40
Synthesis and characterization of metal complexes of some purine and pyrimidine derivatives by Ghassan Mohamad Sonji Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of PhD in Chemistry Department of Chemistry Faculty of Science 2015

Synthesis and Characterization of Metal Sonji Thesis-2015

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthesis and Characterization of Metal Sonji Thesis-2015

Synthesis and characterization of metal complexes of some purine and

pyrimidine derivatives

by

Ghassan Mohamad Sonji

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

PhD in Chemistry

Department of Chemistry

Faculty of Science

2015

Page 2: Synthesis and Characterization of Metal Sonji Thesis-2015

Synthesis and characterization of metal complexes of some purine and

pyrimidine derivatives

by

Ghassan Mohamad Sonji

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

PhD in Chemistry

Department of Chemistry

Faculty of Science

Supervised by

Prof. Shawky A. El-Shazly Professor of Physical Chemistry

Faculty of Science Beirut Arab University

Prof. Kamal H. Bouhadir Associate Professor of Organic Chemistry

Faculty of Arts and Sciences American University of Beirut

Prof. Hassan H. Hammud Professor of Inorganic & Analytical Chemistry

Faculty of Science King Faisal University

2015

Page 3: Synthesis and Characterization of Metal Sonji Thesis-2015

iv

Abstract

Synthesis and characterization of metal complexes of some purine and

pyrimidine derivatives

Coordination compounds play critical roles in biology, biochemistry and medicine,

controlling the structure and function of many enzymes and their metabolism. They play

similarly vital roles in many industrial processes and in the development of new materials

with specifically designed properties. Thus, the synthesis and study of complexes is very

important. Moreover, complexation is very relevant in pharmacy as a means of modifying the

pharmacological, toxicological and physico-chemical properties of drugs.

This project describes the synthesis and characterization of metal complexes of purines and

pyrimidines. The synthetic techniques of ligands were based on the modification of

nucleobases by the introduction of various substituents. The purity of the newly synthesized

compounds was checked by thin layer chromatography (TLC), and their structures were

confirmed by Infrared (IR), 1H NMR and 13C NMR Spectroscopy. In order to obtain the

target compounds, the following routes were adopted:

Esterification of adenine, thymine, uracil and cytosine by ethylacrylate in the presence of a

base catalyst, the products were either hydrolyzed in acid medium to give adenine and

thymine carboxylic acids or reacted with hydrazine hydrate to yield the nucleobase-

carboxylic acid hydrazide. Adenine hydrazide was further reacted with formic acid or acetic

acid to yield N′-formyl or N′-acetylpropanehydrazide, respectively. Treatment of the

synthesized carboxylic acids with o-PDA disulfate in ethyleneglycol at 90˚C yielded good

amounts of the corresponding benzimidazole derivatives. The compounds 6-amino-1,3-

dimethyluracil and 5,6-diamino-1,3-dimethyluracil were diazotized and condensed with

aldehyde, respectively, to give the azodye and Schiff base. The ligands were reacted with

several transition metals to give various complexes which were characterized by UV-Vis and

IR spectrophotometry.

The formation constant values (Kf) of the metal complexes, estimated from the potentiometric

titration with standard NaOH at constant ionic strength, were established in ethanol-water

media and the thermodynamic parameters were discussed.

Page 4: Synthesis and Characterization of Metal Sonji Thesis-2015

v

Because of the increased need for development of improved analytical methodology to

determine metal ions and inorganic anions for the purpose of monitoring health as well as the

quality of the water and air, an interesting point was the utilization of a cation-sensing uracil-

appended schiff base for detection and quantitation of copper, iron and silver cations in water

samples at low detection limits and with high accuracy. Finally, the photophysical

characterization of six acyclonucleosides were studied in a number of organic solvents with

diverse polarities and in aqueous solutions at different pH, and then subjected to multiple

regression analysis with more than ten different solvent parameters.

Page 5: Synthesis and Characterization of Metal Sonji Thesis-2015

vi

Table of Contents

Chapter One: INTRODUCTION..………………………………………………………… 1

1.1 Metal Complexes and Applications………………………………………….. 2

1.2 Purine and Pyrimidine Metal Complexes:History/Importance………………. 2

1.3 Purines and Pyrimidines as Heterocyclic Compounds.…………………...…. 3

1.4 Role of Nucleic bases in DNA and RNA…………………………………….. 4

1.5 Pyrimidines ………………………………………………………………... 6

1.5.1 Biological Importance of Pyrimidines……………………………………... 6

1.5.2 The Structure of Pyrimidine ……………………………………………….. 7

1.5.3 The pKa of Pyrimidine …………………………………………………... 8

1.5.4 Reactivity of Pyrimidine ...………………………………………………… 8

1.5.5 General Methods for the Synthesis of Pyrimidine…………………………. 8

1.5.6 Tautomerism and pKa Values of Pyrimidine Nucleic Bases.……………… 12

1.6 Purines……………………………………………………………………….. 14

1.6.1 Biological Importance of Purines………………………………………….. 14

1.6.2 The Structure of Purine…………………………………………………….. 15

1.6.3 The pKa of Purine………………………………………………………….. 16

1.6.4 Reactivity of Purine………………………………………………………... 16

1.6.5 General Methods for the Synthesis of Purine……………………………… 16

1.6.6 Tautomerism and pKa values of Purines…………………………………... 18

1.7 Transition metal purine/pyrimidine complexes……………………………… 20

1.7.1 Synthesis…………………………………………………………………… 20

1.7.2 Binding modes……………………………………………………………... 21

Page 6: Synthesis and Characterization of Metal Sonji Thesis-2015

vii

1.7.3 Structural features of Purine/Pyrimidine metal complexes…………….…... 24

1.7.4 Applications of Purine and pyrimidine complexes………………………… 25

Chapter Two: SYNTHESIS OF PURINE AND PYRIMIDINE METAL COMPLEXES LITERATURE REVIEW……………………………………………………………….… 26

2.1 Biological activity of purine derivative……….……....................................... 27

2.2 Biological activity of pyrimidine derivatives….…........................................... 27

2.3 Purine and pyrimidine metal complexes……….................................….……. 28

Chapter Three: EXPERIMENTAL PROCEDURE………………………………….……. 47

3.1 General Information…………………………………………………….……. 48

3.1.1 Reagents and Solvents……………………………………………………... 48

3.1.2 Thin Layer Chromatography……………………………………………….. 48

3.1.3 Melting point measurement ...……………………………………………... 48

3.1.4 pH measurement…………………………………………………………… 48

3.1.5 Spectroscopic Techniques………………………………………………….. 48

3.2 Preparation of Purine and Pyrimidine Ligands………………..…………………. 49

3.3 Preparation of Purine and Pyrimidine Metal Complexes…………………….. 57

3.3.1 General method for synthesis of [AA] metal complexes…………………... 57

3.3.2 General method for synthesis of [AE] metal complexes…………………... 58

3.3.3 Methods for synthesis of AH metal complexes……………………………. 59

3.3.4 Methods for synthesis of [AF] metal complexes…………………………... 60

3.3.5 General Method for synthesis of CoCl2 and ZnSO4-[CE] metal complexes. 61

3.3.6 Method for synthesis of CuCl2-[TE] metal complexes…………………….. 61

3.3.7 Method for synthesis of PdBr2 complex with the Schiff base formed between 5,6-diamino-1,3-dimethyluracil hydrate and 5-methyl-thiophenecarboxaldehyde…………......................……………………………….. 62

Page 7: Synthesis and Characterization of Metal Sonji Thesis-2015

viii

Chapter Four: RESULTS AND DISCUSSION………………………………...…………. 64

4.1Synthesis Motivation of Acyclonucleosides………………………………........…… 65

4.2 N-Alkyation of Nucleobases……...............………………………………………… 69

4.2.1 Aza-Michael Reactions…………………………………………………………… 70

4.3 Synthesis of Ligands…………………………………………………………........... 71

4.3.1 Synthesis of N-substituted nucleobase derivatives……………………………..…. 71

4.3.2 Synthesis of Uracil-Azo dye by diazotization………………………………….…. 75

4.3.3 Synthesis of the Uracil Schiff Base Ligand……………………………...……..…. 77

4.3.4 Synthesis of Nucleobase-Benzimidazole derivatives………………...……............ 78

4.4 Characterization of Ligands ...…………………………………………………….... 80

4.4.1 IR Spectroscopy………………………………………………………….……….. 80

4.4.2 NMR Spectroscopy……………………………………………………………….. 81

4.5 IR Spectra of Synthesized Metal Complexes……………………………………….. 83

4.5.1 Adenine ester [AE] metal complexes……………………………………………... 84

4.5.2 Adenine acid [AA] metal complexes……………………………………………… 84

4.5.3 Adenine hydrazide[AH] metal complexes…………………………………........... 85

4.5.4 Adenineformylhydrazide[AF] metal complexes………………………………….. 85

4.5.5 Schiff base [DDUTS] metal complexes……………………………………........... 85

4.6 Solubilities of the prepared Complexes in Different Solvents……………………… 86

Chapter Five: POTENTIOMETRIC DISSOCIATION CONSTANTS OF 3-(ADENINE-9-YL)-PROPIONIC AND 3-(THYMINE-1-YL)-PROPIONIC ACIDS AND THEIR METAL COMPLEXES IN ETHANOL-WATER MEDIA………………………………. 88

5.1 Introduction…………………………………………………………………………. 89

5.2 Different Methods for pKa Determination ……..........................……………….….. 90

Page 8: Synthesis and Characterization of Metal Sonji Thesis-2015

ix

5.2.1 Potentiometric titration…………………………………………………... 90

5.2.2 Spectrophotometric methods…………………………………………….. 90

5.2.3. NMR titration…………………………………………………………… 91

5.2.4 Liquid chromatography (LC).…………………………………………… 91

5.2.5 Capillary electrophoresis (CE)………….……………………………….. 92

5.3 Importance of Stability Constants….……………………………………… 93

5.4 Factors affecting the Stability of Metal Complexes….……………………. 93

5.5 Potentiometric studies conducted on complexation of Adenine and Thymine……………………………………………………....…………...

93

5.6 Experimental part………………………………………………………….. 94

5.6.1 Materials and methods…………………………………………………... 94

5.6.2 Calibration of the glass electrode………………………………………... 94

5.7 Determination of acid dissociation constants of Ligands…………………. 95

5.8 Complex formation studies………………………………………………... 99

5.9 Thermodynamic parameters……………………………………………….. 104

5.10 Conclusion………………………………………………………………... 106

Chapter Six: THIOPHENE ALDEHYDE-DIAMINOURACIL SCHIFF BASE: A NOVEL FLUORESCENT PROBE FOR DETECTION AND QUANTITATION OF CUPRIC, SILVER AND FERRIC IONS IN SOLUTION……………………….

107

6.1 Introduction…………………………………………………….………….. 108

6.1.1 Fluorescence Sensors……………………………………………………. 108

6.2 Experimental Procedure…………………………………………………… 111

6.2.1 Preparation of metal ions standard solutions……………………………. 111

6.2.2 Fluorescence titration of DDUTS with different metal ions…….………. 112

Page 9: Synthesis and Characterization of Metal Sonji Thesis-2015

x

6.3 Results and Discussion…………………………………………………… 112

6.3.1 Stern-Volmer analysis for response of DDUTS in ethanol to Fe3+, Ag+ and Cu2+ Ions……………………………………………..……….…….. 115

6.3.2 Selective recognition of Ag+, Cu2+ and Fe3+……………..….…….……. 117

6.3.3 Comparison of DDUTS with common chemosensors……………….…. 119

6.3.4 Method validation in quantitative assay of Cu2+, Ag+ and Fe3+……....... 120

6.4 Determination of Binding Stoichiometry and the Association Constants Ka of Cu2+, Ag+, Fe3+ binding to chemosensor……………...................... 123

6.5 Study on Reversibility and mechanism for the binding of DDUTS with Cu2+, Ag+ and Fe3+………...………………………………………........... 125

6.6 Effect of standing time on complexation…………………………….…… 126

6.7 Preliminary Analytical Application……………………………….……… 126

6.8 Conclusion………………………………………….…………………….. 126

Chapter Seven: SOLVENT EFFECT STUDIES ON THE ABSORPTION AND EMISSION SPECTRA OF ADENINE, THYMINE AND URACIL DERIVATIVES. 128

7.1 Introduction………………………………………………………….……. 129

7.2 Experimental Procedure…………………………………………….…….. 131

7.2.1 Materials and methods………………………………………………….. 131

7.3 Results and Discussion…………………………………………………… 131

7.3.1 UV absorption and fluorescence study of the purine and pyrimidine derivatives (I–VI) ………………………………………………………... 133

7.3.2 Methods of calculations and results……………………………............. 147

7.4 Conclusion……………………….....…………………………….............. 163

Page 10: Synthesis and Characterization of Metal Sonji Thesis-2015

191

[1] Kalyanasundaram, K., & Gratzel, M. (1998). Applications of functionalized transition

metal complexes in photonic and optoelectronic devices. Coordination Chemistry

Reviews, 77, 347-414.

[2] Warra, A. A. (2011). Transition metal complexes and their application in drugs and

cosmetics–a review. Journal of Chemical and Pharmaceutical Research, 3(4), 951-958.

[3] Garcia-Teran, J. P., Castillo, O., Luque, A., Garcia-Couceiro, U., Beobide, G., & Roman,

P. (2006). Supramolecular architectures assembled by the interaction of purine

nucleobases with metal-oxalato frameworks. Non-covalent stabilization of the 7H-

adenine tautomer in the solid-state. Dalton Transactions, 21(7), 902-911.

[4] Turel, I., & Kljun, J. (2011). Interactions of metal ions with DNA, its constituents and

derivatives, which may be relevant for anticancer research. Current Topics in Medicinal

Chemistry, 11, 2661-2687.

[5] Dua, R., Shrivastava, S., Sonwane, S. K., & Srivastava, S. K. (2011). Pharmacological

significance of synthetic heterocycles scaffold: a review. Advances in Biological

Research, 5(3), 120-144.

[6] Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). DNA, RNA, and the flow of genetic

information. Fifth edition, Biochemistry (pp. 117-119). New York: W.H. Freeman.

[7] Patil, S. S., & Magdum, C. S. (2013). Synthesis & study some derivatives of pyrimidine

for their antibacterial activity. International Journal of Universal Pharmacy and Bio

Sciences, 2(3) 469-476.

[8] Singh, S., Sharma, P. K., Dudhe, R., & Kumar, N. (2011). A review: pyrazolopyrimidine

moiety. Pharma Science Monitor, 2(4), 131-144.

Page 11: Synthesis and Characterization of Metal Sonji Thesis-2015

192

[9] Verma, A., Sahu, L., Chaudhary, N., Dutta, T., Dewangan, D., & Tripathi, D. K. (2012).

A review: pyrimidine their chemistry and pharmacological potentials. Asian Journal of

Biochemical and Pharmaceutical Research, 2(1), 1-15.

[10] Modi, V. S., & Basuri, T. S. (2011). The physiological and medicinal potential

pyrimidines & different scheme to synthesize pyrimidine heterocycles: an update.

International Journal of Pharmacy and Pharmaceutical Sciences, 3(5), 13-27.

[11] Civcir, P. U. (2000). A theoretical study of tautomerism of cytosine, thymine, uracil and

their 1-methyl analogues in the gas and aqueous phases using AM1 and PM3. Journal of

Molecular Structure: THEOCHEM, 532(1-3), 157-169.

[12] Rao, P. V., Ravindhranath, K., & Kumar, K. R. (2013). Antibacterial activity of novel

substituted mercaptopurine derivatives. International Journal of Pharmaceutical and

Biomedical Research, 4(2), 127-131.

[13] Dinesh, S., Shikha, G., Bhavana, G., Nidhi, S., & Dileep, S. (2012). Biological activities

of purine analogues: a review. Journal of Pharmaceutical and Scientific Innovation,

1(2), 29-34.

[14] Dewick, P. M. (2006). Heterocycles. First Edition, Essentials of Organic Chemistry (pp.

449-450). England: John Wiley & Sons Ltd.

[15] Rosemeyer, H. (2004). The chemodiversity of purine as a constituent of natural

products. Chemistry & Biodiversity, 1(3), 361-401.

[16] Shukla, M. K., & Leszczynski, J. (2013). Tautomerism in nucleic acid bases and base

pairs: a brief overview. Wiley Interdisciplinary Reviews: Computational Molecular

Science, 3(6), 637-649.

Page 12: Synthesis and Characterization of Metal Sonji Thesis-2015

193

[17] Shugar, D., & Kierdaszuk, B. (1985). New light on tautomerism of purines and

pyrimidines and its biological and genetic implications. Journal of Biosciences, 8(3,4),

657-668.

[18] Ogawa, M., & Sakaguchi, T. (1972). Studies on the metal-nucleotide complexes.

Isolation of metal-5'-uridylic acid complexes and their infrared absorption spectra.

Chemical and Pharmaceutical Bulletin, 20(1), 190-193.

[19] Shankar, B., Tomar, R., Kumar, R., Godhara, M., & Sharma, V. K. (2014).

Antimicrobial activity of newly synthesized hydroxamic acid of pyrimidine-5-carboxylic

acid and its complexes with Cu(II), Ni(II), Co(II) and Zn(II) metal ions. Journal of

Chemical and Pharmaceutical Research, 6(5), 925-930.

[20] Shabani, F., Ghammamy, S., Mehrani, K., Teimouri, M. B., Soleimani, M., & Kaviani,

S. (2008). Antitumor activity of 6-(cyclohexylamino)-1,3-dimethyl-5(2-pyridyl)furo[2,3-

d]pyrimidine-2,4(1H,3H)-dione and its Ti(IV), Zn(II), Fe(III), and Pd(II) complexes on

K562 and Jurkat cell lines. Bioinorganic Chemistry and Applications, 2008, 1-8.

[21] Srivastava, A. N., Singh, N. P., & Shriwastaw, C. K. (2014). Synthesis and

characterization of bioactive binuclear transition metal complexes of a schiff base ligand

derived from 4-amino-1H-pyrimidin-2-one, diacetyl and glycine. Journal of the Serbian

Chemical Society, 79(4), 421-433.

[22] Tetteh, S., Dodoo, D. K., Appiah-Opong, R., & Tuffour, I. (2014). Spectroscopic

characterization, invitro cytotoxicity, and antioxidant activity of mixed ligand

palladium(II) chloride complexes bearing nucleobases. Journal of Inorganic Chemistry,

2014, 1-7.

[23] Caballero, A. B., Marin, C., Ramirez-Macias, I., Rodriguez-Dieguez, A., Quiros, M.,

Salas, J. M., & Sanchez-Moreno, M. (2012). Structural consequences of the introduction

Page 13: Synthesis and Characterization of Metal Sonji Thesis-2015

194

of 2,20-bipyrimidine as auxiliary ligand in triazolopyrimidine-based transition metal

complexes. In vitro antiparasitic activity. Polyhedron, 33, 137-144.

[24] Dhahir, S. A., Aziz, N. M., & Bakir, S. R. (2012). Synthesis, characterization and

antimicrobial studies of complexes of some metal ions with 2-[2-amino-5-(3,4,5-

trimethoxy-benzyl)-pyrimidinyl-4-azo]-4-bromo-phenol. International Journal of Basic

& Applied Sciences, 12(6), 58-67.

[25] Tella, A. C., & Obaleye, J. A. (2010). Synthesis and biological studies of Co(II) and

Cd(II) 5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine (Trimethoprim) complexes.

International Journal of Biological and Chemical Sciences, 4(6), 2181-2191.

[26] Tella, A. C., Eke, U. B., & Owalude, S. O. (2013). Solvent-free mechanochemical

synthesis and X-ray studies of Cu(II) and Ni(II) complexes of 5-(3,4,5-

Trimethoxybenzyl)pyrimidine-2,4-diamine (Trimethoprim) in a ball-mill. Journal of

Saudi Chemical Society, 17(1), 1-6.

[27] Masoud, M. S., Soayed, A. A., Ali, A. E., & Sharsherh, O. K. (2003). Synthesis and

characterization of new azopyrimidine complexes. Journal of Coordination Chemistry,

56(8), 725-742.

[28] Mokhtari, R., Adkhis, A., Michaud, F., & Top, S. (2013). X-ray structural study of aqua

bis(Thymine-N1,N3)ethylenediamine copper (ii) dehydrate. MATEC Web of Conferences,

3, 1026-1027.

[29] Aliyu, H. N., & Ado, I. (2011). Studies of Mn (II) and Ni (II) complexes with schiff base

derived from 2-amino benzoic acid and salicylaldehyde. Biokemistri, 23(1), 9-16.

[30] Osowole, A. A., & Yoade, R. O. (2013). Synthesis, characterization and antibacterial

studies on some metal(ii) complexes of 4-amino-6-hydroxy-2-mercaptopyrimidine.

Scientific Journal of Applied Research, 4, 95-100.

Page 14: Synthesis and Characterization of Metal Sonji Thesis-2015

195

[31] Kavita, K. L., Girish, P., & Pingalkar, S. R. (2014). Synthesis of Ce(III) and Nd(III)

inner transition metal complexes of allopurinol as a heterocyclic ligand: antioxidant and

antimicrobial activity. Der Pharmacia Lettre, 6(4), 38-43.

[32] Patel, D. K., Dominguez-Martin, A., Brandi-Blanco, M. P., Choquesillo-Lazarte, D.,

Nurchi, V. M., & Niclos-Gutierrez, J. (2012). Metal ion binding modes of hypoxanthine

and xanthine versus the versatile behaviour of adenine. Coordination Chemistry Reviews,

256, 193- 211.

[33] Kandil, S., Katib, S., & Yarkandi, N. (2007). Nickel(II), palladium(II) and platinum(II)

complexes of N-allyl-N′-pyrimidin-2-ylthiourea. Transition Metal Chemistry, 32(6),

791-798.

[34] Masoud, M. S., El-Merghany, S., & Abd El-Kaway, M. Y. (2009). Synthesis and

physico-chemical properties of biologically active purine complexes. Synthesis and

Reactivity in inorganic, Metal-Organic, and Nano-Metal Chemistry, 39(9), 537-553.

[35] El-Haty, M. T., Abdalla, N. A., Adam, F. A., & Hassan, F. W. (2013). Comparison

between thermal analysis and mass spectroscopic studies complexes of diamino

pyrimidine azo dyes with metals. Asian Transactions on Basic and Applied Sciences,

3(5), 10-29.

[36] Masoud, M. S., El-Marghany, A., Orabi, A., Ali, A. E., & Sayed, R. (2013). Spectral,

coordination and thermal properties of 5-arylidene thiobarbituric acids. Spectrochimica

Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 179-187.

[37] Battistuzzi, R., & Borsari, M. (1990). Copper(II) complexes with 1-phenyl-4,6-

dimethylpyrimidine-2-thione. Chemical, spectroscopic, magnetic, conductivity and

polarographic studies. Collection of Czechoslovak Chemical Communications, 55, 2199-

2215.

Page 15: Synthesis and Characterization of Metal Sonji Thesis-2015

196

[38] El-Amane, M., & El Hamdani, H. (2014). Synthesis and characterization of caffeine

complexes [M(caf)4X2] M = Ni(II), Cu(II), Zn(II), Cd(II) X = SCN-, CN-; caf : caffeine.

Research Journal of Chemical Sciences, 4(2), 42-48.

[39] Cerchiaro, G., & da Costa Ferreira, A. M. (2006). Oxindoles and copper complexes with

oxindole-derivatives as potential pharmacological agents. Journal of the Brazilian

Chemical Society, 17(8), 1473-1485.

[40] Hyun, O. C., Lee, S. C., Lee, K. S., Woo, E. R., Hong, C. Y., & Cho, J. H. (1999).

Synthesis and biological activities of C-2, N-9 substituted 6-benzylaminopurine

derivatives as cyclin-dependent kinase inhibitor. Archiv der Pharmazie, 332(6), 187-190.

[41] Kelley, J. L., Krochmal, M. P., Linn, J. A., Mclean, E. W., & Sooko, F. E. (1988). 6-

(alkylamino)-9-benzyl-9H-purines. A new class of anticonvulsant agents. Journal of

Medicinal Chemistry, 31, 606-612.

[42] Kelley, J. L., Linn, J. A., Krochmal, M. P., & Selway, J. W. T. (1988). 9-benzyl-6-

(dimethylamino)-9H-purines with antirhinovirus activity. Journal of Medicinal

Chemistry, 31, 2001-2004.

[43] Imbach, P., Capraro, H. G., Furet, P., Mett, H., Meyer, T., & Zimmermann, J. (1999).

2,6,9-trisubstituted purines: optimization towards highly potent and selective CDK1

inhibitors. Bioorganic & Medicinal Chemistry Letters, 9, 91-96.

[44] Bakkestuen, A. K., Gundersen, L. L., Langli, G., Liu, F., & Nolsǿe, J. M. (2000). 9-

benzylpurines with inhibitory activity against mycobacterium tuberculosis. Bioorganic &

Medicinal Chemistry Letters, 10, 1207-1210.

[45] Brathe, A., Gundersen, L. L., Meyer, J. N., Rise, F., Spilsberg, B. (2003). Cytotoxic

activity of 6-alkynyl- and 6-alkenylpurines. Bioorganic & Medicinal Chemistry Letters,

13, 877-880.

Page 16: Synthesis and Characterization of Metal Sonji Thesis-2015

197

[46] Hocek, M., & Vortruba, I. (2002). Covalent analogues of DNA base-pairs and triplets.

Part 2: synthesis and cytostatic activity of bis(purin-6-yl)acetylenes,-diacetylenes and

related compounds. Bioorganic & Medicinal Chemistry Letters, 12, 1055-1058.

[47] Matsuda, A., Shinozaki, M., Yamaguchi, T., Homma, H., Nomoto, R., Miyasaka, T.,

Watanabe, Y., & Abiru, T. (1992). Nucleosides and nucleotides. 2-alkynyladenosines: a

novel class of selective adenosine A2 receptor agonists with potent antihypertensive

effects. Journal of Medicinal Chemistry, 35, 241-252.

[48] Cristalli, G., Volpini, R., Vittori, S., Campioni, E., Monopoli, A., & Conti, A. (1994). 2-

alkynyl derivatives of adenosine-5'-N-ethyluronamide: selective A2 adenosine receptor

agonists with potent inhibitory activity on platelet aggregation. Journal of Medicinal

Chemistry, 37, 1720-1726.

[49] La Montagne, M. P., Smith, D. C., & Wu, G. S. (1983). Preparation of 7-substituted

pyrrolo [2,3-d] pyrimidines and 9-substituted purines as potential antiparasitic agents.

Journal of Heterocyclic Chemistry, 20, 295-299.

[50] Chapman, E., Ding, S., Schultz, P. G., & Wong, C. H. (2002). A potent and highly

selective sulfontransferase inhibitor. Journal of the American Chemical Society, 124,

14524-14525.

[51] Marasco, J. C. J., Kramer, D. L., Miller, J., Porter, C. W., Bacchi, C. J., Rattendi, D.,

Kucera, L., Iyer, N., Bernacki, R., Pera, P., & Sufrin, J. R. (2002). Synthesis and

evaluation of analogues of 5′-([(Z)-4-aAmino-2-butenyl]methylamino)-5′-

deoxyadenosine as inhibitors of tumor cell growth, trypanosomal growth, and HIV-1

infectivity. Journal of Medicinal Chemistry, 45(23), 5112-5122.

[52] Salimbeni, A., Canevotti, R., Paleari, F., Poma, D., Caliari, S., Fici, F., Cirillo, R.,

Renzetti, A. R., & Subissi, A. (1995). N-3-substituted pyrimidinones as potent, orally

Page 17: Synthesis and Characterization of Metal Sonji Thesis-2015

198

active, AT1 selective angiotensin II receptor antagonists. Journal of Medicinal

Chemistry, 38(24), 4806-4820.

[53] Ban, M., Taguchi, H., Katsushima, T., Aoki, S., & Watanabe, A. (1998). Novel

antiallergic agents. Synthesis and pharmacology of pyrimidine amide derivatives.

Bioorganic & Medicinal Chemistry, 6(7), 1057-1067.

[54] Dinan, F. J., & Bardos, T. J. (1980). Synthesis of some new S-alkylated derivatives of 5-

mercapto-2'-deoxyuridine as potential antiviral agents. Journal of Medicinal Chemistry,

23(5), 569-572.

[55] Wright, G. E., & Brown, N. C. (1980). Inhibitors of bacillus subtilis DNA polymerase

III. 6-anilinouracils and 6-(alkylamino)uracils. Journal of Medicinal Chemistry, 23(1),

34-38.

[56] Deng, Y., Zhou, X., Desmoulin, S. K., Wu, J., Cherian, C., Hou, Z., Matherly, L. H., &

Gangiee, A. (2009). Synthesis and biological activity of a novel series of 6-substituted

thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for

high affinity folate receptors over the reduced folate carrier and proton-coupled folate

transporter for cellular entry. Journal of the Chemical Society, 52(9), 2940-2951.

[57] Koga, M., & Schneller, S. W. (1992). C-2 arylamino substituted purine ara-carbocyclic

nucleosides as potential anti-cytomegalovirus agents. Journal of Heterocyclic Chemistry,

29(7), 1741-1747.

[58] Jeong, L. S., Schinazi, R. F., Beach, J. W., Kim, H. O., Nampalli, S., Shanmuganathan,

K., Alves, A. J., McMillan, A., Chu, C. K., & Mathis, R. (1993). Asymmetric synthesis

and biological evaluation of β-L-(2R,5S)- and α-L-(2R,5R)-1,3-oxathiolane-pyrimidine

and -purine nucleosides as potential anti-HIV agents. Journal of Medicinal Chemistry,

36(2), 181-195.

Page 18: Synthesis and Characterization of Metal Sonji Thesis-2015

199

[59] Mohamed, M. S., Awad, S. M., & Ahmed, N. M. (2011). Synthesis and antimicrobial

activities of new indolyl-pyrimidine derivatives. Journal of Applied Pharmaceutical

Science, 01(5), 76-80.

[60] Borowski, T., Król, M., Brocławik, E., Baranowski, T. C., Strekowski, L., & Mokrosz,

M. J. (2000). Application of similarity matrices and genetic neural networks in

quantitative structure−activity relationships of 2- or 4-(4-methylpiperazino)pyrimidines:

5-HT2A receptor antagonists. Journal of Medicinal Chemistry, 43(10), 1901-1909.

[61] Eid, A. A., Koubeissi, A., Bou-Mjahed, R., Al Khalil, N., Farah, M., Maalouf, R.,

Nasser, N., & Bouhadir, K. H. (2013). Novel carbocyclic nucleoside analogs suppress

glomerular mesangial cells proliferation and matrix protein accumulation through ROS-

dependent mechanism in the diabetic milieu. Bioorganic & Medicinal Chemistry Letters,

23, 174-178.

[62] Mohana, K. N., Kumar, B. N. P., Mallesha, L. (2013). Synthesis and biological activity

of some pyrimidine derivatives. Drug Invention Today, 5, 216-222.

[63] Agarwal, A., Srivastava, K., Puri, S. K., Sinha, S., & Chauhan, P. M. (2005). A small

library of trisubstituted pyrimidines as antimalarial and antitubercular agents. Bioorganic

& Medicinal Chemistry Letters, 15(23), 5218-5221.

[64] Singh, D. V., Mishra, A. R., & Mishra, R. M. (2004). Synthesis and characterization of

some antifungal pyrimidinone derivatives. Indian Journal of Heterocyclic Chemistry,

14(1), 43-46.

[65] Russell, R. K., Press, J. B., Rampulla, R. A., McNally, J. J., Falotico, R., Keiser, J. A.,

Bright, D. A., & Tobia, A. (1988). Thiophene systems. Thienopyrimidinedione

derivatives as potential antihypertensive agents. Journal of Medicinal Chemistry, 31,

1786-1793.

Page 19: Synthesis and Characterization of Metal Sonji Thesis-2015

200

[66] Nandeeshaiah, S. K., Ambekar, S. Y., & Krishnakantha, T. P. (1998). Synthesis,

Dimroth rearrangement and blood platelet disaggregation property of pyrimido [4′,5′:4,5]

selenolo [2,3-b] quinolines: A new class of condensed quinoline. Indian Journal of

Chemistry, 37B(10), 995-1000.

[67] Amer, S., El-Wakiel, N., & El-Ghamry, H. (2013). Synthesis, spectral, antitumor and

antimicrobial studies on Cu(II) complexes of purine and triazole schiff base derivatives.

Journal of Molecular Structure, 1049, 326-335.

[68] Shaikh, A., Paul, D. K., Rahman, M. S., & Bakshi, P. K. (2011). Interactions of guanine

with Cr(VI), Ag(I), Cd(II) and Hg(II) in acidic aqueous medium. Journal of Bangladesh

Chemical Society, 24(2), 106-114.

[69] Crawford, C. A., Day, E. F., Saharan, V. P., Felting, K., Huffman, J. C., Dunbar, K. R.,

& Christou, G. (1996). N7,O6 bridging 9-ethylguanine (9-EtGH) groups in dinuclear

metal-metal bonded complexes with bond orders of one, two or four. Chemical

Communications, 40, 1113-1114.

[70] Dharmaraja, J., Balamurugan, J., & Shobana, S. (2013). Synthesis, structural elucidation,

microbial, antioxidant and nuclease activities of some novel divalent M(II) complexes

derived from 5-fluorouracil and L-tyrosine. Journal of Saudi Chemical Society, 12, 1-10.

[71] Hamed, E., Attia, M. S., & Bassiouny, K. (2009). Synthesis, spectroscopic and thermal

characterization of copper(II) and iron(III) complexes of folic acid and their absorption

efficiency in the blood. Bioinorganic Chemistry and Applications, 2009, 1-6.

[72] Shaker, S., Farina, Y., Mahmmod, S., & Eskender, M. (2010). Synthesis and

characterization of mixed ligand complexes of caffeine, adenine and thiocyanate with

some transition metal ions. Sains Malaysiana, 39(6), 957-962.

Page 20: Synthesis and Characterization of Metal Sonji Thesis-2015

201

[73] Hamada, Y. Z., Burkey, T., Waddell, E., Aitha, M., & Phambu, N. (2013). Reactions of

Zn2+, Cd2+ and Hg2+ with free adenine. Journal of Applied Solution Chemistry and

Modeling, 2, 77-84.

[74] Srivastava, A. (2011). Synthesis and structural investigations of coordination compounds

of palladium with 2-methyl imidazole. International Journal of Applied Pharmaceutics,

3(1), 14-15.

[75] Valarmathy, G., & Subbalakshmi, R. (2013). Synthesis, spectral characterization and

biological studies of novel schiff base complexes derived from 4,6-dimethyl-2-

sulfanilamidopyrimidine and 2-hydroxy-3-methoxybenzaldehyde. International Journal

of Pharma & Bio Sciences, 4(3), 287-295.

[76] Jain, R., Singh, R., & Kaushik, N. K. (2013). Synthesis, characterization, and thermal

and antimicrobial activities of some novel organotin(IV): purine base complexes.

Journal of Chemistry, 2013, 1-12.

[77] Onal, Z., Zengin, H., & Sonmez, M. (2011). Synthesis, characterization, and

photoluminescence properties of Cu(II), Co(II), Ni(II), and Zn(II) complexes of N-

aminopyrimidine-2-thione. Turkish Journal of Chemistry, 35, 905-914.

[78] Verma, S., Shrivastva, S., & Shrivastva, R. (2013). Synthesis, characterization, and

physicochemical studies of mixed ligand complexes of inner transition metals with

lansoprazole and cytosine. Journal of Chemistry, 2013, 1-8.

[79] Ajibade, P. A., & Idemudia, O. G. (2013). Synthesis, characterization, and antibacterial

studies of Pd(II) and Pt(II) complexes of some diaminopyrimidine derivatives.

Bioinorganic Chemistry and Applications, 2013, 1-8.

[80] Osowole, A. A., Kempe, R., & Schobert, R. (2012). Synthesis, spectral, thermal, in-vitro

antibacterial and anticancer activities of some metal (II) complexes of 3-(-1-(4-methoxy-

Page 21: Synthesis and Characterization of Metal Sonji Thesis-2015

202

6- methyl)-2- pyrimidinylimino)methyl-2-napthol. International Research Journal of

Pure & Applied Chemistry, 2(2), 105-129.

[81] Shah, P. J. (2013). Synthesis, characterization and chelating properties of pyrimidine-

quinoline combined molecule with transition metals. Octa Journal of Environmental

Research, 1(3), 205-210.

[82] Verma, S., Shrivastva, S., & Rani, P. (2012). Synthesis and spectroscopic studies of

mixed ligand complexes of transition and inner transition metals with a substituted

benzimidazole derivative and RNA bases. Journal of Chemical and Pharmaceutical

Research, 4(1), 693-699.

[83] Badaruddin, E., Aiyub, Z., Abdullah, Z., & Nasir, S. B. (2009). Synthesis and

fluorometric analysis of selected diazine derivatives and their metal complexes. The

Malaysian Journal of Analytical Sciences, 13(1), 129-135.

[84] Štarha, P., Popa, I., & Trávníček, Z. (2014). Platinum(II) oxalato complexes involving

adenosine-based N-donor ligands: synthesis, characterization and cytotoxicity

evaluation. Molecules, 19, 3832-3847.

[85] Singh, U., Singh, S., & Singh, S. M. (1998). Synthesis, characterization and antitumour

activity of metal complexes of 5-carboxy-2-thiouracil. Metal-Based Drugs, 5(1), 35-39.

[86] Masoud, M. S., Ibrahim, A. A., Khalil, E.A., & El-Marghany, A. (2007). Spectral

properties of some metal complexes derived from uracil–thiouracil and citrazinic acid

compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,

67, 662-668.

[87] Osowole, A. A., & Oni, T. I. (2013). Synthesis, spectroscopic characterization and

antibacterial activities of mixed ligand metal(II) complexes of 4-amino-6-chloro-2-

methylthiopyrimidine and 1,10-phenanthroline. Scientific Research Reports, 1(1), 25-31.

Page 22: Synthesis and Characterization of Metal Sonji Thesis-2015

203

[88] Shirotake, S. (1980). Complexes between nucleic acid bases and bivalent metal ions.

Syntheses and spectroscopic analyses of adenine-zinc chloride and calcium chloride

complexes. Chemical and Pharmaceutical Bulletin, 28(6), 1673-1682.

[89] D′Errico, S., Oliviero, G., Borbone, N., Piccialli, V., Pinto, B., De Falco, F., Maiuri,

M.C., Carnuccio, R., Costantino, V., Nici, F., & Piccialli, G. (2014). Synthesis and

pharmacological evaluation of modified adenosines joined to mono-functional platinum

moieties. Molecules, 19, 9339-9353.

[90] Fujita, T., & Sakaguchi, T. (1977). Infrared spectrum and electron paramagnetic

resonance studies on copper-(adeninato)(diethylenetriamine) monohydrate. Chemical

and Pharmaceutical Bulletin, 25(7), 1694-1700.

[91] Shirotake, S., & Sakaguchi, T. (1978). Complexes between nucleic acid bases and

bivalent metal ions. Complexes formed by guanine or cytosine, and zinc (II). Chemical

and Pharmaceutical Bulletin, 26(10), 2941-2951.

[92] Fujita, T., & Sakaguchi, T. (1977). Coordination and protonation sites of metal

complexes containing adenine. Studies by infrared spectra. Chemical and

Pharmaceutical Bulletin, 25(9), 2419-2422.

[93] Sakaguchi, H., Anzai, H., Furuhata, K., Ogura, H., Iitaka, Y., Fujita, T., & Sakaguchi, T.

(1978). Crystal structure of facial-[bis-(adeninato)(diethylenetriamine)-copper(II)]

monohydrate. Chemical and Pharmaceutical Bulletin, 26(8), 2465-2474.

[94] Sakaguchi, H., Anzai, H., Furuhata, K., Ogura, H., & Iitaka, Y. (1979). Studies on metal

complexes of isocytosine derivaives: the crystal structure of copper(II) complex of 2-

hydrazino-4-hydroxy-6-methylpyrimidine. Chemical and Pharmaceutical Bulletin,

27(8), 1871-1880.

Page 23: Synthesis and Characterization of Metal Sonji Thesis-2015

204

[95] Maeda, M., Abiko, N., & Sasaki, T. (1982). Synthesis and antitumor activity of seleno-

and thio-purines complexed with cis-diamminoplatinum (II). Journal of pharmacobio-

dynamics, 5, 81-87.

[96] Shaker, S., Farina, Y., Mahmmod, S., & Eskender, M. (2009). Co(II), Ni(II), Cu(II),

Zn(II) and Cd(II) mixed ligand complexes of 6-aminopurine, theophylline and

thiocyanate ion, preparation and spectroscopic characterization. Asian Research

Publishing Network Journal of Engineering of and Applied Sciences, 4(9), 29-33.

[97] Kendre, K., Pande, G., & Pingalkar, S. (2014). Synthesis of Ce(III) and Nd(III) inner

transition metal complexes of allopurinol as a heterocyclic ligand: antioxidant and

antimicrobial activity. Der Pharmacia Lettre, 6(4), 38-43.

[98] Oh, S., Chung, D., & Kim, H. (1992). Synthesis and characterization of palladium (IV)

complexes with guanine, adenine and uracil base. Journal of the Korean chemical

society, 36(5), 679-684.

[99] Mishra, L., Pathak, B., & Dubey, S. K. (2007). Aggregation of malonic acid dihydrazide

with thymine and and 2,6-diaminopyridine in the presence of copper (II) and zinc (II)

chlorides: synthesis, characterization and molecular conducting properties. Indian

Journal of Chemistry, 46(A), 48-53.

[100] Shaker, S. (2011). Synthesis and study of mixed ligand-metal complexes of 1,3,7-

timethylxanthine and 1,3-dimethyl-7H-purine-2,6-dione with some other ligands. E-

Journal of chemistry, 8(1), 153-158.

[101] Mostafa, S., Papatriantafyllopoulou, C., Perlepes, S. P., & Hadjiliadis, N. (2008). The

first metal complexes of 4,6-diamino-1-hydro-5-hydroxy-pyrimidine-2-thione:

preparation, physical and spectroscopic studies, and preliminary antimicrobial properties.

Bioinorganic Chemistry and Applications, 2008, 1-8.

Page 24: Synthesis and Characterization of Metal Sonji Thesis-2015

205

[102] Abdullah, A. (2006). Synthesis, structural studies of some nucleic acids metal

complexes. Basrah Journal of Science, 24(1), 115-128.

[103] Hammud, H. H., Nemer, G., Sawma, W., Touma, J., Barnabe, P., Bou-Mouglabey, Y.,

Ghannoum, A., El-Hajjar, J., & Usta, J. (2008). Copper–adenine complex, a compound,

with multi-biochemical targets and potential anti-cancer effect. Chemico-Biological

Interactions, 173, 84-96.

[104] Masoud, M. S., Ali, A. E., Shaker, M. A., & Elasala, G. S. (2012). Synthesis,

computational, spectroscopic, thermal and antimicrobial activity studies on some metal–

urate complexes. Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy, 90, 93-108.

[105] Lira, E. P., & Huffman, C. W. (1966). Some Michael-type reactions with adenine. The

Journal of Organic Chemistry, 31(7), 2188-2191.

[106] Poritere, S., Paegle, R., & Lidaks, M. (1985). Synthesis of modified amino acids

containing purine bases of nucleic acids. Khimiya Geterotsiklicheskikh Soedinenii, 1,

126-130.

[107] Chung, D. J., & Matsuda, T. (1998). Gelatin modification with photocuring thymine

derivative and its application for hemostatic aid. Journal of Industrial and Engineering

Chemistry, 4(4), 340-344.

[108] Liu, X., Zhang, L., Tan, J. G., & Xu, H. H. (2013). Design and synthesis of N-alkyl-N′-

substituted 2,4-dioxo-3,4-dihydropyrimidin-1-diacylhydrazine derivatives as ecdysone

receptor agonist. Bioorganic & Medicinal Chemistry, 21, 4687-4697.

[109] Gebelein, C. (1990). Nucleic acid analogs: Their specific interaction and applications.

First edition, Biomimetic Polymers (pp. 256). New York: Plenum Press.

Page 25: Synthesis and Characterization of Metal Sonji Thesis-2015

206

[110] Zare, A., Hasaninejad, A., Beyzavi, M. H., Parhami, A., Zare, A. R. M., Khalafi-

Nezhad, A., & Sharghi, H. (2008). Zinc oxide-tetrabutylammonium bromide tandem as a

highly efficient, green, and reusable catalyst for the Michael addition of pyrimidine and

purine nucleobases to α,β-unsaturated esters under solvent-free conditions. Canadian

Journal of Chemistry, 86, 317-324.

[111] Herdewijn, P. (2008). Biologically active nucleosides. Current Protocols in Nucleic

Acid Chemistry, 14, 1-6.

[112] Jordheim, L. P., Durantel, D., Zoulim, F., & Dumontet, C. (2013). Advances in the

development of nucleoside analogues for cancer and viral diseases. Nature Reviews Drug

Discovery, 12, 447-464.

[113] Chatterjee, D., Basak, S., Mitra, A., Sengupta, A., Le Bras, J., & Muzart, J. (2006).

Asymmetric epoxidation of alkenes using a mixed-ligand complex of ruthenium(III)

containing a sugar-based ligand. Inorganica Chimica Acta, 359, 1325-1328.

[114] Borriello, C., Del Litto, R., Panunzi, A., & Ruffo, F. (2004). Mn (III) complexes of

chiral ‘salen’type ligands derived from carbohydrates in the asymmetric epoxidation of

styrenes. Tetrahedron: Asymmetry, 15(4) 681-686.

[115] Azarifar, D., Pirhayati, M., Maleki, B., Sanginabadi, M., & Yami, R. N. (2009). Acetic

acid-promoted condensation of o-phenylenediamine with aldehydes into 2-aryl-1-

(arylmethyl)-1H-benzimidazoles under microwave irradiation. Doiserbia, 2009, 1-11.

[116] Rad, M. N. S., Khalafi-Nezhad, A., Behrouz, S., Faghihi, M. A., Zare, A., & Parhami,

A. (2008). One-pot synthesis of N-alkyl purine and pyrimidine derivatives from alcohols

using TsIm: a rapid entry into carbocyclic nucleoside synthesis. Tetrahedron, 64, 1778-

1785.

Page 26: Synthesis and Characterization of Metal Sonji Thesis-2015

207

[117] Mukherjee, C., & Misra, A. P. (2007). Aza-michael addition of amines to activated

alkenes catalyzed by silica supported perchloric acid under a solvent-free condition.

Letters in Organic Chemistry, 4, 54-59.

[118] Zolfigol, M. A., Khazaei, A., & Moosavi-Zare, A. R. (2010). An efficient protocol for

the synthesis of carboacyclic nucleosides via aza-conjugate addition reaction. Iranian

Journal of Chemistry and Chemical Engineering, 29(4), 67-73.

[119] Sarathi, P. A., Gnanasekaran, C., & Shunmugasundaram, A. (2008). Kinetics and

mechanism of triethylamine catalysed michael addition of benzenethiol to 1-(2-

nitrovinyl)benzene in acetonitrile. Bulletin of Korean Chemical Society, 29(4), 790-794.

[120] Abdul Majid, Y., & Saifullah, P. H. (2007). Interactions of some metal ions with

nitrogenous bases present in nucleotides. Um-Salama Science Journal, 4(3), 420-424.

[121] Türkel, N., & Aksoy, S. (2014). Complex formation of Nickel(II) and Copper(II) with

barbituric acid. ISRN Analytical Chemistry, 2014, 1-5.

[122] Babic, S., Horvat, A. J. M., Pavlovic, D. M., & Kastelan-Macan, M. (2007).

Determination of pKa values of active pharmaceutical ingredients. Trends in Analytical

Chemistry, 26(11), 1043-1061.

[123] Pathare, B., Tambe, V., & Patil, V. (2014). A review on various analytical methods

used in determination of dissociation constant. International Journal of Pharmacy and

Pharmaceutical Sciences, 6(8), 26-34.

[124] Ammar, R., Al-Mutiri, E., & Abdalla, M. (2010). Equilibrium study of the mixed

complexes of copper(II) with adenine and amino acids in aqueous solution. Journal of

Solution Chemistry, 39(5), 727-737.

[125] Shukla, V., Sinha, S., & Krishna, V. (2013). Multiple equilibria and chemical

distribution of some bio metals with β-amide α-aminosuccinate and α-aminoisoverate as

Page 27: Synthesis and Characterization of Metal Sonji Thesis-2015

208

primary ligand and 5-methyl-2,4-dioxopyrimidine as secondary ligand. IOSR Journal of

Applied Chemistry, 4(6), 21-26.

[126] Bartaria, D., Chandra, P., Singh, M., & Krishna, V. (2012). A comparative study on the

interaction of some metal ions with glutamic acid and L-cysteine as primary ligands and

thymine as a secondary ligand using potentiometry in aqueous medium. International

Journal of Research in Chemistry and Environment, 2(4), 45-51.

[127] Bates, R. G., Paabo, M., & Robinson, R. A. (1963). Interpretation of pH measurements

in alcohol-water solvents. The Journal of Physical Chemistry, 67(9), 1833-1838.

[128] Aktaş, A. H., Sanli, N., & Pekcan, G. (2006). Spectrometric determination of pKa

values for some phenolic compounds in acetonitrile–water mixture. Acta Chimica

Slovenica, 53, 214-218.

[129] Hammud, H. H., Holman K. T., Masoud, M. S., El-Faham, A., & Beidas, H. (2009). 1-

Hydroxybenzotriazole (HOBt) acidity, formation constant with different metals and

thermodynamic parameters: Synthesis and characterization of some HOBt metal

complexes–crystal structures of two polymers: [Cu2(H2O)5-(OBt)2(μ-OBt)2].2H2O.EtOH

(1A) and [Cu(μ-OBt)(HOBt)(OBt)(EtOH)] (1B). Inorganica Chimica Acta, 362, 3526-

3540.

[130] Irving, H. & Williams, R. J. P. (1953). The stability of transition-metal complexes.

Journal of the Chemical Society, 3192-3210.

[131] Thakur, S. V., Farooqui, M., & Naikwade, S. D. (2012). Stability study of

complexation of trivalent rare earth metals with isoniazid: thermodynamic aspect.

International Journal of Research in Inorganic Chemistry, 1(4), 5-7.

Page 28: Synthesis and Characterization of Metal Sonji Thesis-2015

209

[132] Prasanna de Silva, A., Eilers, J., & Zlokarnik, G. (1999). Emerging fluorescence

sensing technologies: From photophysical principles to cellular applications.

Proceedings of the National Academy of Sciences, 96, 8336-8337.

[133] Basabe-Desmonts, L., Reinhoudt, D. N., & Crego-Calama, M. (2007). Design of

fluorescent materials for chemical sensing. Chemical Society Reviews, 36, 993-1017.

[134] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N.

(2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary

Toxicology, 7(2), 60-72.

[135] Neupane, L. N., Thirupathi, P., Jang, S., Jang, M. J., Kim, J. H., & Lee, K. H. (2011).

Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor

based on dipeptide. Talanta, 85(3), 1566-1574.

[136] Hongyao, Y., Xiaoying, Z., & Haibo, X. (2012). A novel flourescent sensor for silver

ion and pH. Journal of Shanghai Normal University(Natural Sciences), 41(6), 638-645.

[137] Pu, W., Zhao, H., Huang, C., Wu, L., & Xua, D. (2012). Fluorescent detection of

silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide.

Microchimica Acta, 177(1-2), 137-144.

[138] El-Shekheby, H. A., Mangood, A. H., Hamza, S. M., Al-Kady, A. S., & Ebeid, Z.M.

(2014). A highly efficient and selective turn-on fluorescent sensor for Hg2+, Ag+ and Ag

nanoparticles based on a coumarin dithioate derivative. Luminescence, 29(2), 158-167.

[139] Yu, C., Zhang, J., Ding, M., & Chen, L. (2012). Silver(I) ion detection in aqueous

media based on ‘‘off-on’’ fluorescent probe. Analytical Methods, 4, 342-344.

[140] Wen, Y., Xing, F., He, S., Song, S., Wang, L., Long, Y., Li, D., & Fan, C. (2010). A

graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene

oxide and a silver-specific oligonucleotide. Chemical Communications, 46, 2596-2598.

Page 29: Synthesis and Characterization of Metal Sonji Thesis-2015

210

[141] Takashima, I., Kanegae, A., Sugimoto, M., & Ojida, A. (2014). Aza-crown-ether-

appended xanthene: selective ratiometric fluorescent probe for silver (I) ion based on

arene-metal ion interaction. Inorganic Chemistry, 53(14), 7080-7082.

[142] Huang, C., Ren, A., Feng, C., & Yang, N. (2010). Two-photon fluorescent probe for

silver ion derived from twin-cyano-stilbene with large two-photon absorption cross

section. Sensors and Actuators B: Chemical, 151(1), 236-242.

[143] Dutta, K., & Das, D. K. (2012). 2,7-diferrocenyl-3,6-diazaocta-2,6-diene: a highly

selective dual fluorescent sensor for Zn2+ and Ag+ and electrochemical sensor for Zn2+.

Indian Journal of Chemistry, 51A, 816-820.

[144] Han, Z., Yang, Q., Liang, L., & Zhang, X. (2013). A new heptamethine cyanine-based

near-infrared fluorescent probe for divalent copper ions with high selectivity. Advances

in Materials Physics and Chemistry, 3, 314-319.

[145] Zhou, M., Huang, J., Liu, Z., & Zeng, W. (2012). A novel dansyl-based fluorescent

imaging probe for highly sensitive and quantitative detection of copper ions. The Journal

of Nuclear Medicine, 53(1), 1593.

[146] Xu-zhi, X., Peng, C., & He-ru, C. (2012). 6-(N,N-dimethylamino)-2-naphthoylacryl

acid: a highly selective and sensitive fluorescent sensor of copper(II). Chemical

Research in Chinese Universities, 28(4), 609-613.

[147] Morgan, M. T., Bagchi, P., & Fahrni, C. J. (2013). High-contrast fluorescence sensing

of aqueous Cu(I) with triarylpyrazoline probes: dissecting the roles of ligand donor

strength and excited state proton transfer. Dalton Transactions, 42, 3240-3248.

[148] Duan, Y. W., Tang, H. Y., Guo, Y., Song, Z. K., Peng, M. J., & Yan, Y. (2014). The

synthesis and study of the fluorescent probe for sensing Cu2+ based on a novel coumarin

Schiff-base. Chinese Chemical Letters, 25, 1082-1086.

Page 30: Synthesis and Characterization of Metal Sonji Thesis-2015

211

[149] Li, P., Duan, X., Chen, Z., Liu, Y., Xie, T., Fang, L., Li, L., Yin, M., & Tang, B.

(2011). A near-infrared fluorescent probe for detecting copper(II) with high selectivity

and sensitivity and its biological imaging applications. Chemical Communications,

47(27), 7755-7757.

[150] Mahiya, K., & Mathur, P. (2013). Bis-benzimidazolyl diamide based fluorescent probe

for copper(II): synthesis, structural and fluorescence studies. Journal of Fluorescence,

23(4), 767-776.

[151] Zhang, M., Le, H. N., Jiang, X. Q., Guo, S. M., Yu, H. J., & Ye, B. C. (2013). A

ratiometric fluorescent probe for sensitive, selective and reversible detection of copper

(II) based on riboflavin-stabilized gold nanoclusters. Talanta, 117, 399-404.

[152] Udhayakumari, D., Velmathi, S., Sung, Y. M., & Wu, S. P. (2014). Highly fluorescent

probe for copper (II) ion based on commercially available compounds and live cell

imaging. Sensors and Actuators B: Chemical, 198, 285-293.

[153] García-Beltrán, O., Cassels, B. K., Pérez, C., Mena, N., Núñez, M. T., Martínez, N. P.,

Pavez, P., & Aliaga, M. E. (2014). Coumarin-based fluorescent probes for dual

recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors,

14, 1358-1371.

[154] Jung, H. S., Kwon, P. S., Lee, J. W., Kim, J. I., Hong, C. S., Kim, J. W., Yan, S., Lee,

J. Y., Lee, J. H., Joo, T., & Kim, J. S. (2009). Coumarin-derived Cu2+-selective

fluorescence sensor: synthesis, mechanisms, and applications in living cells. Journal of

the American Chemical Society, 131, 2008-2012.

[155] Wang, Y. C., Liu, L. Z., Pan, Y. M., & Wang, H. S. (2011). Synthesis of a

dehydroabietyl derivative bearing a 2-(2′-hydroxyphenyl) benzimidazole unit and its

selective Cu2+ chemosensing. Molecules, 16, 100-106.

Page 31: Synthesis and Characterization of Metal Sonji Thesis-2015

212

[156] Tang, L., Guo, J., & Wang, N. (2013). A new rhodamine B hydrazide hydrazone

derivative for colorimetric and fluorescent “off-on” recognition of copper(II) in aqueous

media. Bulletin of the Korean Chemical Society, 34(1), 159-163.

[157] He, C. L., Ren, F. L., Zhang, X. B., Dong, Y. Y., & Zhao, Y. (2006). Carboxylic acid-

functionalized tris(2,2′-bipyridine)-ruthenium(II) complex. Analytical Sciences, 22,

1547-1551.

[158] Qin, P., Niu, C., Zeng, G., Zhu, J., & Yue, L. (2008). Determination of trace levels of

Cu(II) or Hg(II) in water samples by a thiourea-based fluorescent probe. Analytical

Sciences, 24, 1205-1208.

[159] Tang, L., Wu, D., Hou, S., Wen, X., & Dai, X. (2014). A simple carbazole-based schiff

base as fluorescence “off-on” probe for highly selective recognition of Cu2+ in aqueous

solution. Bulletin of the Korean Chemical Society, 35(8), 2326-2329.

[160] Yu, C., Zhang, J., Wang, R., & Chen, L. (2010). Highly sensitive and selective

colorimetric and off-on fluorescent probe for Cu2+ based on rhodamine derivative.

Organic & Biomolecular Chemistry, 8, 5277-5279.

[161] Lan, G. Y., Huang, C. C., & Chang, H. T. (2010). Silver nanoclusters as fluorescent

probes for selective and sensitive detection of copper ions. Chemical Communications,

46(8), 1257-1259.

[162] Goswami, S., Sen, D., & Das, N. K. (2010). A new highly selective, ratiometric and

colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and

emission spectra based on internal charge transfer. Organic Letters, 12(4), 856-859.

[163] Moriuchi-Kawakami, T., Hisada, Y., & Shibutani, Y. (2010). A Cu2+ ion-selective

fluoroionophore with dual off/on switches. Chemistry Central Journal, 4(7), 1-6.

Page 32: Synthesis and Characterization of Metal Sonji Thesis-2015

213

[164] Sun, W., Du, Y., & Wang, Y. (2010). Study on fluorescence properties of carbogenic

nanoparticles and their application for the determination of ferrous succinate. Journal of

Luminescence, 130, 1463-1469.

[165] Chereddy, N. R., Raju, M. V. N., Nagaraju, P., Krishnaswamy, V. R., Korrapati, P. S.,

Bangal, P. R., & Rao, V. J. (2014). A naphthalimide based PET probe with Fe3+ selective

detection ability: theoretical and experimental study. Analyst, 139, 6352-6356.

[166] Zheng, M., Tan, H., Xie, Z., Zhang, L., Jing, X., & Sun, Z. (2013). Fast response and

high sensitivity europium metal organic framework fluorescent probe with chelating

terpyridine sites for Fe3+. Applied Materials & Interfaces, 5, 1078-1083.

[167] Yoder, M. F., & Kisaalita, W. S. (2011). Iron specificity of a biosensor based on

fluorescent pyoverdin immobilized in sol-gel glass. Journal of Biological Engineering,

5(4), 1-12.

[168] Zhou, L., Zhang, H., Luan, Y., Cheng, S., & Fan, L. J. (2014). Amplified detection of

iron ion based on plasmon enhanced fluorescence and subsequently fluorescence

quenching. Nano-Micro Letters, 6(4), 327-334.

[169] Wei-Guo, Y., Zhong, C., Dong, Y., Ting-Ting, C., & Lin, X. (2012). Synthesis and

analytical application of fluorescent iron ions(III) probe based on 2-(4-

aminophenyl)benzothiazole and 2-picolylamine derivatives. Chinese Journal of

Analytical Chemistry, 40(8), 1241-1246.

[170] Marenco, M. J. C., Fowley, C., Hyland, B. W., Hamilton, G. R. C., Galindo-Riaño, D.,

& Callan, J. F. (2012). A new use for an old molecule: N-phenyl-2-(2-

hydroxynaphthalen-1- ylmethylene)hydrazinecarbothioamide as a ratiometric ‘off–on’

fluorescent probe for iron. Tetrahedron Letters, 53(6), 670-673.

Page 33: Synthesis and Characterization of Metal Sonji Thesis-2015

214

[171] Ma, Y. M., & Hider, R. C. (2009). The selective quantification of iron by hexadentate

fluorescent probes. Bioorganic & Medicinal Chemistry, 17(23), 8093-8101.

[172] Wang, H., Wang, D., Wang, Q., Li, X., & Schalley, C. A. (2010). Nickel(II) and

iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic

diimide. Organic & Biomolecular Chemistry, 8, 1017-1026.

[173] Thomas, F., Serratrice, G., Be´guin, C., Aman, E. S., Pierre, J. L., Marc, F., &

Laulhe`re, J. P. (1999). Calcein as a fluorescent probe for ferric iron. The Journal of

Biological Chemistry, 274(19), 13375-13383.

[174] Mao, J., He, Q., & Liu, W. (2010). An rhodamine-based fluorescence probe for

iron(III) ion determination in aqueous solution. Talanta, 80(5), 2093-2098.

[175] Long, L., Zhou, L., Wang, L., Meng, S., Gong, A., & Zhang, C. (2014). A ratiometric

fluorescent probe for iron(III) and its application for detection of iron(III) in human

blood serum. Analytica Chimica Acta, 812, 145-151.

[176] Bodenant, B., Weil, T., Businelli-Pourcel, M., Fages, F., Barbe, B., Pianet, I., &

Laguerre, M. (1999). Synthesis and solution structure analysis of a bispyrenyl

bishydroxamate calix[4]arene-based receptor, a fluorescent chemosensor for Cu2+ and

Ni2+ metal ions. The Journal of Organic Chemistry, 64(19), 7034-7039.

[177] Joseph, R., Ramanujam, B., Pal, H., & Rao, C. P. (2008). Lower rim 1,3-di-amide-

derivative of calix[4]arene possessing bis-{N-(2,2′-dipyridylamide)} pendants: a dual

fluorescence sensor for Zn2+ and Ni2+. Tetrahedron Letters, 49(43), 6257-6261.

[178] Unob, F., Asfari, Z., & Vicens, J. (1998). An anthracene-based fluorescent sensor for

transition metal ions derived from calix[4]arene. Tetrahedron Letters, 39(19), 2951-

2954.

Page 34: Synthesis and Characterization of Metal Sonji Thesis-2015

215

[179] Cao, Y. D., Zheng, Q. Y., Chen, C. F., & Huang, Z. T. (2003). A new fluorescent

chemosensor for transition metal cations and on/off molecular switch controlled by pH.

Tetrahedron Letters, 44(25), 4751-4755.

[180] Wang, L., Qin, W., Tang, X., Dou, W., & Liu, W. (2011). Development and

applications of fluorescent indicators for Mg2+ and Zn2+. The Journal of Physical

Chemistry A, 115, 1609-1616.

[181] Lou, T., Chen, Z., Wang, Y., & Chen, L. (2011). Blue-to-red colorimetric sensing

strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles.

Applied Materials & Interfaces, 3, 1568-1573.

[182] Devaraj, S., & Kandaswamy, M. (2013). Fluorescent chemosensing properties of new

isoindoline based-receptors towards F− and Cu2+ ions. Optics and Photonics Journal, 3,

32-39.

[183] Kim, S. K., Lee, S. H., Lee, J. Y., Bartsch, R. A., & Kim, J. S. (2004). An excimer-

based, binuclear, on−off switchable calix[4]crown chemosensor. Journal of the

American Chemical Society, 126(50), 16499-16506.

[184] Kim, J. S., Kim, H. J., Kim, H. M., Kim, S. H., Lee, J. W., Kim, S. K., & Cho, B. R.

(2006). Metal ion sensing novel calix[4]crown fluoroionophore with a two-photon

absorption property. The Journal of Organic Chemistry, 71(21), 8016-8022.

[185] Ratte, H. T. (1999). Bioaccumulation and toxicity of silver compounds: a review.

Environmental Toxicology and Chemistry, 18, 89-108.

[186] Dalapati, S., Paul, B. K., Jana, S., & Guchhait, N. (2011). Highly selective and

sensitive fluorescence reporter for toxic Hg(II) ion by a synthetic symmetrical azine

derivative. Sensors and Actuators B: Chemical, 157, 615-620.

Page 35: Synthesis and Characterization of Metal Sonji Thesis-2015

216

[187] Mehranpour, A. M., & Hashemnia, S. (2006). Solvatochromism in binary solvent

mixtures by means of a penta-tert-butyl pyridinium N-phenolate betaine dye. Journal of

the Chinese Chemical Society, 53, 759-765.

[188] Linkol, V., & Toppari, J. J. (2013). Self-assembled DNA-based structures for

nanoelectronics. Journal of Self-Assembly and Molecular Electronics, 1, 101-124.

[189] Daniels, M., & Hauswirth, W. (1971). Fluorescence of the purine and pyrimidine bases

of the nucleic acids in neutral aqueous solution at 300 degrees K. Science, 171, 675-677.

[190] Callis, P. R. (1983). Electronic states and luminescence of nucleic-acid systems.

Annual Review of Physical Chemistry, 34, 329-357.

[191] Preus, S., Jonck, S., Pittelkow, M., Dierckx, A., Karpkird, T., Albinsson, B., &

Wilhelmsson, L. M. (2013). The photoinduced transformation of fluorescent DNA base

analogue tC triggers DNA melting. Photochemical & Photobiological Sciences, 12,

1416-1422.

[192] Serrano-Andre´, L., Mercha´, M., & Borin, A. C. (2006). Adenine and 2-aminopurine:

paradigms of modern theoretical photochemistry. Proceedings of the national academy

of sciences, 103(23), 8691-8696.

[193] Sinkeldam, R. W., Greco, N. J., & Tor, Y. (2010). Fluorescent analogs of biomolecular

building blocks: design, properties and applications. Chemical Reviews, 110(5), 2579-

2619.

[194] Lu, H., Mack, J., Yang, Y., & Shen, Z. (2014). Structural modification strategies for the

rational design of red/NIR region BODIPYs. Chemical Society Reviews, 43, 4778-4823.

[195] Sabale, P. M., Nuthanakanti, A., & Srivatsan, S. G. (2013). Synthesis and fluorescence

properties of a full set of extended RNA base analogues. Indian Journal of Chemistry,

52A, 1004-1013.

Page 36: Synthesis and Characterization of Metal Sonji Thesis-2015

217

[196] Masternak, A., Wenska, G., Milecki, J., Skalski, B., & Franzen, S. (2005).

Solvatochromism of a novel betaine dye derived from purine. The Journal of Physical

Chemistry A, 109, 759-766.

[197] Abdullah, Z., Tahir, N. M., Abas, M. R., Aiyub, Z., & Low, B. K. (2004). Fluorescence

studies of selected 2-alkylaminopyrimidines. Molecules, 9(7), 520-526.

[198] Valentic, N., Uscumlic, G. S., & Radojkovic-Velickovic, M. (2003). Substituent and

solvent effects on the UV/vis absorption spectra of 3-N-alkyl-5-carboxy uracils. Indian

Journal of Chemistry, 42B, 1137-1140.

[199] Mata, G., & Luedtke, N. W. (2013). Synthesis and solvatochromic fluorescence of

biaryl pyrimidine nucleosides. Organic Letters, 15(10), 2462-2465.

[200] Hamidian, H., Zahedian, N., Ghazanfari, D., & Fozooni, S. (2013). Synthesis and

evaluation of changes induced by solvent and substituent in electronic absorption spectra

of new azo disperse dyes containing barbiturate ring. Journal of Spectroscopy, 2013, 1-6.

[201] Moustafa, H., Shibl, M. F., Hilal, R., Ali, L. I., & Abdel Halim, S. (2011). Electronic

absorption spectra of some triazolopyrimidine derivatives. International Journal of

Spectroscopy, 2011, 1-8.

[202] El-Gahami, M. A., Mekky, A. E. M., Saleh, T. S., & Al-Bogami, A. S. (2014). Acidity

constant and solvatochromic behavior of some pyrazolo[1,5-a]pyrimidin-2-amine

derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,

129, 209-218.

[203] Seferoglu, Z. (2009). A study on tautomeric equilibria of new hetarylazo-6-

aminouracils. Arkivoc, 7, 42-57.

Page 37: Synthesis and Characterization of Metal Sonji Thesis-2015

218

[204] Jovanovic, M., & Biehl, E. (2009). Substituent and solvent effects on tautomeric

equilibria of barbituric acid derivatives and isoterically related compounds. Journal of

Heterocyclic Chemistry, 24(1), 191-204.

[205] Bartzatt, R., Bartlett, M., & Handler, N. (2013). Detection and quantitative analysis for

2-thiobarbituric acid utilizing UV-Visible spectrophotometer. American Journal of

Pharmacological Sciences, 1(1), 10-14.

[206] Peng, S., Padva, A., & Lebreton, P. R. (1976). Ultraviolet photoelectron studies of

biological purines: the valence electronic structure of adenine. Proceedings of the

National Academy of Sciences, 73(9), 2966-2968.

[207] Yoo, D. J., Park, H. D., Kim, A. R., Rho, Y. S., & Shim, S. C. (2002). Photophysical

properties of new psoralen derivatives: psoralens linked to adenine through

polymethylene chains. Bulletin of the Korean Chemical Society, 23(9), 1315-1320.

[208] Toba, M., Takeoka, Y., & Rikokawa, M. (2003). Thermochromic and solvatochromic

properties of poly(thiophene) derivatives with liquid crystal moiety. Synthetic Metals,

135(136), 339-340.

[209] Kim, Y. H., Youk, J. S., Kim, S. H., & Chang, S. K. (2005). Solvatochromic

fluorescence behavior of 8-aminoquinoline-benzothiazole: a sensitive probe for water

composition in binary aqueous solutions. Bulletin of the Korean Chemical Society, 26(1),

47-50.

[210] Jayabharathi, J., Thanikachalam, V., Jayamoorthy, K., & Srinivasan, N. (2013).

Synthesis, spectral studies and solvatochromism of some novel benzimidazole

derivatives-ESIPT process. Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy, 105, 223-228.

Page 38: Synthesis and Characterization of Metal Sonji Thesis-2015

219

[211] Suganthi, G., Sivakolunthu, S., & Ramakrishnan, V. (2010). Solvatochromic and

preferential solvation studies on schiff base 1,4-bis(((2-

methylthio)phenylimino)methyl)benzene in binary liquid mixtures. Journal of

Fluorescence, 20(6), 1181-1189.

[212] Shaikh, A. A., Firdaws, J., Islam, S., & Bakshi, P. K. (2015). Interaction of Cu(II) with

cytosine in Britton-Robinson Buffer solution-A cyclic voltammetric study. Dhaka

University Journal of Science, 63(1), 31-36.

[213] Improta, R. (2013). Studying DNA excited states by quantum mechanical methods:

from the isolated nucleobase in the gas phase to oligonucleotide in solution. European

Photochemistry Association Newsletter, 85, 37-42.

[214] Blancafort, L. (2013). Computational photophysics and photochemistry of the DNA

nucleobases. There's more to it than photostability. European Photochemistry

Association Newsletter, 85, 31-36.

[215] Aliaga-Alcalde, N., & Rodriguez, L. (2012). Solvatochromic studies of a novel Cd2+-

anthracene-based curcuminoid and related complexes. Inorganica Chimica Acta, 380,

187-193.

[216] Kumar, S., Sharma, R., Kumar, S., & Nitika, S. (2014). Solvatochromic behaviour of

formazans and contribution of Kamlet–Taft coefficients towards spectral shifts of

formazans in different organic solvents. Chemical Science Transactions, 3(3), 919-928.

[217] Prabhu, A. A. M., Sankaranarayanan, R. K., Siva, S., Subramanian, V. K., &

Rajendiran, N. (2010). Spectral characteristics of 2-amino-3-benzyloxy pyridine: Effects

of solvents, pH, and β-Cyclodextrin. Russian Journal of Physical Chemistry A, 84(13),

2270-2283.

Page 39: Synthesis and Characterization of Metal Sonji Thesis-2015

220

[218] Shama, S. A., Kasem, M., Ali, E., & Moustafa, M. E. (2014). Synthesis and

characterization of some new azo compounds based on 2,4-dihydroxy benzoic acid.

Journal of Basic and Environmental Sciences, 1, 76-85.

[219] Hammud, H. H., Bouhadir, K. H., Masoud, M. S., Ghannoum, A. M., & Assi, S. A.

(2008). Solvent effect on the absorption and fluorescence emission spectra of some

purine derivatives: spectrofluorometric quantitative studies. Journal of Solution

Chemistry, 37, 895-917.

[220] David, G., & Hallam, H. E. (1967). Infra-red solvent shifts and molecular interactions-

X triatomic molecules, CS2, COS and SO2. Spectrochimica Acta Part A: Molecular and

Biomolecular Spectroscopy, 23, 593-603.

[221] Costinela-Laura, G., Ioan, P., & Ioan, B. (2008). Solvent and temperature effects on the

electronic transitions of 3-H-indolo-2-dimethinehemicyanine dyes. Dyes and Pigments,

76, 455-462.

[222] Masoud, M. S., & Hammud, H. H. (2001). Electronic spectral parameters of the azo

indicators: methyl red, methyl orange, PAN, and fast black K-salt. Spectrochimica Acta

Part A: Molecular and Biomolecular Spectroscopy, 57, 977-984.

[223] Hammud, H. H., Ghannoum, A. M., Fares, F. A., Abramian, L. K., & Bouhadir, K. H.

(2008). New 1,6-heptadienes with pyrimidine bases attached: syntheses and

spectroscopic analyses. Journal of Molecular Structure, 881, 11-20.

[224] Trisovic, N., Banjac, N., & Valentic, N. (2009). Solvent effects on the structure-activity

relationship of phenytoin-like anticonvulsant drugs. Journal of Solution Chemistry, 38,

199-208.

[225] Lippert, E. (1955). Dipole moment and electronic structure of excited molecules.

Zeitschrift für Naturforschung, 10, 541-546.

Page 40: Synthesis and Characterization of Metal Sonji Thesis-2015

221

[226] Mataga, N., Kaifu, Y., & Koizumi, M. (1955). The solvent effect on fluorescence

spectrum, change of solute solvent interaction during the lifetime of excited solute

molecule. Bulletin of the Chemical Society of Japan, 28, 690-691.