vector Foundation for funding of the project DYNSYN

the Helmholtz Association and the German Ministries for Education and Research (BMBF) as well as Economics and Energy (BMWi) and the Ministry for MWK for funding of the Energy Lab 2.0 large-scale investment project

the German Ministry for Economics and Energy (BMWi) for funding of the start-up INERATEC through the national eXist programme

the German Ministry for Education and Research (BMBF) for funding of the Kopernikus-Project P2X

the European Commission for funding of the H2020 project KEROGREEN

you for your kind attention!

!26