42
Par. a = a = = = = = AIC = Alk = = = = = = = = = = = = b = = = = = = = = = = = = = = = = = = = = = = = = = = = Aa Ad Admin ai,n AlkAlkd Alki Alke Am Amod Ao ath Ath Au Aumin ban bh bhT Bn bn Bo BODvss Bp bp bv Cae Cd Cd1 Cda Cdi Cdl Cel Cgen Ch [CH4]eq cp Cr Cr Crh Crn Crp

Symbol List NEW

  • Upload
    sagbvn

  • View
    25

  • Download
    1

Embed Size (px)

DESCRIPTION

SLN

Citation preview

Blad1Par.Short descriptionUoMa=projected width of a gas collection platema=mixed liquor recirculation factor(-)(from nitrification zone to pre-D zone)Aa=total area occupied by apertures in a UASB reactorm2Ad=surface area of final settlerm2Admin=minimum final settler surface aream2ai,n=annualisation factor(-)AIC=annualized investment costsUS$.yr-1Alk=alkalinitymg CaCO3.l-1Alk=final alkalinity after complete decay of active sludge in aerobic digestermg CaCO3.l-1Alkd=alkalinity consumed in the aerobic digestermg CaCO3.l-1Alki=initial alkalinity concentration (aerobic digestion)mg CaCO3.l-1Alke=final alkalinity concentration (aerobic digestion)mg CaCO3.l-1Am=membrane surface aream2Amod=membrane surface area in a modulem2Ao=overflow area in UASB reactorm2ath=specific thickener surface aream2.d.kg-1 CODAth=thickener surface aream2Au=surface area of UASB reactorm2Aumin=minimum UASB surface aream2b=projected height of a gas collection platemban=anaerobic decay rated-1bh=decay rate for heterotrophic bacteria (non bio-P)d-1bhT=decay rate for heterotrophic bacteria (non bio-P)d-1at temperature TBn=mass balance recovery factor for nitrogenous material(-)bn=decay rate for nitrifiersd-1Bo=mass balance recovery factor for COD(-)BODvss=BOD value of a unit of organic sludge (aerobic digestion)mg BOD.mg-1 VSSBp=mass balance recovery factor for phosphorus(-)bp=decay rate of bio-P organismsd-1bv=apparent decay constant of heterotrophic bacteria (non bio-P)d-1Cae=unit construction costs of aeration systemUS$.kW-1Cd=unit volume construction costs of final settlerUS$.m-3Cd1=unit volume construction costs of the primary settlerUS$.m-3Cda=unit volume construction costs of aerobic digesterUS$.m-3Cdi=unit volume construction costs of anaerobic digesterUS$.m-3Cdl=costs of discharge to sewer (levies)US$.PE-1Cel=price of electricityUS$.kWh-1Cgen=unit construction cost of power generationUS$.kW-1Ch=costs of heating (e.g. with gas or oil)US$.m-3 gas orUS$.kg-1 fuel[CH4]eq=equilibrium methane concentrationmg CH4.l-1cp=proportionality constant between stirred and diluted(-)sludge volume indexCr=unit volume construction costs of the aeration tankUS$.m-3Cr=specific active biomass production per unit mass daily applied biodegradable CODmg VSS.d.mg-1 CODCrh=specific active biomass production of heterotrophic organisms per unit mass daily applied biodegradable CODmg VSS.d.mg-1 CODCrn=specific active nitrifiers production of per unit mass of daily applied nitrogenmg VSS.d.mg-1 NCrp=specific active biomass production of bio-P organisms per unit mass daily applied biodegradable CODmg VSS.d.mg-1 CODCsd=costs of sludge disposalUS$.ton-1 TSSCth=unit volume construction costs of a sludge thickenerUS$.m-3Cu=unit volume construction costs of a UASB reactorUS$.m-3Dc=denitrification capacitymg N.l-1 influentDc1=denitrification capacity in pre-D zonemg N.l-1 influentDc1p=denitrification capacity from utilization of easilymg N.l-1 influentbiodegradable CODDc1s=denitrification capacity from utilization of slowlymg N.l-1 influentbiodegradable CODDc3=denitrification capacity in post-D zonemg N.l-1 influentDcd=denitrification capacity in the final settlermg N.l-1 influentDd=diameter of final settlermDOav=average oxygen concentration during OUR testmg O2.l-1DOl=oxygen concentration in the liquid phasemg O2.l-1DOm=oxygen concentration measured by oxygen sensormg O2.l-1DOmt=oxygen concentration in the membrane tankmg O2.l-1DOs=saturation concentration of dissolved oxygen in the mixed liquor at pressure pmg O2.l-1DOs20=saturation concentration of dissolved oxygen at 20Cmg O2.l-1DOsa=saturation concentration of dissolved oxygen under actual conditionsmg O2.l-1DOsp=saturation concentration of dissolved oxygen at standard pressuremg O2.l-1DOss=saturation concentration of dissolved oxygen at 20C and 1 atm (9.1 mg.l-1)mg O2.l-1DOsT=saturation concentration of dissolved oxygen at temperature Tmg O2.l-1f=fraction of the influent flow discharged to the first reactor in step feed systems(-)f=endogenous residuemg VSS.mg-1 VSSF=fouling factor(-)F=solids fluxkg TSS.m-2.d-1F/P=feed to permeate ratio(-)fa(N-1)=active sludge fraction in the sludge entering the Nth digestermg VSS.mg-1 VSSfac=fraction of construction costs required for construction of additional (non-specified) unitsmg VSS.mg-1 VSSfae=active sludge concentration in aerobic digestermg VSS.mg-1 VSSfaer=aerobic sludge mass fractionkg TSS.kg-1 TSSfai=initial active sludge concentration (aerobic digestion)mg VSS.mg-1 VSSfaN=active sludge fraction in the sludge leaving the Nth aerobic digestermg VSS.mg-1 VSSfan=anaerobic sludge mass fractionkg TSS.kg-1 TSSfat=active fraction of sludgemg VSS.mg-1 TSSfav=active fraction of organic sludgemg VSS.mg-1 VSSfav1=active fraction of organic sludge from primary settlingmg VSS.mg-1 VSSfav2=active fraction of organic sludge from activated sludge systemmg VSS.mg-1 VSSfave=active fraction of organic stabilised sludgemg VSS.mg-1 VSSfbh=fraction of Sbi consumed by normal heterotrophic biomassmg COD.mg-1 CODfbp=fraction of Sbi sequestered by bio-P organismsmg COD.mg-1 CODfbp=slowly biodegradable (particulate) COD fraction in the raw wastewatermg COD.mg-1 CODf'bp=slowly biodegradable (particulate) COD fraction in the pre-settled wastewatermg COD.mg-1 CODfbpu=biodegradable particulate fraction of organic CODmg COD.mg-1 CODin anaerobic effluentfbs=easily biodegradable (soluble) COD fraction in the raw wastewatermg COD.mg-1 CODf'bs=easily biodegradable (soluble) COD fraction in the pre-settled wastewatermg COD.mg-1 CODfbsh=fraction of Sbsi consumed by normal heterotrophic bacteriamg COD.mg-1 CODfbsp=fraction of Sbsi sequestered by bio-P organismsmg COD.mg-1 CODfbsu=biodegradable soluble fraction of organic COD in anaerobic effluentmg COD.mg-1 CODfcv=proportionality constant between bacterial mass and mass of CODmg COD.mg-1 VSSfd=activity factor for a bivalent ion(-)fdn=denitrification constant = (1 - fcvY)/2.86(-)fep=endogenous residue of bio-P organismsmg VSS.mg-1 VSSfh2s=inorganic H2S-COD in UASB effluent expressed as fraction of influent CODmg COD.mg-1 CODfh2su=inorganic H2S-COD fraction in anaerobic effluentmg COD.mg-1 CODfi=additional investment costs (non-construction related)(-)Fl=limiting solids fluxkg TSS.m-2.d-1Fm=membrane fluxl.m-2.h1fm=maximum anoxic sludge fraction allowed form3.m-3selected sludge age (when Nae = Nad)fm=activity coefficient for a monovalent ion in the mixed liquor(-)fmax=maximum allowed anoxic mass fractionm3.m-3fmi=mineral fraction influentmg ISS.mg-1 CODfn=nitrogen fraction in organic biomassmg N.mg-1 VSSf'np=inert particulate COD fraction after primary settlingmg COD.mg-1 CODfnp=inert particulate influent COD fractionmg COD.mg-1 CODfnpu=inert particulate fraction of COD in anaerobic effluentmg COD.mg-1 CODf'ns=inert soluble COD fraction after primary settlingmg COD.mg-1 CODfns=non biodegradable, soluble influent COD fractionmg COD.mg-1 CODfnsu=non biodegradable, soluble COD fraction in anaerobic effluentmg COD.mg-1 CODfp=phosphorus fraction in organic biomassmg P.mg-1 VSSfpd=fraction of bio-P organisms capable of denitrification(-)fpp=maximum poly-P fraction of bio-P organismsmg P.mg-1 VSSfpr=phosphorus release constantmg P.mg-1 CODfpu=putrescible fraction of anaerobic sludgemg VSS.mg-1 VSSfr=average frequency of exposure at the chlorine injection pointd-1Fs=applied solids load (drying beds)kg TSS.m-2f'sb=fraction of biodegradable COD that is easily biodegradable remaining after primary settlingmg COD.mg-1 BCODfsb=fraction of biodegradable COD that is easily biodegradablemg COD.mg-1 BCODFsol=solids loading ratekg TSS.m2.d-1Ft=total solids flux in final settlerkg TSS.m2.d-1Fu=solids flux due to sludge abstractionkg TSS.m2.d-1fv=organic sludge fraction = ratio between volatile and total sludge concentrationmg VSS.mg-1 TSSFv=solids flux due to sludge settlingkg TSS.m2.d-1fve=organic sludge fraction in stabilised sludgemg VSS.mg-1 TSSfvp=organic sludge fraction of bio-P organismsmg VSS.mg-1 TSSfvu=organic sludge fraction anaerobic sludgemg VSS.mg-1 TSSfx=total anoxic sludge mass fractionkg TSS.kg-1 TSSfx1=pre-D anoxic sludge mass fractionkg TSS.kg-1 TSSfx3=post-D anoxic sludge mass fractionkg TSS.kg-1 TSSfxd=sludge mass fraction located in final settlerkg TSS.kg-1 TSSfxvd=fraction of final settler volume filled with sludgem3.m-3g=gravitational acceleration constantm.s-2h=liquid height above base of V-notch or above perforationmH1=thickener inlet zone / thickening zone (ATV)mH2=thickener clarification zone / sludge storage zone (ATV)mH3=thickener compression zone / separation zone (ATV)mH4=thickener sludge removal zone / clear water zone (ATV)mHd=height of final settlermHdav=average depth of final settlermHdb=height of the sludge buffer zonemHdf=deflector heightmHdif=level of air diffusers above reactor bottommHdig=height of digestion zone in UASB reactormHfb=height of freeboard of UASB reactormHgb=liquid height of gas boxmHgls=liquid GLS heightmHliq=liquid height UASB reactormHth=height of sludge thickenermHu=total height of UASB reactormi=interest rate%I=investment costsUS$Idsv=diluted sludge volume indexml.g-1 TSSIssv=stirred sludge volume indexml.g-1 TSSk=Vesilind constantl.g-1 TSSK1=rate constant for denitrification on easily biodegradablemg N.g-1 Xa-VSS.d-1organic materialk1=equilibrium constant for CO2 dissociationmol.l-1k1*=real equilibrium constant for CO2 dissociation,mol.l-1corrected for ionic activityK2=rate constant for denitrification on slowly biodegradable organic materialmg N.g-1 Xa-VSS.d-1k2=equilibrium constant for bicarbonate dissociationmol.l-1k2*=real equilibrium constant of the bicarbonate dissociation, corrected for ionic activitymol.l-1K3=rate constant for denitrification due to endogenous respirationmg N.g-1 Xa-VSS.d-1Ka=adsorption rate constantlitre.mg-1 Xa.d-1kabs=adsorption constanth-1Kap=adsorption saturation constantmg COD.mg-1 XaKc=fermentation constantl.mg-1 Xa-VSS.d-1Kh=Henry constantatm or mg.l-1.atm-1kla=oxygen transfer coefficienth-1klaa=oxygen transfer coefficient under actual conditionsh-1klas=oxygen transfer constant at 20Ch-1klaT=oxygen transfer constant at TCh-1Km=specific utilisation rate constantmg COD.mg-1 Xa.d-1Kmp=specific utilisation rate of slowly bio-degradable (adsorbed) organic materialmg COD.mg-1 Xa.d-1Kms=specific utilisation rate of easily biodegradable organic materialmg COD.mg-1 Xa.d-1Kn=saturation constant for nitrifiersmg N.l-1Ko=half saturation constant for aerobic processesmg O2.l-1kr=relaxation constanth-1Ks=saturation constant (Monod)mg COD.l-1Ksp=saturation constant (Monod) for growth on slowly biodegradable, adsorbed substratemg COD.mg-1 XaKss=saturation constant (Monod) for growth on easilymg COD.l-1biodegradable substratekw=equilibrium constant for the dissociation of watermol2.l-2kw*=real equilibrium constant for the dissociation of water, corrected for ionic activitymol2.l-2Le=height of water layer remaining at end of drying periodmmLi=height of initial water layer applied to sludge bedmmLu=length of UASB reactormm=maintenance costs% of TIC per yearmciv=maintenance costs for civil part of plant% of TIC per yearMCrd=construction costs of aeration tank and final settlerUS$MCthdi=total construction costs of thickener and anaerobic digesterUS$MDc1=total pre-D denitrification capacitykg N.d-1MDc3=total post-D denitrification capacitykg N.d-1MEchem=total chemical excess sludge productionkg TSS.d-1mEd=specific digested sludge masskg VSS.kg-1 CODMEd=digested sludge masskg VSS.d-1MEmeoh=chemical excess sludge production (metal oxides)kg TSS.d-1MEmep=chemical excess sludge production (metal phosphates)kg TSS.d-1mEt=specific excess sludge production (equal to apparent yield Yap)mg TSS.mg-1 CODMEt=excess sludge productionkg TSS.d-1mEt1=specific primary excess sludge productionmg TSS.mg-1 CODMEt1=primary excess sludge productionkg TSS.d-1mEt2=specific secondary excess sludge productionmg TSS.mg-1 CODMEt2=secondary excess sludge productionkg TSS.d-1mEte=specific stabilised excess sludge productionmg TSS.mg-1 CODMEte=stabilised excess sludge productionkg TSS.d-1mEtu=specific anaerobic excess sludge productionmg TSS.mg-1 CODMEtu=anaerobic excess sludge productionkg TSS.d-1MEtx=total (secondary) excess sludge production corrected for loss of suspended solids in the effluentkg TSS.d-1mEv=specific organic sludge production (= apparent yield Yap)mg VSS.mg-1 CODMEv=volatile or organic excess sludge productionkg VSS.d-1MEv1=organic primary excess sludge productionkg VSS.d-1MEv2=organic secondary excess sludge productionkg VSS.d-1mEve=specific stabilised organic excess sludge productionmg VSS.mg-1 CODMEve=stabilised organic excess sludge productionkg VSS.d-1MEvu=organic anaerobic excess sludge productionkg VSS.d-1mEvxa=specific active excess sludge productionmg VSS.mg-1 CODmExvna=specific inactive excess sludge productionmg VSS.mg-1 CODmMd=specific methane productionkg CH4.kg-1 CODMMd=methane productionkg CH4.d-1MME=consumption of metal saltskg.d-1mme&i=maintenance costs for mechanical, electrical and instrumentation part of plant% of TICMNav1=mass of nitrate available in (i.e. returned to) the pre-D zonekg N.d-1MNd=mass of denitrified nitrogenkg N.d-1MNd1=mass of nitrate denitrified in the pre-D reactorkg N.d-1MNd3=mass of nitrate denitrified in the post-D reactorkg N.d-1MNdd=mass of nitrate denitrified in the final settlerkg N.d-1MNdp=denitrification due to consumption of slowlykg N.d-1biodegradable CODMNds=denitrification due to consumption of easily biodegradable CODkg N.d-1mNl=specific nitrogen discharge with the excess sludgemg N.mg-1 CODMNl=nitrogen removal with produced excess sludgekg N.d-1mNld=specific nitrogen release in digestermg N.mg-1 CODMNld=mass of nitrogen released in digesterkg N.d-1mNle=specific nitrogen removal due to discharge with the stabilised excess sludgemg N.mg-1 CODMNle=mass of nitrogen removed with stabilised excess sludgekg N.d-1MNlx=mass of nitrogen removed with the excess sludge corrected for the loss of organic nitrogen with the effluentkg N.d-1MNte=nitrogen load in effluentkg N.d-1MNti=nitrogen load in influentkg N.d-1MOc=oxygen demand for COD oxidation (= MSo)kg O2.d-1MOeq=equivalent oxygen demandkg O2.d-1(recovered oxygen from denitrification)MOn=oxygen demand for nitrificationkg O2.d-1MOt=total oxygen demandkg O2.d-1MPchem=mass of phosphorus removed by chemical precipitationkg P.d-1mPel=specific power productionkWh.kg-1 CODMPl=phosphorus removal with excess sludge productionkg P.d-1mPl=specific phosphorus discharge with the excess sludgemg P.mg-1 CODMPl1=mass of phosphorus removed with the primary excess sludgekg P.d-1mPle=specific phosphorus removal due to discharge with the stabilised excess sludgemg P.mg-1 CODMPle=mass of phosphorus removed with stabilised excess sludgekg P.d-1MPlex2=mass of phosphorus removed with the secondary excess sludge, corrected for the loss of organic nitrogen with the effluentkg P.d-1MPlx=mass of phosphorus removed with the excess sludge, corrected for loss of organic phosphorus in the effluentkg P.d-1MPte=phosphorus load in the effluentkg P.d-1mq1=specific primary excess sludge flow ratem3.kg-1 CODmq2=specific secondary excess sludge flow ratem3.kg-1 CODmqth=specific thickened sludge productionm3.kg-1 CODmSbu=fraction of total COD present as biodegradable CODmg COD.mg-1 CODin UASB effluentmSd=fraction of influent COD that is digestedmg COD.mg-1 CODMSd=mass of COD digested in the systemkg COD.d-1MSda=COD mass digested in UASB and emitted to atmospherekg COD.d-1mSdu=fraction of influent COD digested in UASBmg COD.mg-1 CODMSdu=COD mass digested in UASBkg COD.d-1mSe=fraction of influent COD leaving the system with the effluent (soluble COD only)mg COD.mg-1 CODmSeu=fraction of influent COD ending up as non-settleable COD in the UASB effluentmg COD.mg-1 CODMSeu=non settleable COD load in UASB effluentkg COD.d-1mSmb=fraction of influent COD metabolizedmg COD.mg-1 CODMSmb=metabolized sludge masskg COD.d-1mSo=fraction of influent COD that is oxidizedmg COD.mg-1 CODMSo=mass of COD oxidized in the system (= MOc)kg COD.d-1mSod=fraction of influent COD oxidized in aerobic digestermg COD.mg-1 CODMSseq=mass of COD sequestered by bio-P organismskg COD.d-1mSte=fraction of influent COD leaving the system with the effluent (includes particulate COD)mg COD.mg-1 CODMSte=COD load in the effluentkg COD.d-1MSti=applied COD loadkg COD.d-1MSxv=mass of COD discharged from the system in the excess sludgekg COD.d-1mSxv=fraction of influent COD discharged from the systemmg COD.mg-1 CODin the excess sludgemSxv1=fraction of influent COD leaving the system in the primary excess sludgekg COD.d-1mSxv2=fraction of influent COD discharged from the systemkg COD.d-1in the secondary excess sludgemSxve=fraction of influent COD leaving the system with stabilised excess sludgemg COD.mg-1 CODMSxve=mass of COD discharged from the system in the stabilised excess sludgekg COD.d-1mSxvu=influent COD fraction converted into anaerobic excess sludgemg COD.mg-1 CODMSxvu=COD mass discharged as anaerobic excess sludge from UASBkg COD.d-1mwmeoh=mole weight metal hydroxideg.mol-1mwmp=mole weight metal phosphateg.mol-1mwms=mole weight metal saltg.mol-1mXa=active sludge mass per unit mass daily applied CODmg VSS.d.mg-1 CODMXa=total active sludge mass in systemkg VSSMXah=total active heterotrophic sludge mass in systemkg VSSMXan=total active nitrifier sludge mass in systemkg VSSMXap=total mass of active bio-P organisms in systemkg VSSmXau=active anaerobic sludge mass per unit mass daily applied CODmg VSS.d.mg-1 CODMXau=total active anaerobic sludge mass in systemkg VSSmXbpu=non-degraded biodegradable sludge mass per unit mass daily applied CODmg VSS.d.mg-1 CODMXbpu=total mass of non-degraded biodegradable sludge mass in systemkg VSSMXchem=total mass of chemical sludge in systemkg TSSmXe=endogenous sludge mass per unit mass daily applied CODmg VSS.mg-1 COD.d-1MXe=total mass of endogenous sludge in systemkg VSSMXen=total mass of endogenous nitrifier sludge in systemkg VSSMXep=total mass of endogenous bio-P sludge in systemkg VSSmXeu=endogenous anaerobic sludge mass per unit massmg VSS.d.mg-1 CODdaily applied CODMXeu=total mass of endogenous anaerobic sludgekg VSSmXi=inert sludge mass per unit mass daily applied CODmg VSS.d.mg-1 CODMXi=total mass of inert sludge in systemkg VSSmXiu=non-biodegradable particulate anaerobic sludge massmg VSS.d.mg-1 CODper unit mass daily applied CODMXiu=total mass of non-biodegradable particulate anaerobickg VSSsludge in systemmXmu=inorganic anaerobic sludge mass per unit massmg ISS.d.mg-1 CODdaily applied CODMXmu=total mass of inorganic anaerobic sludge in systemkg VSSMXn=total nitrifier mass in systemkg VSSmXt=total sludge mass per unit mass daily applied CODmg TSS.d.mg-1 CODMXt=total sludge mass in systemkg TSSMXtba=available sludge mass storage capacity in final settlerkg TSSMXtbr=required sludge mass storage capacity in final settlerkg TSSMXtd=total sludge mass in final settlerkg TSSmXtu=anaerobic sludge mass per unit mass daily applied CODmg TSS.mg-1 COD.d-1MXtu=total mas of anaerobic sludge in systemkg TSSmXv=volatile sludge mass per unit mass daily applied CODmg VSS.mg-1 COD.d-1MXv=total volatile sludge mass in systemkg VSSMXvh=total organic heterotrophic biomass in systemkg VSSmXvu=anaerobic organic sludge per unit mass daily applied CODmg VSS.mg-1 COD.d-1MXvu=total anaerobic organic sludge mass in systemkg VSSn=economical lifetimeyearsn=number of gas boxes(-)n=insurance costs% of TIC per yearN=number of UASB reactors(-)N=number of aerobic digesters(-)Nad=desired/required effluent ammonium concentrationmg N.l-1Nae=ammonium effluent concentrationmg N.l-1Nav1=nitrate available in pre-D zonemg N.l-1 influentNav3=nitrate available in post-D zonemg N.l-1 influentNc=nitrification capacity (= nitrified ammonium concentration)mg N.l-1 influentNc/Sbi=ratio between nitrification capacity and biodegradablemg N/mg CODinfluent COD(Nc/Sbi)l=limiting ratio between nitrification capacity and biodegradable influent COD for the applicability of the Bardenpho processmg N.mg-1 COD(Nc/Sbi)o=maximum ratio between nitrification capacity and biodegradable influent COD allowing full nitrogen removalmg N.mg-1 CODNd=denitrified nitrogen concentrationmg N.l-1 influentNdd=concentration of nitrate that will be denitrified in the return sludge stream per passage through the final settlermg N.l-1Nddmax=maximum allowable production of nitrogen gas in the return sludge flow during its passage through the final settler to the abstraction pointmg N.l-1Ndp=denitrification due to consumption of slowlymg N.l-1 influentbiodegradable CODNds=denitrification due to consumption of easily biodegradable CODmg N.l-1 influentNke=effluent Kjeldahl nitrogen concentrationmg N.l-1Nki=influent Kjeldahl nitrogen concentrationmg N.l-1Nl=nitrogen concentration removed with the excess sludgemg N.l-1 influentNld=nitrogen concentration released in digestermg N.l-1 influentNle=nitrogen concentration removed with the stabilisedmg N.l-1 influentexcess sludgeNlh=nitrogen concentration removed with the heterotrophicmg N.l-1 influentexcess sludgeNln=nitrogen concentration removed with the nitrifiermg N.l-1 influentexcess sludgeNlx=nitrogen concentration discharged with excess sludgemg N.l-1 influent(corrected for loss of organic nitrogen in the effluent)NN2eq=equilibrium dissolved nitrogen gas concentration at the maximum liquid depth of the final settler, assuming an atmosphere of 100% nitrogenmg N.l-1NN2in=dissolved nitrogen gas concentration in the incomingmg N.l-1mixed liquor flowNn=nitrate concentration when decay of active sludge is complete (aerobic digestion)mg N.l-1Nnd=nitrate production in the aerobic digestermg N.l-1Nne=nitrate/nitrate effluent concentrationmg N.l-1Nni=initial nitrate concentration (aerobic digestion)mg N.l-1Nni=influent nitrate/nitrite concentrationmg N.l-1Noe=organic nitrogen in effluentmg N.l-1Noi=influent organic nitrogen concentrationmg N.l-1Nope=particulate organic nitrogen in effluentmg N.l-1Nose=soluble organic nitrogen in effluentmg N.l-1Np=nitrification potentialmg N.l-1 influent(= maximum ammonium concentration that can be nitrified)Nte=effluent total nitrogen concentrationmg N.l-1Nte,max=maximum nitrogen effluent concentrationmg N.l-1(all released nitrogen recycled to aeration tank)Nte,min=minimum nitrogen effluent concentrationmg N.l-1(no recycle of released nitrogen to aeration tank)Nti=influent Kjeldahl nitrogen concentrationmg N.l-1(Nti/Sti)l=limiting ratio between influent TKN and total influent COD for the applicability of the Bardenpho processmg N.mg-1 COD(Nti/Sti)o=maximum ratio between influent TKN and total influent COD allowing full nitrogen removalmg N.mg-1 CODo=operational costs% of TIC per yearOc=oxygen uptake rate (respiration) for COD oxidationmg O2.l-1.d-1Oen=endogenous respiration ratemg O2.l-1.d-1Oeq=oxygen recovery rate (equivalent oxygen uptake rate)mg O2.l-1.d-1due to denitrificationOex=exogenous respiration ratemg O2.l-1.d-1Oex,sbp=exogenous respiration rate due to consumption of slowly biodegradable (adsorbed) substratemg O2.l-1.d-1Oex,sbs=exogenous respiration rate due to consumption of easily biodegradable substratemg O2.l-1.d-1On=oxygen uptake rate for nitrificationmg O2.l-1.d-1Ot=total oxygen uptake ratemg O2.l-1.d-1OT4,5=oxygen transfer efficiency at 4.5 m submergence%OTa=actual oxygen transfer efficiencykg O2.kWh-1 or %Otd=total oxygen uptake rate (aerobic digester)mg O2.l-1.d-1OTs=standard oxygen transfer efficiencykg O2.kWh-1 or %OUR=oxygen uptake ratemg O2.l-1.h-1OURa=apparent OURmg O2.l-1.h-1OURabs=rate of change of oxygen concentration in reactor due to hydraulic effectsmg O2.l-1.h-1OURen=endogenous respiration ratemg O2.l-1.h-1OURh=rate of change of oxygen concentration in reactor due to adsorption of atmospheric oxygenmg O2.l-1.h-1OURm=maximum oxygen uptake rate due to nitrificationmg O2.l-1.h-1p=personnel costs% of TIC per yearp=atmospheric pressurebarP=static point(-)Paer=required aeration powerkWPaerm=installed aeration powerkWpch4=partial methane pressureatmPchem=concentration of phosphorus to be chemically removedmg P.l-1 influentpdis=discharge pressurebar or m liquidPdiss=dissipated powerW.m-3Pel=power productionkWPel=electrical power consumption (pumps)kWPEres=residual pollution load in wastewater after treatmentUS$.PE-1Ph=required heating powerm3 gas or kg fuel.d-1Pl=influent phosphorus concentration removed withmg P.l-1 influentthe excess sludgePld=influent phosphorus concentration in digested sludgemg P.l-1 influent(i.e. released to liquid phase)Ple=influent phosphorus concentration removed withmg P.l-1 influentthe stabilised excess sludgePlx=phosphorus concentration discharged with excess sludge (corrected for loss of organic phosphorus with the effluent)mg P.l-1 influentPmin=minimum required energy required to keep sludge in suspensionW.m-3po2=partial oxygen pressureatmPope=particulate organic phosphorus in effluentmg P.l-1Pose=soluble organic phosphorus in effluentmg P.l-1Ppe=phosphate concentration in effluentmg P.l-1ps=standard pressurebarPtd=desired/required total phosphorus concentration in the effluentmg P.l-1Pte=effluent total phosphorus concentrationmg P.l-1Pte,max=maximum phosphorus effluent concentrationmg P.l-1(all released phosphorus recycled to aeration tank)Pte,min=minimum phosphorus effluent concentrationmg P.l-1(no recycle of released phosphorus to aeration tank)Pti=influent phosphorus concentrationmg P.l-1pw=water vapor pressurebarQ=flow ratem3.h-1 or m3.s-1q=excess sludge flowm3.d-1q1=primary excess sludge flowm3.d-1q2=secondary excess sludge flowm3.d-1Qair=air flowkg.h-1 or Nm3.h-1Qch4=methane gas flow rateNm3.h-1Qbg=biogas flow rateNm3.h-1Qf=module feed flow (cross-flow membranes)m3.h-1Qi=influent flow ratem3.d-1 or m3.h-1Qp=permeate flow ratem3.h-1Qpf=influent peak flow ratem3.h-1Qrec=recirculation flow (cross-flow MBR)m3.h-1qth=thickened excess sludge flowm3.d-1qw=excess sludge flowm3.d-1r=recirculation factor from pre-D zone to anaerobic zone(-)R=gas constantkJ.mol-1.K-1ra=adsorption rate of slowly biodegradable materialmg COD.l-1.d-1rd=decay ratemg VSS.l-1.d-1rd=denitrification ratemg N.l-1.d-1Rd=retention time in aerobic digesterdaysRdi=retention time in anaerobic digesterdaysRdmin=theoretical minimum total aerobic digestiondaysretention time for N rdp=denitrification rate on slowly biodegradable CODmg N.l-1.d-1rds=denitrification rate on easily biodegradable CODmg N.l-1.d-1Rdtot=minimum total aerobic digestion retention timedaysrg=growth ratemg VSS.l-1.d-1Rh=hydraulic retention timedaysRh1=hydraulic retention time in pre-D reactordaysrhi=hydrolysis rate of stored slowly biodegradable materialmg COD.l-1.d-1Rhth=thickening time final settler (ATV)daysRhu=hydraulic retention time UASBhrRmin=minimum retention time for complete utilisation of the Sbs present in the influent in the pre-D reactordaysrn=nitrification ratemg N.l-1.d-1RN=retention time in Nth aerobic digesterdaysRrel=relative evaporation rate of water in the exposed sludge batch(-)Rs=sludge agedaysRsa=true sludge age (including sludge mass present in final settler)daysrsbp=net production of slowly biodegradable materialmg COD.l-1.d-1rsbs=net production of easily biodegradable materialmg COD.l-1.d-1rsbs=feeding rate of easily biodegradable material to the pre-D reactormg COD.l-1.d-1Rsm=minimum sludge age required to achieve desireddayseffluent ammonium concentrationRsn=minimum sludge age required for nitrificationdaysrspa=net production of adsorbed biodegradable materialmg COD.l-1.d-1Rsu=anaerobic sludge agedaysru=utilisation rate of organic materialmg COD.l-1.d-1rus=utilisation rate of easily biodegradable influent organic materialmg COD.l-1.d-1rv=decay rate of volatile solidsmg VSS.l-1.d-1Rw=water evaporation ratemm.day-1rxa=net production of active sludgemg VSS.l-1.d-1rxe=production rate of endogenous residuemg VSS.l-1.d-1s=sludge recycle factor(-)Sbh=biodegradable COD consumed by normal heterotrophic biomassmg COD.l-1 influentSbi=biodegradable influent COD concentrationmg COD.l-1 influentSbp=biodegradable COD sequestered by bio-organismsmg COD.l-1 influentSbp=slowly biodegradable COD concentration (reactor)mg COD.l-1 influentSbs=easily biodegradable COD concentration (reactor)mg COD.l-1 influentSbsh=easily biodegradable COD consumed by normalmg COD.l-1 influentheterotrophic biomassS'bsi=influent concentration of easily biodegradable material after correction for denitrification in the anaerobic zonemg COD.l-1 influentSbsi=easily biodegradable influent COD concentrationmg COD.l-1 influentSbsN=residual concentration of the easily biodegradable material in the effluent of the Nth reactor of a seriesmg COD.l-1Sbsp=easily biodegradable COD sequestered by bio-P organismsmg COD.l-1 influentsc=critical sludge recirculation factor(-)sd=safety factor used to allow for locally increased dissolved nitrogen gas concentrations(-)Seu=soluble (non settleable) COD concentration in UASB effluentmg COD.l-1 influentsfd=safety factor used in design final settler(-)sfth=safety factor used in design sludge thickener(-)Shab=COD discharge per capitag COD.inhab-1smin=minimum value of sludge recirculation flow (MBR)(-)Sni=non biodegradable influent COD concentrationmg COD.l-1 influentSnsi=non biodegradable soluble influent COD concentrationmg COD.l-1 influentSpa=concentration of absorbed slowly biodegradable material (reactor)mg COD.l-1 influentspf=return sludge ratio during peak flow (ATV)(-)Spi=particulate influent COD concentrationmg COD.l-1 influentSte=total effluent COD concentrationmg COD.l-1Sti=total influent COD concentrationmg COD.l-1 influentStu=total UASB effluent COD concentrationmg COD.l-1SVFA=VFA concentrationmg COD.l-1 influentt=aerobic digestion timedaysT=sewage temperatureCt1=time required for preparation of the sludge bed anddaysapplication onto the bed of the sludge to be driedt2=time required for percolationdayst3=time required for evaporationdayst4=time required for removal of the dried sludge anddayscleaning of the bed for the next batchtc=total drying cycle timedaysTCC=total construction costsUS$tcomp=compression time (thickener)daysTdig=temperature in the anaerobic digesterCTIC=total investment costsUS$Tin=blower inlet temperatureCTmax=maximum reactor temperatureCTmin=minimum reactor temperatureC(often equal to design temperature)TOC=total operational costsUS$tp=duration of primary phase (denitrification)dTs=hydraulic loading ratem.h-1Tsm=maximum allowable hydraulic loading ratem.h-1Tspf=hydraulic loading rate during peak flow (ATV)m.h-1Tvx=sludge volume loading ratel.m-2.h1Tvxm=maximum sludge volume loading ratel.m-2.h1u=downward liquid velocity in settlerm.h-1U=humidity%Ue=final humidity%Ui=initial humidity%v0=Vesilind constantm.d-1 or m.h-1va=liquid velocity in UASB aperturesm.h-1Vaer=volume aerobic zonem3Van=volume of anaerobic zone (bio-P removal)m3Vc=volume of settler conem3vd=hydraulic retention time in final settlerdaysVd=volume of final settlerm3Vd1=volume of primary settlerm3Vda=aerobic digestion volumem3vda=specific aerobic digestion volumem3.d.kg-1 CODVdb=available volume for sludge buffering in the final settlerm3Vdi=anaerobic digester volumem3Vhab=reactor volume required per capitam3.inhab-1vl=liquid upflow velocity in UASB reactorm.h-1vo=liquid overflow velocity in UASB reactorm.h-1Vr=volume of aeration tankm3vr=biological reactor volumem3.d.kg-1 CODVt=total volumem3vth=specific thickener volumem3.d.kg-1 CODVth=thickener volumem3Vtp=molar gas volume at actual temperature and pressureliter.mol-1Vu=UASB volumem3vx=sludge volumeml.l-1Vx1=volume pre-D zonem3Vx3=volume post-D zonem3Wa=width of single aperture in UASB reactormWgb=outer width of gas boxmWu=width of UASB reactormXa=active sludge concentration in reactorkg VSS.m-3Xa(N-1)=active sludge concentration in (N-1)th digester and its effluent (aerobic digestion)kg VSS.m-3Xad=digested active sludge concentration (aerobic digestion)kg VSS.m-3Xae=active sludge concentration in digester and its effluentkg VSS.m-3(aerobic digestion)Xah,an=active heterotrophic sludge concentration in anaerobic zonekg VSS.m-3Xai=initial or incoming active sludge concentrationkg VSS.m-3(aerobic digestion)XaN=active sludge concentration in N-th digester and its effluent (aerobic digestion)kg VSS.m-3Xan=active nitrifier concentrationkg VSS.m-3Xav=average concentration at which sludge will accumulate in the final settlerkg TSS.m-3Xbpu=non degraded biodegradable solids concentrationkg VSS.m-3Xc=critical sludge concentrationkg TSS.m-3xch4=mole fraction of dissolved methane gas in watermole.mole-1Xd1=primary sludge concentrationkg TSS.m-3Xe=concentration of endogenous residue in reactorkg VSS.m-3Xee=endogenous sludge concentration formed in aerobic digesterkg VSS.m-3Xen=concentration of endogenous residue from nitrifierskg VSS.m-3Xf=average sludge concentration on settler bottom (ATV)kg TSS.m-3Xi=inert organic sludge concentration in reactorkg VSS.m-3Xl=limiting sludge concentrationkg TSS.m-3Xm=minimum sludge concentrationkg TSS.m-3Xmi=concentration of inorganic solids in influentmg ISS.l-1Xmu=inorganic sludge concentration in reactorkg ISS.m-3Xnae=inactive sludge concentration in digester (aerobic digestion)kg VSS.m-3Xnai=initial or incoming inactive sludge concentrationkg VSS.m-3(aerobic digestion)Xr=return sludge concentrationkg TSS.m-3Xrm=maximum return sludge concentrationkg TSS.m-3Xrmax=maximum allowed sludge concentration in membrane tankkg TSS.m-3Xt=total sludge concentration in reactorkg TSS.m-3Xt1=sludge concentration in first reactor (step feed systems)kg TSS.m-3Xt2=sludge concentration in second reactor (step feed systems)kg TSS.m-3Xte=total stabilised sludge concentrationkg TSS.m-3Xte=effluent total solids concentrationmg TSS.l-1Xth=thickened excess sludge concentrationkg TSS.m-3Xthl=limiting thickening sludge concentrationkg TSS.m-3Xtpf=sludge concentration in the reactor during peak flowkg TSS.m-3Xtu=average UASB sludge concentration in reactorkg TSS.m-3Xtud=average UASB sludge concentration in digestion zonekg TSS.m-3Xv=volatile sludge concentration in reactorkg VSS.m-3Xv=final volatile sludge concentration when decay of active sludge is complete (aerobic digestion)kg VSS.m-3Xvd=digested organic sludge concentrationkg VSS.m-3Xve=stabilised organic sludge concentrationkg VSS.m-3Xvi=initial volatile sludge concentration (aerobic digestion)kg VSS.m-3Xvu=organic anaerobic sludge concentrationkg VSS.m-3Xw=waste sludge concentrationkg TSS.m-3Yan=anaerobic yieldmg VSS.mg-1 CODYao=yield of ammonia oxidisersmg VSS.mg-1 NYap=apparent yieldmg VSS.mg-1 COD or mg TSS.mg-1 CODY or Yh=heterotrophic yieldmg VSS.mg-1 CODYn=nitrifier yieldmg VSS.mg-1 NYno=yield of nitrite oxidisersmg VSS.mg-1 N=inclinationmm.m-1=ratio of the oxygen transfer rate in mixed liquor and(-)in pure water=plate inclination=angle of base of V-notch=ratio of the saturation concentration of DO in mixed liquor(-)and in pure waterAlkam=alkalinity change from ammonificationmg CaCO3.l-1 influentAlkd=alkalinity change from denitrificationmg CaCO3.l-1 influentAlkn=alkalinity change from nitrificationmg CaCO3.l-1 influentAlkt=total alkalinity changemg CaCO3.l-1 influentDc1=reduction in pre-D denitrification capacity due tomg N.l-1recycle of oxygen to pre-D zoneDc3=reduction in post-D denitrification capacity due to influx of oxygen in post-D zonemg N.l-1L=height of water layer removed during drying periodmmMXt=mass of sludge transferred from the reactor to the final settler during peak flowkg TSSNa=variation of ammonium concentrationmg N.l-1 influentNam=ammonified nitrogen concentration in themg N.l-1 influentactivated sludge processNn=variation of nitrate concentrationmg N.l-1 influentp=differential pressurebarpmod=differential pressure over a membrane modulebarpTM=trans membrane pressurebarXt=change in reactor sludge concentration during peak flowg TSS.l-1aer=efficiency of blower%ch4=methane fraction in biogas%COD=COD removal efficiency%d=efficiency factor to account for short circuiting between inlet- and outlet of final settler (ATV)(-)dn=maximum solids removal efficiency of inactive sludge fraction%dp=maximum solids removal efficiency of active sludge fraction%el=electrical efficiency of pump, biogas engine and gas motor%m=ratio between net and gross membrane flux(-)sb=sludge drying bed productivitykg TSS.m-2.d-1xv=fraction of solids converted in digester%1=COD removal efficiency of primary settler%dn=degree of solids conversion inert and endogenous sludge(-)dp=degree of solids conversion active sludge(-)x1=solids removal efficiency of primary settler%'m=(apparent) maximum specific nitrifier growth rate in systems with non aerated zonesd-1=specific growth rate of nitrifiersd-1m=maximum specific nitrifier growth rated-1T=sweet water viscosity at process temperaturecPT,ref=sweet water viscosity at reference temperature (1.288 at T = 15)cP=densitykg.m-3=membrane permeabilitylitre.m-2.h-1.bar-1T=membrane permeability at process temperaturelitre.m-2.h-1.bar-1T,ref=membrane permeability at T = 15Clitre.m-2.h-1.bar-1=temperature dependency coefficient (Arrhenius)(-)=contraction coefficient(-)

Blad2

Blad3