29
Surgical management of localized renal cell carcinoma - UpToDate INTRODUCTION Renal cell carcinomas (RCCs), which originate within the renal cortex, are responsible for 80 to 85 percent of all primary renal neoplasms. Transitional cell carcinomas of the renal pelvis are the next most common (approximately 8 percent). Other parenchymal epithelial tumors, such as oncocytomas, collecting duct tumors, and renal sarcomas, occur infrequently. Nephroblastoma or Wilms' tumor is common in children (5 to 6 percent of all primary renal tumors). The role of surgery in the management of localized RCC will be reviewed here. The use of thermal ablation (radiofrequency ablation [RFA] and cryoablation) as definitive therapy is discussed separately, as is the use of surgery in patients with metastatic RCC. (See "Radiofrequency ablation and cryoablation for renal cell carcinoma" and "Role of surgery in patients with metastatic renal cell carcinoma" .) GENERAL CONSIDERATIONS A presumptive diagnosis of RCC generally is made based upon the finding of a solid renal mass on imaging studies. This tentative diagnosis requires histologic confirmation, which can be obtained by either biopsy or surgical resection. (See "Evaluation of a solid renal mass" .)

Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Surgical management of localized renal cell carcinoma - UpToDate

INTRODUCTION — Renal cell carcinomas (RCCs), which originate within the

renal cortex, are responsible for 80 to 85 percent of all primary renal neoplasms.

Transitional cell carcinomas of the renal pelvis are the next most common

(approximately 8 percent). Other parenchymal epithelial tumors, such as

oncocytomas, collecting duct tumors, and renal sarcomas, occur infrequently.

Nephroblastoma or Wilms' tumor is common in children (5 to 6 percent of all

primary renal tumors).

The role of surgery in the management of localized RCC will be reviewed here.

The use of thermal ablation (radiofrequency ablation [RFA] and cryoablation) as

definitive therapy is discussed separately, as is the use of surgery in patients with

metastatic RCC. (See "Radiofrequency ablation and cryoablation for renal cell

carcinoma" and "Role of surgery in patients with metastatic renal cell

carcinoma".)

GENERAL CONSIDERATIONS — A presumptive diagnosis of RCC generally is

made based upon the finding of a solid renal mass on imaging studies. This

tentative diagnosis requires histologic confirmation, which can be obtained by

either biopsy or surgical resection. (See "Evaluation of a solid renal mass".)

The optimal approach to management strategy is determined by the stage of

disease, while taking into account the patient's overall medical condition and

renal function [1]. (See 'Renal function' below.)

Stage I and II disease — For patients in whom preoperative staging indicates

that the tumor is either stage I or stage II (table 1), surgery is usually curative.

Surgical resection, with either a radical nephrectomy or a partial nephrectomy, is

the standard of care for patients with a T1 (≤7 cm) lesion [2]. Other nephron-

sparing approaches (radiofrequency ablation [RFA], cryoablation) or active

surveillance may be acceptable alternatives to radical nephrectomy for carefully

selected patients. Patients with T2 (>7 cm) primary lesions are generally

managed with radical nephrectomy. (See 'Radical nephrectomy' below and

'Nephron-sparing approaches' below and 'Active surveillance' below.)

Page 2: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Factors that are important in determining whether a partial or radical

nephrectomy is preferred include the location of the tumor within the kidney,

whether multiple tumors exist, and the presence of either a solitary kidney or a

concurrent disorder associated with multiple RCCs (eg, von Hippel-Lindau

disease). In addition, particular attention should be paid to the underlying renal

function and the risk of chronic kidney disease. (See 'Renal function' below.)

Stage III disease — Radical nephrectomy is the preferred approach for patients

with stage III disease (table 1). Stage III disease includes patients with tumor

invasion into the adrenal gland or perinephric tissues (but not extending beyond

Gerota's fascia), those with enlarged abdominal lymph nodes, and those with

invasion of the renal vein and/or inferior vena cava (IVC).

Specific surgical considerations for patients with stage III disease include:

Among those with radiologic evidence of abdominal lymph node

involvement, a standard radical nephrectomy should be considered, since many

nodes initially suspected of harboring tumor radiologically are enlarged only

because of reactive inflammation [1]. (See 'Lymph node dissection' below.)

Involvement of the renal vein and/or IVC does not preclude a successful

surgical resection. (See 'Cavoatrial tumor involvement' below.)

Stage IV disease — Patients with stage IV RCC are defined as those with large

tumors extending beyond Gerota's fascia, obvious evidence of extensive disease

in regional lymph nodes, and/or distant metastases (table 1).

Nephrectomy may be indicated for palliation of local symptoms or in advance of

systemic immunotherapy, or when tumor extends into an adjacent organ (T4)

without other evidence of metastatic spread [3]. Surgical resection of metastases

may also be indicated in selected situations. (See "Role of surgery in patients

with metastatic renal cell carcinoma".)

Renal function — Prior to surgery, the glomerular filtration rate should be

estimated from a stable serum creatinine concentration using the Modification in

Diet and Renal Disease (MDRD) equation (calculator 1). Patients with impaired

renal function may be candidates for partial nephrectomy or an alternative

Page 3: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

nephron-sparing approach [4,5]. (See "Assessment of kidney function: Serum

creatinine; BUN; and GFR", section on 'Estimation equations' and 'Nephron-

sparing approaches' below.)

Partial versus radical nephrectomy — The impact of partial versus radical

nephrectomy on subsequent renal function was evaluated in a retrospective

cohort study of 662 patients with small (<4 cm) solitary cortical lesions, an

apparently healthy contralateral kidney, and a serum creatinine less than 1.4

mg/dL (124 micromol/L) [4]. Prior to surgery, 24 percent of patients had an

estimated GFR between 45 and 59 mL/min per 1.73 m2 and 2 percent had an

estimated GFR between 30 and 44 mL/min per 1.73 m2.

Three years after surgery, patients undergoing partial nephrectomy had a

significantly lower likelihood of having a glomerular filtration rate below 45

mL/min per 1.73 m2 than those undergoing radical nephrectomy (5 versus 36

percent).

Preservation of renal function may be associated with improved survival. This

was suggested in a retrospective single institution study of 1004 patients

managed with either partial or radical nephrectomy for localized primary renal cell

carcinoma between 4 and 7 cm [6]. In this nonrandomized study, the five-year

cancer-specific survival rate was at least equivalent for partial nephrectomy after

correcting for T stage and nuclear grade. However, loss of renal function with

radical nephrectomy was associated with a significantly increased risk of cardiac

death and a decrease in overall survival (five-year overall survival 78 versus 85

percent for patients treated with radical and partial nephrectomy, respectively).

Solitary kidney — In patients with a solitary kidney, ablative techniques may be

especially useful for preservation of renal function. This was illustrated in a

retrospective series of 89 patients with 98 tumors in a solitary kidney, in which

decline in glomerular filtration rate was significantly less in those treated with

radiofrequency ablation compared with those managed with open partial

nephrectomy (10 versus 25 percent at 12 months) [7]. A possible mechanism is

avoidance of cold ischemia during surgery.

Page 4: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

RADICAL NEPHRECTOMY — Radical nephrectomy consists of ligation of the

renal artery and vein, and excision of the kidney, Gerota's fascia, and ipsilateral

adrenal gland. This became the procedure of choice in the 1960s when a study

reported a superior five-year survival rate compared with simple nephrectomy (66

versus 48 percent, respectively) [8]. As with other urologic malignancies,

hospitals and surgeons doing a higher volume of nephrectomies have lower

mortality rates than those with lower volumes [9].

Several surgical approaches are available for the satisfactory performance of

radical nephrectomy. The thoracoabdominal approach offers the ability to palpate

the ipsilateral lung cavity and mediastinum, and to resect a solitary pulmonary

metastasis [8,10,11]. An extrapleural supracostal incision or an anterior

transabdominal incision may also be performed. Independent of the surgical

approach, early ligation of the vascular pedicle is important to prevent tumor

dissemination at surgery.

Laparoscopic nephrectomy — Laparoscopic nephrectomy represents a

reasonable alternative to open radical nephrectomy for T1 and T2 RCCs <10 cm

[12-15]. Although technically demanding, the oncologic outcome appears to be

equivalent to open nephrectomy in series with long-term outcome. Seeding at the

operative sites has been described only rarely [16]. Intact specimen removal is

preferred to piecemeal removal [17].

Management of the adrenal gland — The need for prophylactic ipsilateral

adrenalectomy is controversial. Involvement of the ipsilateral adrenal gland is

uncommon (5 percent or less) [18-20]. Adrenal gland involvement is usually due

to direct extension from a large upper pole lesion; adrenal involvement in

association with extraadrenal metastases is also seen. Although some series

suggest that a negative staging CT scan effectively excludes adrenal

involvement by tumor [19], others report a false negative rate as high as 23

percent [20].

Adrenalectomy is typically reserved for patients with large (>4 cm) upper pole

lesions, non-organ confined tumor stage (T3 or greater), or solitary ipsilateral

adrenal metastases identified by preoperative imaging studies (table 1).

Page 5: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Lymph node dissection

No suspected nodal metastases — The use of routine extended

lymphadenectomy in conjunction with radical nephrectomy is controversial when

there is no preoperative evidence of lymph node involvement. The rationale for

this approach is that lymphadenectomy adds little morbidity, allows better

evaluation of the extent of disease, decreases local recurrence rates, and

potentially improves survival [21-27].

A randomized phase 3 trial conducted by the European Organization for

Research and Treatment of Cancer (EORTC 30881) randomly assigned 772

patients to radical nephrectomy alone or with lymph node dissection [28]. At a

median follow-up of over 12 years, there were no differences in overall survival or

deaths due to cancer in the two treatment arms.

However, only 4 percent of patients assigned to lymph node dissection had

positive nodes, probably due to earlier diagnosis and more effective preoperative

evaluation. As a result, the study included a large proportion of patients in whom

lymph node dissection may not have been indicated and was significantly

underpowered to demonstrate any benefit in those patients who would be most

likely to benefit from lymphadenectomy [29].

A lymph node dissection may remain important for patients who are at increased

risk of having lymph node involvement. We suggest performing a lymph node

dissection limited to the renal hilum for patients who are undergoing radical

nephrectomy in whom nodal metastases are not suspected.

Suspected nodal metastases — Extended lymphadenectomy is indicated when

nodal metastases are suspected on a preoperative CT scan and there is no

evidence of distant metastases. In such patients, extended lymphadenectomy

can be curative, and systemic treatment options are generally not curative for

regional nodal disease.

Cavoatrial tumor involvement — RCC is complicated by tumor thrombus

involving the inferior vena cava (IVC) or right atrium in 5 to 10 percent of cases

[30]. The extent of involvement is important for staging (table 1) and surgical

Page 6: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

planning (figure 1). Preoperative magnetic resonance imaging (MRI) is generally

the best test to determine the presence and/or extent of cavoatrial thrombus

[31,32].

Extension of tumor into the IVC does not necessarily preclude a favorable long-

term outcome. Radical nephrectomy with thrombectomy can provide immediate

palliation of symptoms and five-year survival rates up to 72 percent, if there are

no nodal or distant metastases and tumor does not invade perinephric fat [33,34].

Patients with mobile tumor thrombus rather than tumor directly invading the IVC

wall may have a better outcome after extraction of the thrombus (five year

survival 69 versus 26 percent in one series) [35].

Simple thrombectomy may suffice for patients with thrombus extending below the

major hepatic veins. For thrombi located above the major hepatic veins,

cardiopulmonary bypass and hypothermic circulatory arrest may be required for

complete resection [33,36,37]. Because of its greater morbidity, this approach

should generally be reserved for patients without evidence of distant or nodal

metastases. Five-year survival is dismal in patients with distant metastases, and

thrombectomy should only be considered in these cases as part of a trial

evaluating systemic therapy [38]. Limited evidence suggests that aggressive

therapy (radical nephrectomy, thrombectomy, postoperative immunotherapy)

may produce long-term survival in some patients with advanced disease [34,39].

A minimally invasive technique for thrombus removal above the hepatic veins

has been described [40]. This may reduce perioperative morbidity and mortality,

thereby expanding the utility of nephrectomy in this patient population [40].

Two potentially fatal complications of cavoatrial thrombus are thrombus migration

and embolization [41]. Intraoperative transesophageal echocardiography may be

useful to detect tumor thrombus migration [30]. Preoperative embolization is rare

because the tumor thrombus tends to have a "capsule" and does not readily

break off small pieces. IVC filters are generally avoided as they need to be

placed above the renal veins and if they become blocked, can impair function of

the remaining kidney. Heparin has been used in cases where embolization has

occurred preoperatively. (See "Pulmonary tumor embolism".)

Page 7: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Preoperative angioinfarction — Angioinfarction has been used to reduce

vascularity and lower the risk of hemorrhage during nephrectomy with large,

marginally resectable tumors [42]. The technique has also been used to control

symptoms (bleeding, pain) in patients with unresectable or symptomatic

metastatic disease [43].

Several techniques have been developed for embolizing the renal artery [44].

Most patients experience pain, fever, and nausea, which may last for several

days following the procedure.

Spontaneous regression of metastases is rare following sequential

angioinfarction and nephrectomy; in addition, no survival benefit has been

observed compared with patients undergoing nephrectomy alone [45,46].

Adjuvant therapy

Immunotherapy — The ability of immunotherapy to induce responses in some

patients with advanced RCCs has led to the evaluation of various

immunotherapeutic strategies as an adjuvant following complete surgical

resection. However, multiple randomized trials have not demonstrated a survival

benefit in this setting with any form of immunotherapy. (See "Immunotherapy of

renal cell carcinoma", section on 'Adjuvant immunotherapy'.)

Molecularly targeted therapy — Progress in the treatment of advanced RCC

using molecularly targeted agents has led to the initiation of clinical trials to test

these approaches for patients at high risk following surgery. Although preliminary

studies have demonstrated the feasibility of neoadjuvant treatment [47,48], the

use of such agents is not indicated outside the context of a clinical trial. (See

"Molecularly targeted therapy for advanced renal cell carcinoma".)

NEPHRON-SPARING APPROACHES — Patients with RCCs, particularly those

in whom the removal of large amounts of renal tissue would result in the

significant loss of renal function, should be managed with nephron-sparing

approaches when possible. Options for appropriately selected patients include

partial nephrectomy, thermal ablation (radiofrequency ablation [RFA] and

cryotherapy), and active surveillance.

Page 8: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Partial nephrectomy

Indications and outcomes — There are no randomized trials that compare partial

nephrectomy with radical nephrectomy.

Observational data indicate that the oncologic outcomes are similar to radical

nephrectomy, at least for patients with T1 tumors (table 1) [49-53]. This was

illustrated by the composite experience in 1454 patients from seven centers [49].

With a mean follow-up of over five years, there were no significant differences in

local or distant recurrence rates with T1N0M0 tumors treated with either partial (n

= 379) or radical (n = 1075) nephrectomy. Approximately 85 percent of the partial

nephrectomies were performed for tumors ≤ 4 cm (ie, T1a), but results in this

[49] and other series [51-53] support the use of partial nephrectomy in patients

with T1b tumors.

In contrast, the oncologic outcomes in patients with T2 or greater disease are

uncertain, with some series reporting inferior outcomes [54,55], while one center

has observed comparable outcomes in carefully selected patients [56].

Thus, partial nephrectomy has become the standard of care for patients with T1a

(≤4 cm) primary tumors, and is an appropriate alternative for those with T1b (>4

to <7 cm) tumors when preserving renal function is an important consideration

[2]. Factors that might lead to a particular consideration of partial rather than

radical nephrectomy include the presence of bilateral tumors, a tumor in a

solitary kidney, or the presence of compromised renal function [49,57].

If nephron-sparing surgery is attempted, intraoperative findings may preclude the

completion of such surgery. Most urologists, for example, recommend converting

the surgery to radical nephrectomy in cases with renal vein invasion or

sarcomatoid histology on frozen section.

Up to 15 percent of patients with papillary tumors and 8 percent of those with

other histologic subtypes have multicentric tumors [58], which would not be

detected with a partial nephrectomy and could lead to recurrent disease.

However, reported rates of local recurrence are low (0 to 10 percent) in

appropriately selected patients [49,54,57,59-64].

Page 9: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

Complications of nephron-sparing surgery are similar to nephrectomy and

include urinary fistulae, acute renal failure, the need for temporary or permanent

dialysis, and bleeding (7, 6, 5, and 2 percent of cases, respectively, in one

series) [59].

Positive surgical margins — The clinical significance of positive surgical margins

is unclear, and positive margins do not necessarily imply an ominous prognosis

[65,66]. Every effort should be made to ensure negative margins at the time of

surgery, but an incidental finding on the final pathology specimen can be

managed with careful surveillance [66].

The result of this conservative approach to a positive surgical margin is illustrated

by a series of 1390 patients who underwent partial nephrectomy at one of two

high volume institutions [66]. If margins were positive at frozen section,

reresection or completion nephrectomy was undertaken. Overall, 77 patients (6

percent) had margins that were positive only on the final pathology examination

and not by frozen section. These patients were managed with surveillance only.

In this series, there was no difference in the five- and ten-year probabilities of

local recurrence-free survival compared to those patients with negative margins

(98 versus 97 and 91 versus 93 percent, respectively). There also was no

difference in the incidence of distant metastases.

Adrenalectomy — In most patients undergoing partial nephrectomy, concomitant

adrenalectomy should be restricted to those with a suspicious lesion identified on

preoperative imaging or to those in whom adrenal invasion is suspected based

upon intraoperative findings.

The limited role of adrenalectomy in conjunction with partial nephrectomy was

illustrated by a series of 2065 patients undergoing partial nephrectomy at a single

institution, in which concomitant adrenalectomy was performed in 48 cases (2

percent) [67]. Of these, one patient had RCC directly invading the adrenal, two

patients had adrenal metastases, and three had other adrenal tumors. Benign

lesions were found in 42 cases (87 percent).

Small multiple and/or bilateral tumors — Although bilateral tumors are more

common with inherited conditions (eg, von Hippel-Lindau disease, familial

Page 10: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

papillary RCC), between 1 and 4 percent of patients with apparently sporadic

tumors also have bilateral RCCs [68].

For patients who have multiple and/or bilateral tumors, some clinicians advocate

waiting until the largest lesion is greater than 3 cm before performing a partial

nephrectomy in order to preserve renal parenchyma [69]. Allowing such tumors

to grow beyond 3 cm before resection may be detrimental. This size criterion was

derived from studies in patients with von Hippel-Lindau disease, in whom

preservation of renal parenchyma is critically important because of the high

likelihood of additional subsequent renal lesions. (See "Clinical features,

diagnosis, and management of von Hippel-Lindau disease", section on 'Renal

cell carcinomas'.)

During nephron-sparing surgery, the kidney should be carefully examined to

exclude a second malignancy. The importance of this approach was illustrated by

a series of 112 patients with sporadic renal masses that included 25 with

presumed simple cysts identified preoperatively by imaging [70]. Overall, a

second lesion was identified and resected in 37 cases. Eight of the 37 second

lesions (22 percent) were malignant, including 4 of the 25 (16 percent) with

presumed benign cysts. The authors concluded that a partial nephrectomy was

still appropriate therapy for these patients, based upon the small size of the

additional malignant lesions and the favorable prognosis.

Simple enucleation rather than partial nephrectomy has been used as a

treatment for T1a RCC (table 1). This approach has been reported to yield

comparable results in patients with small tumors, but experience is more limited

than with other forms of partial nephrectomy [71]. Although enucleation is

reasonable for selected lesions in some patients with von Hippel-Lindau disease,

partial nephrectomy with a rim of normal renal parenchyma is preferable. In one

series, more than 50 percent of patients with renal cell carcinoma who underwent

enucleation ex vivo after radical nephrectomy still had residual carcinoma

adjacent to the pseudocapsule [72].

Continued surveillance is required after partial nephrectomy, since patients are at

risk for recurrence of the original lesion as well as additional tumors. However,

Page 11: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

the risk of developing metastatic disease appears to be relatively low as long as

the patient is followed carefully. (See "Surveillance for metastatic disease after

nephrectomy for renal cell carcinoma".)

Bench dissection — The role of techniques such as "bench dissection" in

patients with larger or centrally located tumors is unclear [57,73]. One study

found that only 6 of 16 patients who underwent initially successful "bench

surgery" and renal autotransplantation were eventually free of both malignancy

and the need for dialysis [73]. In addition, in patients with tumors invading the

adrenal gland or perinephric tissue, partial nephrectomy should be restricted to

clinical studies since the incidence of multifocality may be as high as 50 percent.

Laparoscopy — Laparoscopic techniques have been used to perform partial

nephrectomy for both peripheral and central lesions and in patients with a solitary

kidney [74-76]. Seven-year follow-up data suggest that this approach gives

results that are comparable to open partial nephrectomy [74,75]. This procedure

is technically difficult and should be restricted to physicians with extensive

experience using this approach. In patients with a solitary kidney, an open

approach may be preferred, because laparoscopic surgery has been associated

with a longer warm ischemia time and a higher incidence of complications [77].

Superselective embolization of the tumor may reduce the risk of bleeding, thus

facilitating a laparoscopic approach [78,79]. This approach is experimental.

Positive margins have been identified in 2 to 3 percent of patients on the final

pathology following laparoscopic partial nephrectomy [65,80]. The significance of

this finding and whether or not additional treatment is required remains uncertain

[65].

Thermal ablation techniques — Thermal ablation techniques, including

radiofrequency ablation (RFA) and cryoablation, permit percutaneous tumor

treatment without open surgical intervention. Both approaches are limited by the

absence of pathologic confirmation of the diagnosis or the diagnostic accuracy

possible with a small sample from a needle biopsy. A nondiagnostic biopsy at the

time of ablation does not exclude the possibility of RCC [81], and careful follow-

up is indicated [82].

Page 12: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

There are no randomized trials comparing these approaches with surgery. RFA

cryoablation are discussed separately. (See "Radiofrequency ablation and

cryoablation for renal cell carcinoma".)

Active surveillance — The development and widespread use of improved

imaging modalities (MRI, CT) has led to an increased detection of smaller

lesions. The natural history of these smaller solid renal masses can be quite

variable. (See "Evaluation of a solid renal mass", section on 'Natural history'.)

For individuals with small lesions and significant comorbidity or a short life

expectancy, active surveillance may be an appropriate alternative to immediate

treatment [2]. The potential utility of active surveillance was illustrated by a

single-institution retrospective series of 212 patients [83]. The median patient age

was 71 years, and the median Charlson comorbidity index was 3 (table 2). The

median tumor size and growth rate were 2.8 cm and 0.34 cm/year. At a median

follow-up of three years, active surveillance had been terminated in 15 patients (7

percent), four of whom developed metastases and 11 required treatment.

POSTTREATMENT SURVEILLANCE — The optimal surveillance strategy after

potentially curative treatment for RCC has not been well studied. Follow-up

should be based upon the most likely sites and timing of metastases. (See

"Surveillance for metastatic disease after nephrectomy for renal cell carcinoma".)

INFORMATION FOR PATIENTS — Educational materials on this topic are

available for patients. (See "Patient information: Renal cell carcinoma (kidney

cancer)".) We encourage you to print or e-mail this topic review, or to refer

patients to our public web site, www.uptodate.com/patients, which includes this

and other topics.

SUMMARY AND RECOMMENDATIONS — Surgical resection remains the

preferred approach for patients with stage I, II, or III renal cell carcinoma (RCC)

(table 1). The choice of radical or partial nephrectomy is based upon multiple

factors, including the stage and location of the tumor, whether multiple tumors

exist, the presence of either a solitary kidney or a concurrent disorder associated

with multiple RCCs (eg, von Hippel-Lindau disease), and underlying renal

Page 13: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

function [2]. Both open and laparoscopic approaches can be used for either

radical or partial nephrectomy. (See 'General considerations' above.)

For patients with stage I, II, or III RCC without comorbidity precluding

resection, we recommend definitive therapy rather than active surveillance or a

lesser approach (Grade 1A). Surgical resection is the standard approach for

definitive therapy. This approach has been shown to offer a high-probability of

long-term disease-free survival. There are insufficient long-term follow-up data

from ablative procedures to establish the equivalence of these approaches. (See

'Stage I and II disease' above and 'Stage III disease' above.)

- For patients with a T1a (≤4 cm) primary tumor, we suggest partial

nephrectomy rather than radical nephrectomy (Grade 2C). This approach

maximizes the preservation of renal parenchyma and thus decreases the risk of

chronic kidney disease. Radical nephrectomy is an appropriate alternative when

partial nephrectomy is not technically feasible. (See 'Stage I and II

disease' above and 'Partial nephrectomy' above.)

- For patients with a T1b (>4 and <7 cm) lesion, we suggest radical

nephrectomy rather than partial nephrectomy (Grade 2C). Partial nephrectomy

may be preferred when there is an increased risk of renal insufficiency. (See

'Stage I and II disease' above and 'Radical nephrectomy' above.)

- For patients with large tumors and when there is evidence of invasion

into the adrenal, renal vein, or perinephric fat, radical nephrectomy has been the

most widely used approach and remains the preferred procedure. Involvement of

the inferior vena cava with tumor is not a contraindication to radical nephrectomy.

(See 'Radical nephrectomy' above.)

- For patients undergoing radical nephrectomy but without preoperative

evidence of lymph node involvement, we suggest limiting the surgery to resection

of lymph nodes at the renal hilum (Grade 2C). (See 'No suspected nodal

metastases' above.)

- For patients with suspected involvement of abdominal lymph node

involvement, we recommend a standard radical nephrectomy with retroperitoneal

lymph node dissection rather than radical nephrectomy alone (Grade 1B). Many

patients with suspected lymph node involvement may have only inflammation

Page 14: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

present in these nodes. Furthermore, lymph node dissection is curative in a

significant number of these patients. (See 'Suspected nodal metastases' above.)

For elderly patients and those with significant comorbidities that increase

the risks of surgery, we suggest surgical resection rather than cryoablation or

radiofrequency ablation (Grade 2C).

- Cryotherapy and radiofrequency ablation are appropriate alternatives,

depending upon the assessment of the overall patient's condition. However, the

long-term risk of local recurrence has not been fully defined. (See 'General

considerations' above and "Radiofrequency ablation and cryoablation for renal

cell carcinoma".)

- When the individual has a markedly decreased life expectancy or a very

high risk of complications with active intervention, active surveillance may be an

option for those with a small lesion. (See 'Active surveillance' above and

"Evaluation of a solid renal mass", section on 'Natural history'.)

Use of UpToDate is subject to the Subscription and License Agreement. REFERENCES

1. Vogelzang, NJ, Stadler, WM. Kidney cancer. Lancet 1998; 352:1691. 2. Campbell, SC, Novick, AC, Belldegrun, A, et al. Guideline for

management of the clinical T1 renal mass. J Urol 2009; 182:1271. 3. Margulis, V, Sanchez-Ortiz, RF, Tamboli, P, et al. Renal cell carcinoma

clinically involving adjacent organs: experience with aggressive surgical management. Cancer 2007; 109:2025.

4. Huang, WC, Levey, AS, Serio, AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7:735.

5. Lucas, SM, Stern, JM, Adibi, M, et al. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J Urol 2008; 179:75.

6. Weight, CJ, Larson, BT, Fergany, AF, et al. Nephrectomy Induced Chronic Renal Insufficiency is Associated With Increased Risk of Cardiovascular Death and Death From Any Cause in Patients With Localized cT1b Renal Masses. J Urol 2010; 183:1317.

7. Raman, JD, Raj, GV, Lucas, SM, et al. Renal functional outcomes for tumours in a solitary kidney managed by ablative or extirpative techniques. BJU Int 2010; 105:496.

8. Robson, CJ. Radical nephrectomy for renal cell carcinoma. J Urol 1963; 89:37.

Page 15: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

9. Mitchell, RE, Lee, BT, Cookson, MS, et al. Radical nephrectomy surgical outcomes in the University HealthSystem Consortium Data Base: impact of Hospital Case Volume, Hospital Size, and Geographic Location on 40,000 Patients. Cancer 2009; 115:2447.

10. Waters, WB, Richie, JP. Aggressive surgical approach to renal cell carcinoma: Review of 130 cases. J Urol 1979; 122:306.

11. Chute, R, Soutter, L, Kerr, WS Jr. The value of the thoracoabdominal incision in the removal of kidney tumors. N Engl J Med 1949; 241:951.

12. Gong, EM, Lyon, MB, Orvieto, MA, et al. Laparoscopic radical nephrectomy: comparison of clinical Stage T1 and T2 renal tumors. Urology 2006; 68:1183.

13. Burgess, NA, Koo, BC, Calvert, RC, et al. Randomized trial of laparoscopic v open nephrectomy. J Endourol 2007; 21:610.

14. Colombo, JR Jr, Haber, GP, Jelovsek, JE, et al. Seven years after laparoscopic radical nephrectomy: oncologic and renal functional outcomes. Urology 2008; 71:1149.

15. Berger, A, Brandina, R, Atalla, MA, et al. Laparoscopic radical nephrectomy for renal cell carcinoma: oncological outcomes at 10 years or more. J Urol 2009; 182:2172.

16. Tsivian, A, Sidi, AA. Port site metastases in urological laparoscopic surgery. J Urol 2003; 169:1213.

17. Cohen, DD, Matin, SF, Steinberg, JR, et al. Evaluation of the intact specimen after laparoscopic radical nephrectomy for clinically localized renal cell carcinoma identifies a subset of patients at increased risk for recurrence. J Urol 2005; 173:1487.

18. O'Malley, RL, Godoy, G, Kanofsky, JA, Taneja, SS. The necessity of adrenalectomy at the time of radical nephrectomy: a systematic review. J Urol 2009; 181:2009.

19. Gill, IS, McLennan, BL, Kerbl, K, et al. Adrenal involvement from renal cell carcinoma: Predictive value of computerized tomography. J Urol 1994; 152:1082.

20. Siemer, S, Lehmann, J, Kamradt, J, et al. Adrenal metastases in 1635 patients with renal cell carcinoma: outcome and indication for adrenalectomy. J Urol 2004; 171:2155.

21. Robson, CJ, Churchill, BM, Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J Urol 1969; 101:297.

22. Phillips, E, Messing, EM. Role of lymphadenectomy in the treatment of renal cell carcinoma. Urology 1993; 41:9.

23. Herrlinger, A, Schrott, KM, Schott, G, Sigel, A. What are the benefits of extended dissection of the regional renal lymph nodes in the therapy of renal cell carcinoma?. J Urol 1991; 146:1224.

24. Giuliani, L, Giberti, C, Martorana, G, Rovida, S. Radical extensive surgery for renal cell carcinoma: long-term results and prognostic factors. J Urol 1990; 143:468.

25. Blom, JH, van Poppel, H, Marechal, JM, et al. Radical nephrectomy with and without lymph node dissection: preliminary results of the EORTC

Page 16: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

randomized phase III protocol 30881. EORTC Genitourinary Group. Eur Urol 1999; 36:570.

26. Terrone, C, Guercio, S, De Luca, S, et al. The number of lymph nodes examined and staging accuracy in renal cell carcinoma. BJU Int 2003; 91:37.

27. Canfield, SE, Kamat, AM, Sanchez-Ortiz, RF, et al. Renal Cell Carcinoma With Nodal Metastases in the Absence of Distant Metastatic Disease (Clinical Stage TxN1-2M0): The Impact of Aggressive Surgical Resection on Patient Outcome. J Urol 2006; 175:864.

28. Blom, JH, van Poppel, H, Marechal, JM, et al. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur Urol 2009; 55:28.

29. Studer, UE, Birkhauser, FD. Lymphadenectomy combined with radical nephrectomy: To do or not to do?. Eur Urol 2009; 55:35.

30. Sigman, DB, Hasnain, JU, Del Pizzo, JJ, Sklar, GN. Real-time transesophageal echocardiography for intraoperative surveillance of patients with renal cell carcinoma and vena caval extension undergoing radical nephrectomy. J Urol 1999; 161:36.

31. Aslam Sohaib, SA, Teh, J, Nargund, VH, et al. Assessment of tumor invasion of the vena caval wall in renal cell carcinoma cases by magnetic resonance imaging. J Urol 2002; 167:1271.

32. Goldfarb, DA, Novick, AC, Lorig, R, et al. Magnetic resonance imaging for assessment of vena caval tumor thrombi: a comparative study with venacavography and computerized tomography scanning. J Urol 1990; 144:1100.

33. Welz, A, Schmeller, N, Schmitz, C, et al. Resection of hypernephromas with vena caval or right atrial tumor extension using extracorporeal circulation and deep hypothermic circulatory arrest: a multidisciplinary approach. Eur J Cardiothorac Surg 1997; 12:127.

34. Zisman, A, Wieder, JA, Pantuck, AJ, et al. Renal cell carcinoma with tumor thrombus extension: biology, role of nephrectomy and response to immunotherapy. J Urol 2003; 169:909.

35. Hatcher, PA, Anderson, EE, Paulson, DF, et al. Surgical management and prognosis of renal cell carcinoma invading the vena cava. J Urol 1991; 145:20.

36. Chiappini, B, Savini, C, Marinelli, G, et al. Cavoatrial tumor thrombus: Single-stage surgical approach with profound hypothermia and circulatory arrest, including a review of the literature. J Thorac Cardiovasc Surg 2002; 124:684.

37. Tsuji, Y, Goto, A, Hara, I, et al. Renal cell carcinoma with extension of tumor thrombus into the vena cava: surgical strategy and prognosis. J Vasc Surg 2001; 33:789.

38. Libertino, JA, Swierzewski, DJ, Swierzewski, MJ. Renal cell carcinoma with extension into the vena cava. In: Reconstructive Urologic Surgery, 3rd ed, Libertino, JA (Ed), Mosby, St. Louis 1998. p.47.

39. Naitoh, J, Kaplan, A, Dorey, F, et al. Metastatic renal cell carcinoma with concurrent inferior vena caval invasion: Long-term survival after combination

Page 17: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

therapy with radical nephrectomy, vena caval thrombectomy and postoperative immunotherapy. J Urol 1999; 162:46.

40. Fitzgerald, JM, Tripathy, U, Svensson, LG, Libertino, JA. Radical nephrectomy with vena caval thrombectomy using a minimal access approach for cardiopulmonary bypass. J Urol 1998; 159:1292.

41. Shuch, B, Larochelle, JC, Onyia, T, et al. Intraoperative thrombus embolization during nephrectomy and tumor thrombectomy: critical analysis of the University of California-Los Angeles experience. J Urol 2009; 181:492.

42. DeKernion, JB. Treatment of advanced renal cell carcinoma - traditional methods and innovative approaches. J Urol 1983; 130:2.

43. Swanson, DA, Wallace, S, Johnson, DE. The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma. Urol Clin North Am 1980; 7:719.

44. Linehan, WM, Shipley, WU, Parkinson, DR. Cancer of the Kidney and Ureter. In: Cancer: Principles & Practice Oncology, 4th ed, DeVita, VT Jr, Hellman, S, Rosenberg, SA (Eds), Lippincott, Philadelphia 1993. p.1023.

45. Flanigan, RC. The failure of infarction and/or nephrectomy in stage IV renal cell cancer to influence survival or metastatic regression. Urol Clin North Am 1987; 14:757.

46. Swanson, DA, Johnson, DE, von Eschenbach, AC, et al. Angioinfarction plus nephrectomy for metastatic renal cell carcinoma. An update. J Urol 1983; 130:449.

47. Thomas, AA, Rini, BI, Lane, BR, et al. Response of the primary tumor to neoadjuvant sunitinib in patients with advanced renal cell carcinoma. J Urol 2009; 181:518.

48. Thomas, AA, Rini, BI, Stephenson, AJ, et al. Surgical resection of renal cell carcinoma after targeted therapy. J Urol 2009; 182:881.

49. Patard, JJ, Shvarts, O, Lam, JS, et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol 2004; 171:2181.

50. Pahernik, S, Roos, F, Hampel, C, et al. Nephron sparing surgery for renal cell carcinoma with normal contralateral kidney: 25 years of experience. J Urol 2006; 175:2027.

51. Crepel, M, Jeldres, C, Perrotte, P, et al. Nephron-sparing Surgery Is Equally Effective to Radical Nephrectomy for T1BN0M0 Renal Cell Carcinoma: A Population-based Assessment. Urology 2010; 75:271.

52. Pahernik, S, Roos, F, Rohrig, B, et al. Elective nephron sparing surgery for renal cell carcinoma larger than 4 cm. J Urol 2008; 179:71.

53. Thompson, RH, Siddiqui, S, Lohse, CM, et al. Partial versus radical nephrectomy for 4 to 7 cm renal cortical tumors. J Urol 2009; 182:2601.

54. Belldegrun, A, Tsui, K-H, deKernion, JB, Smith RB. Efficacy of nephron- sparing surgery for renal cell carcinoma: Analysis based on the new 1997 Tumor-Node-Metastasis staging system. J Clin Oncol 1999; 17:2868.

55. Jeldres, C, Patard, JJ, Capitanio, U, et al. Partial versus radical nephrectomy in patients with adverse clinical or pathologic characteristics. Urology 2009; 73:1300.

Page 18: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

56. Breau, RH, Crispen, PL, Jimenez, RE, et al. Outcome of stage T2 or greater renal cell cancer treated with partial nephrectomy. J Urol 2010; 183:903.

57. Moll, V, Becht, E, Ziegler, M. Kidney preserving surgery in renal cell tumors: Indications, techniques and results in 152 patients. J Urol 1993; 150:319.

58. McKiernan, J, Yossepowitch, O, Kattan, MW, et al. Partial nephrectomy for renal cortical tumors: pathologic findings and impact on outcome. Urology 2002; 60:1003.

59. Uzzo, RG, Novick, AC. Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 2001; 166:6.

60. Morgan, WR, Zincke, H. Progression and survival after renal-conserving surgery for renal cell carcinoma: Experience in 104 patients and extended follow-up. J Urol 1990; 144:852.

61. Steinbach, F, Stockle, M, Muller, SC, et al. Conservative surgery of renal cell tumors in 140 patients: 21 years of experience. J Urol 1992; 148:24.

62. Licht, MR, Novick, AC, Goormastic, M. Nephron sparing surgery in incidental versus suspected renal cell carcinoma. J Urol 1994; 152:39.

63. Marberger, M, Pugh, RCB, Auvert, J, et al. Conservation surgery of renal carcinoma: The EIRSS experience. Br J Urol 1981; 53:528.

64. Herr, HW. Partial nephrectomy for unilateral renal carcinoma and a normal contralateral kidney: 10-year followup. J Urol 1999; 161:33.

65. Permpongkosol, S, Colombo, JR Jr, Gill, IS, Kavoussi, LR. Positive surgical parenchymal margin after laparoscopic partial nephrectomy for renal cell carcinoma: oncological outcomes. J Urol 2006; 176:2401.

66. Yossepowitch, O, Thompson, RH, Leibovich, BC, et al. Positive surgical margins at partial nephrectomy: predictors and oncological outcomes. J Urol 2008; 179:2158.

67. Lane, BR, Tiong, HY, Campbell, SC, et al. Management of the adrenal gland during partial nephrectomy. J Urol 2009; 181:2430.

68. Patel, MI, Simmons, R, Kattan, MW, et al. Long-term follow-up of bilateral sporadic renal tumors. Urology 2003; 61:921.

69. Bazeed, MA, Scharfe, T, Becht, E, et al. Conservative surgery of renal cell carcinoma. Eur Urol 1986; 12:238.

70. Raz, O, Mendlovic, S, Leibovici, D, et al. The prevalence of malignancy in satellite renal lesions and its surgical implication during nephron sparing surgery. J Urol 2007; 178:1892.

71. Carini, M, Minervini, A, Masieri, L, et al. Simple enucleation for the treatment of PT1a renal cell carcinoma: our 20-year experience. Eur Urol 2006; 50:1263.

72. Marshall, FF, Taxy, JB, Fishman, EK, Chang, R. The feasibility of surgical enucleation for renal cell carcinoma. J Urol 1986; 135:231.

73. Stormont, TJ, Bilhartz, DL, Zincke, H. Pitfalls of "bench surgery' and autotransplantation for renal cell carcinoma. Mayo Clin Proc 1992; 67:621.

74. Lane, BR, Gill, IS. 7-Year oncological outcomes after laparoscopic and open partial nephrectomy. J Urol 2010; 183:473.

75. Ono, Y, Hattori, R, Gotoh, M, et al. Laparoscopic radical nephrectomy for renal cell carcinoma: the standard of care already?. Curr Opin Urol 2005; 15:75.

Page 19: Surgical management of localized renal cell …ether.stanford.edu/urology/Surgical management of... · Web viewIn such patients, extended lymphadenectomy can be curative, and systemic

76. Gill, IS, Kavoussi, LR, Lane, BR, et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol 2007; 178:41.

77. Lane, BR, Novick, AC, Babineau, D, et al. Comparison of laparoscopic and open partial nephrectomy for tumor in a solitary kidney. J Urol 2008; 179:847.

78. Gallucci, M, Guaglianone, S, Carpanese, L, et al. Superselective embolization as first step of laparoscopic partial nephrectomy. Urology 2007; 69:642.

79. Simone, G, Papalia, R, Guaglianone, S, et al. Preoperative superselective transarterial embolization in laparoscopic partial nephrectomy: technique, oncologic, and functional outcomes. J Endourol 2009; 23:1473.

80. Breda, A, Stepanian, SV, Liao, J, et al. Positive margins in laparoscopic partial nephrectomy in 855 cases: a multi-institutional survey from the United States and Europe. J Urol 2007; 178:47.

81. Permpongkosol, S, Link, RE, Solomon, SB, Kavoussi, LR. Results of computerized tomography guided percutaneous ablation of renal masses with nondiagnostic pre-ablation pathological findings. J Urol 2006; 176:463.

82. Matin, SF, Ahrar, K, Cadeddu, JA, et al. Residual and recurrent disease following renal energy ablative therapy: a multi-institutional study. J Urol 2006; 176:1973.

83. Rosales, JC, Haramis, G, Moreno, J, et al. Active surveillance for renal cortical neoplasms. J Urol 2010; 183:1698.

© 2010 UpToDate, Inc. All rights reserved.