1
Jiafu Mao 1* , Binyan Yan 2 , Xiaoying Shi 1 , Peter E. Thornton 1 , Forrest M. Hoffman 3 and David M. Lawrence 4 1 Climate Change Science Institute/Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 2 Jackson School of Geosciences, the University of Texas, Austin, TX, USA 3 Climate Change Science Institute/Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 4 National Center for Atmospheric Research, Boulder, Colorado, USA Overview: There is growing interest in employing largescale longterm remote sensing Leaf Area Index (LAI) products to evaluate responses and feedbacks of terrestrial ecosystem dynamics to climate change. However, the mulCple LAI products were derived from different satellites, produced using different algorithms and global land cover classificaCons, developed at different spaCal and temporal resoluCons, and released with different data gaps and map projecCons. Understanding and resoluCon of the interLAI dataset differences are criCcal if these datasets are to be used to quanCfy the response of vegetaCon phenology and variability to climate, to force biogeophysical land models and to evaluate biogeochemical land models. Here, we demonstrate the homogenizaCon and intercomparison of four different satellite datasets at 0.5 degree spaCal resoluCon between 1982 and 2010. Also, we evaluate the Community Land Model (CLM) simulated LAI against these standardized products. Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact [email protected] for further information. Magnitude and phenology of multi-year mean LAI are comparable among different products; Mismatches between the pre- and post-2000 period are found in the four products, and this mismatch problem is particularly significant in the GLOBMAP and GLASS LAI; The GEOLAND2 LAI and the GIMMS LAI3g are relatively consistent in the temporal changes and the increasing trends from 1982 to 2010; Weak agreement in long-term trends among satellite-based LAI implies the importance of using multiple products to reduce the uncertainties spatially and temporally; LAI trend and interannual variability are better simulated by CLM4 than the magnitude; More analysis and understandings are needed for further applications in the LSMs and ESMs. Synthesis of long-term remote sensing LAI for applications in Land Surface and Earth System Models Intercomparisons among the four processed LAI products (1982-2010) Evaluations of the simulated LAI from different versions of CLM4 (1982-2005) LAI Length Organiza2on Reference GLASS 1982/01 ~ 2000/12 (AVHRR) 2001/01 ~ 2010/12 (MODIS) Beijing Normal University, University of Maryland Xiao et al., 2013 GLOBMAP 1981/07 ~ 2000/02 (AVHRR) 2000/03 ~ 2011/12 (MODIS) IGSNRR, Chinese Academy of Sciences Liu et al., 2012 GIMMS LAI3g 1981 ~ 1999 (AVHRR) 2000 ~ 2011 (MODIS) Boston University Zhu et al., 2013 GEOLAND2 1982/01 ~ 2000/12 (AVHRR) 1999/01 ~ present (SPOT/ VEGETATION, MODIS, CYCLOPES) Europe Baret et al., 2013 Gap Filling Calculate monthly mean Spa4ally Up6scaling QC informa4on Four 306year monthly LAI products (0.05 to 0.5 degree) Four LAI datasets New LAI product Gap filling • Short gaps shorter than 6 months: using a moving window method to find a local optimal time series for spline fitting • Long gaps: average of a previous period and a following period that are the same length of the gap QC information • Based on the percentage of gaps • Similar QC information as MODIS LAI product • Supplementary information of the status of each grid for users Spatially up-scaling • Spatial average weighted by grid areas LAI synthesis • According to different uncertainties LAI data sets used in this study Homogenization methods Mean LAI (1982U2 Mean peak LAI month ArcJc Boreal NT NE SE ST GLASS GIMMS GLOBMAP GEOLAND2 GLASS GIMMS GLOBMAP GEOLAND2 1982Z2010 1982Z1999 2001Z2010 LAI trends Sig. + (1982Z2010) Sig. (1982Z2010) AVHRR MODIS CLM45bgc_hrv_1deg4508 CLM40cn_ornl CLM45bgc_1deg4081 CLM40cn_1deg4502 Climatological mean differences (1982;2005) Annual LAI Gme series Annual LAI anomalies Global NH SH Mean of four satellite LAI Mean of GIMMS and GEOLAND2 CLM40cn_ornl CLM40cn_1deg4502 Mean LAI Month of mean peak LAI Monthly evolu2on of LAI LAI trends Differences between the CLM4 LAI and each remotesensing based LAI Annual LAI 2me series Annual LAI anomalies Annual cycle of LAI trends CLM40cn_1deg4502 CLM45bgc_hrv_1deg4508 CLM45bgc_1deg4081 CLM40cn_ornl CLM40cn_1deg4502 CLM45bgc_hrv_1deg4508 CLM45bgc_1deg4081

Synthesis of long-term remote sensing LAI for applications

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthesis of long-term remote sensing LAI for applications

Jiafu Mao1*, Binyan Yan2, Xiaoying Shi1, Peter E. Thornton1, Forrest M. Hoffman3 and David M. Lawrence4

1Climate Change Science Institute/Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 2Jackson School of Geosciences, the University of Texas, Austin, TX, USA 3Climate Change Science Institute/Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 4National Center for Atmospheric Research, Boulder, Colorado, USA

Overview:   There   is   growing   interest   in  employing   large-­‐scale   long-­‐term   remote   sensing    Leaf   Area   Index   (LAI)   products   to   evaluate  responses   and   feedbacks   of   terrestrial   ecosystem  dynamics  to  climate  change.  However,  the  mulCple  LAI  products  were  derived  from  different  satellites,  produced  using  different  algorithms  and  global  land  cover   classificaCons,   developed   at   different   spaCal  and   temporal   resoluCons,   and   released   with  different   data   gaps   and   map   projecCons.  Understanding   and   resoluCon   of   the   inter-­‐LAI  dataset  differences  are  criCcal   if  these  datasets  are  to   be   used   to   quanCfy   the   response   of   vegetaCon  phenology   and   variability   to   climate,   to   force  biogeophysical   land   models   and   to   evaluate  biogeochemical  land  models.  Here,  we  demonstrate  the   homogenizaCon   and   intercomparison   of   four  different   satellite   datasets   at   0.5   degree   spaCal  resoluCon   between   1982   and   2010.   Also,   we  evaluate   the   Community   Land   Model   (CLM)  simulated  LAI  against  these  standardized  products.  

 

 

Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact [email protected] for further information.

•  Magnitude and phenology of multi-year mean LAI are comparable among different products; •  Mismatches between the pre- and post-2000 period are found in the four products, and this

mismatch problem is particularly significant in the GLOBMAP and GLASS LAI; •  The GEOLAND2 LAI and the GIMMS LAI3g are relatively consistent in the temporal

changes and the increasing trends from 1982 to 2010;

•  Weak agreement in long-term trends among satellite-based LAI implies the importance of using multiple products to reduce the uncertainties spatially and temporally;

•  LAI trend and interannual variability are better simulated by CLM4 than the magnitude; •  More analysis and understandings are needed for further applications in the LSMs and

ESMs.

Synthesis of long-term remote sensing LAI for applications in Land Surface and Earth System Models

Intercomparisons among the four processed LAI products (1982-2010) Evaluations of the simulated LAI from different versions of CLM4 (1982-2005)

LAI   Length   Organiza2on   Reference  

 GLASS    

 

1982/01  ~  2000/12  (AVHRR)  

2001/01  ~  2010/12  (MODIS)  

Beijing  Normal  University,  University  of  Maryland  

 Xiao  et  al.,  

2013  

 GLOBMAP  

1981/07  ~  2000/02  (AVHRR)  

2000/03  ~  2011/12  (MODIS)  

 IGSNRR,  Chinese  Academy  of  Sciences  

 Liu  et  al.,  2012  

 GIMMS  LAI3g  

1981  ~  1999  (AVHRR)  

2000  ~  2011  (MODIS)  

   

Boston  University  

 Zhu  et  al.,  2013  

   

GEOLAND2  

1982/01  ~  2000/12  (AVHRR)  

1999/01  ~  present  (SPOT/VEGETATION,  

MODIS,  CYCLOPES)  

     

Europe  

     

Baret  et  al.,  2013  

Methods!Gap$filling$!  Short$gaps$(shorter$than$6$months):!spline'fi)ng'

(using'a'moving'window'method'to'find'a'local'op6mal'6me'series'for'spline'fi)ng)'

'

'!  Long$gaps$(all$others):$average'of'a'previous'

period'and'a'following'period'that'are'the'same'length'of'the'gap'

Gap!Filling!

Calculate!monthly!mean!

Spa4ally!Up6scaling!

QC!informa4on!

Four!306year!monthly!LAI!products!(0.05!to!0.5!degree)!

Four!LAI!datasets!

New!LAI!product!

An$example$of$filled$short$gap$

An$example$of$filled$long$gap$

Black:!original!LAI!Red:!filled!values!

² Gap filling • Short gaps shorter than 6 months: using a

moving window method to find a local optimal time series for spline fitting

• Long gaps: average of a previous period and a following period that are the same length of the gap

² QC information • Based on the percentage of gaps

• Similar QC information as MODIS LAI product

• Supplementary information of the status of each grid for users

² Spatially up-scaling • Spatial average weighted by grid areas

² LAI synthesis • According to different uncertainties

LAI data sets used in this study Homogenization methods

Mean&LAI&(1982U2010)&

IntroducJon|&Data&sets&and&Methods|&Findings&|&Summary&

Mean&peak&LAI&month&(1982U2010)&

IntroducJon|&Data&sets&and&Methods|&Findings&|&Summary&

ArcJc&

Boreal&

NT&

NE&

SE&

ST& GLASS GIMMS GLOBMAP GEOLAND2

Monthly&evoluJon&of&LAI&(1982U2010)&

IntroducJon|&Data&sets&and&Methods|&Findings&|&Summary&

GLASS GIMMS GLOBMAP GEOLAND2

1982Z2010' 1982Z1999' 2001Z2010'

LAI&trends&

Sig.'+'(1982Z2010)' Sig.'−'(1982Z2010)'

IntroducJon|&Data&sets&and&Methods|&Findings&|&Summary&

AVHRR' MODIS'

CLM45bgc_hrv_1deg4508&

CLM40cn_ornl&

CLM45bgc_1deg4081!

CLM40cn_1deg4502!

Climatological&mean&differences&(1982;2005)!

LAI&Gme&series&(1982;2005)!

Annual&LAI&Gme&series! Annual&LAI&anomalies!

Global!

NH!

SH!

Mean%of%four%satellite%LAI%Mean%of%GIMMS%and%GEOLAND2%CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

GLASS GIMMS GLOBMAP GEOLAND2 CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

Annual&cycle&of&LAI&trends&for&CLM&and&each&product&(1982;1999)&

Mean%of%four%satellite%LAI%Mean%of%GIMMS%and%GEOLAND2%CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

Annual&cycle&of&LAI&trends&for&CLM&and&each&product&(1982;1999)&

Mean%of%four%satellite%LAI%Mean%of%GIMMS%and%GEOLAND2%CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

Mean  LAI   Month  of  mean  peak  LAI  

Monthly  evolu2on  of  LAI   LAI  trends  

Differences  between  the  CLM4  LAI  and  each  remote-­‐sensing  based  LAI  

Annual  LAI  2me  series   Annual  LAI  anomalies   Annual  cycle  of  LAI  trends  

Annual&cycle&of&LAI&trends&for&CLM&and&each&product&(1982;1999)&

Mean%of%four%satellite%LAI%Mean%of%GIMMS%and%GEOLAND2%CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

LAI&Gme&series&(1982;2005)!

Annual&LAI&Gme&series! Annual&LAI&anomalies!

Global!

NH!

SH!

Mean%of%four%satellite%LAI%Mean%of%GIMMS%and%GEOLAND2%CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!

GLASS GIMMS GLOBMAP GEOLAND2 CLM40cn_ornl%CLM40cn_1deg4502%CLM45bgc_hrv_1deg4508%CLM45bgc_1deg4081%!