17
www.sciencemag.org/cgi/content/full/science.aaf8227/DC1 Supplementary Materials for Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure Om Prakash, Anil Kumar, A. Thamizhavel, S. Ramakrishnan* *Corresponding author. Email: [email protected] Published 1 December 2016 on Science First Release DOI: 10.1126/science.aaf8227 This PDF file includes: Materials and Methods Figs. S1 to S7 Table S1 and S2 References

Supplementary Materials for - Science...2016/11/30  · Fig. S2. Sample s1 characterization using EDX: SEM image of s1-Bi cleaved surface. The EDX spectra were acquired on the front

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • www.sciencemag.org/cgi/content/full/science.aaf8227/DC1

    Supplementary Materials for Evidence for bulk superconductivity in pure bismuth single crystals at

    ambient pressure Om Prakash, Anil Kumar, A. Thamizhavel, S. Ramakrishnan*

    *Corresponding author. Email: [email protected]

    Published 1 December 2016 on Science First Release

    DOI: 10.1126/science.aaf8227

    This PDF file includes:

    Materials and Methods Figs. S1 to S7 Table S1 and S2 References

  • 2

    Materials and Methods

    1. Crystal growth and characterization

    Under ambient condition, Bi is commonly designated as a rhombohedral lattice

    (space group R-3m, so-called arsenic or A7 structure), which is characterized by a pair of

    atoms spaced non-equidistantly along the trigonal axis in a Peierls distortion of the

    simple cubic structure [47,48]. Alternatively, the structure of Bi can be described as a

    hexagonal lattice with six atoms per unit cell, or as a pseudo-cubic structure with one

    atom per unit cell [49]. The schematic diagram of the rhombohedral unit cell and

    hexagonal crystal structure are shown in Fig S1A.

    The Bi single crystals were grown using the Bridgman crystal growth technique. Bi

    has a low melting point of 271.4C and Bridgman technique is suitable for growing Bi

    single crystals. Highly pure Bi ingots (99.998%) packed in glass tubes with inert argon

    were used for crystal growth. Here, we have used quartz tubes with pointed bottom to

    grow the crystals. Prior to sealing, to avoid oxidation and contamination, the quartz tubes

    were etched in dilute HF- solution followed by cleaning with distilled water and baked in

    dynamical vacuum of 510-6 mbar, at 1000C for 24 hours. The Bi ingots then were

    transferred from the original sealed tubes to the quartz tubes and the quartz tubes are

    vacuum (110-6 mbar) sealed. Two such sealed quartz tubes with 2 gm of Bi in each,

    were kept in a programmable box furnace. Initially, the temperature of the furnace was

    raised to 600C in 10 h and kept at 600C for 12 h in order to ensure complete melting of

    Bi. The tubes were then cooled to 350C with the rate of 1C /h, followed by cooling to

    200C at 0.5C /h. Slow cooling in the temperature range of the crystallization helps in

    the getting a large single grain crystal. Subsequently, the furnace was cooled down to

    30C in next five hours.

    Large crystals of 3-4 mm diameter and 2-3 cm length were obtained. The crystals

    were stored in a dynamical vacuum of 110-3

    mbar in desiccators to avoid any

    contamination. To check the single crystalline nature of the crystals, small portions were

    cut from both ends to get plane surfaces and exposed to Laue diffraction. The diffraction

    images obtained from the plane surfaces at both ends of the crystals show patterns

    corresponding to the [001] crystallographic direction, indicating the present of single

    grain across the whole length of the crystals as shown in Fig S1B. The crystals were cut

    to a rectangular bar of 20.20.2 cm3 using a spark erosion cutting machine. After the

    cutting all the surfaces were carefully polished and cleaned using ultrasonics to get rid of

    any surface contamination. The powder x-ray diffraction shows all the diffraction peaks

    corresponding to the rhombohedral A7 structure [49] and no extra peaks were observed

    as shown in Fig S1C. We used cleaved Bi crystals surfaces for characterization using

    Energy Dispersive x-ray Spectroscopy (EDX). The EDX spectroscopy shows no trace of

    any impurity elements and secondary phases. The Scanning Electron Microscopy (SEM)

    images for both s1 and s2 samples are shown in Fig S2 and Fig S3 respectively along

    with the EDX spectra for s1 crystal.

  • 3

    2. Hall coefficient and Specific heat measurements

    The Hall coefficent at different temperatures is measured as shown in Fig S4A.

    The value of the at 2K and 300K are in agreement with the existing literature. The heat

    capacity measurements also agree with the previous measuremnts. The Hall coefficient,

    specific heat, and all transport (including quantum osscilation) measurements were done

    in the Physical Property Measurement System (PPMS, Qunatum Design Inc., USA)

    equipped with dilution refridgerator.

    3. Impurity trace analysis using ICP-AES

    The Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP- AES)

    technique is used to estimate the impurity traces in the Bi crystals used for the

    measurements. The spectroscopy results are shown in Table S1. Elements not listed in the

    Table S1 are either absent or have less than 0.01ppm concentration in Bi crystal. Alkali,

    Alkaline, 3d, 4d, 5d transition elements, rare earths, and p-block elements were

    particularly searched and not found/less than 0.01ppm during the experiment. These

    measurements were carried out at the Sophisticated Analytical Instrument Facility

    (SAIF), Indian Institute of Technology Bombay (IITB http://www.rsic.iitb.ac.in/icp-

    aes.html). These results confirm the high purity of our crystals and not contaminated

    during crystal growth. The large Meissner effect observed in Bi crystals precludes the

    possibility that the SC is coming from the impurities detected.

    4. Resistivity measurements

    The resistivity of the grown crystals at room temperature (300K) = 129 ± 0.2μ

    Ω-cm is consistent with the reported values for pure Bi. The resistivity of all the samples

    at 4.2 K is (4.2K) 0.3μΩ-cm giving a residual resistivity ratio of RRR ≥ 430 indicating high quality of the crystals. The low temperature resistivity of Bi is known to

    have size dependence and resistivity in thinner crystals is often determined by the

    scattering of charge carriers from the physical boundary of the samples rather than

    electron - electron or electron-phonon scattering, due to large electronic mean free path

    [29]. Due avoid size affects the resistivity measurements were performed on thicker

    crystals to estimate correct RRR. The resistivity of one of the sample is shown in Fig. S5.

    5. Quantum oscillation measurements

    The quantum oscillation measurements at 2 K on the Bi crystal for the magnetic

    field, H || Binary axis, are shown in Fig S6. Clear oscillations in the transverse

    magnetoresistance data are seen as shown in Fig S6B. The minima in the

    magnetoresistance are tagged with the values of the resonant magnetic fields. The

    oscillations observed for the H ∥ binary axis are in good agreement with the reported experimental (Hiruma et.al.) [50] and theoretical results (Smith et.al.)[18] as shown in

    Table S2. These results suggest that our single crystals are free from doping, in

    agreement with the AES- chemical analysis.

    Bi has three degenerate electron pockets in the absence of magnetic field. When a

    magnetic field is applied parallel to the binary axis, this degeneracy is lifted resulting in

    two equivalent degenerate light electron pockets and a single heavy electron pocket. In

    this situation, for small magnetic field, Bi consists of 2:1 concentration of lighter to heavy

    electrons. For magnetic fields H>1.5 T, all the light electrons are pushed to their quantum

  • 4

    limit (j=0) hence no quantum oscillations are seen due to lighter electrons for higher

    magnetic fields [51]. The oscillations shown in the Fig S6B and listed in Table S2 are

    only due to heavy electrons (eh’s) and hole pockets. In Table S2, eh represents the

    magnetic field at which the oscillations of the heavy electron pocket occur and h

    represents the magnetic field corresponding to the oscillations of the hole pocket.

    6. Meissner fraction of Pb and Bi crystals

    The magnetization measurement setup was calibrated for estimating the Meissner

    fraction. Fig S7A shows the jump in the SQUID output voltage at the superconducting to

    normal phase transition of Pb sample for an excitation magnetic field of 0.4T. The

    change in the output voltage is proportional to the change in the susceptibility of the

    sample. The setup consisted of cryoperm magnetic shield as described in Fig 1A and Fig

    1B. The size of the Pb sample was same as the Bi crystals used in the measurements. All

    the other parameters, such as the gain in the SQUID electronics and number of turns in

    the pickup coil, directly wound on the samples, were same for both the samples. Fig S7B

    shows the voltage jump at the superconducting to normal state transition for Bi crystal.

    The size of the voltage jumps in Fig S7A and Fig S7B are nearly same, indicating large

    Meissner fraction and bulk nature of superconductivity in Bi.

  • 5

    Fig. S1. Crystal structure and characterization of Bi single crystal: (A) The

    schematic diagram of hexagonal crystal structure of Bismuth. The rhombohedral unit cell

    (black) is shown within the crystal structure. Bismuth has two bilayers within the

    hexagonal structure. (B) A Laue diffraction pattern of Bismuth crystal for [001]

    crystallographic direction. The circular spots confirm the single crystalline nature of the

    grown crystals. (C) X-ray diffraction of Bismuth crystals. All the peaks observed in the

    recorded pattern can be indexed for the A7 structure and prominent peaks in the xrd

    pattern are marked.

  • 6

    Fig. S2. Sample s1 characterization using EDX: SEM image of s1-Bi cleaved surface.

    The EDX spectra were acquired on the front and back surface of the sample. No trace of

    any elements other than Bismuth was found.

  • 7

    Fig S3: Sample s2 characterization using EDX: SEM image of s2-Bi cleaved surface.

  • 8

    Fig S4: Hall coefficient and specific heat: (A) Hall coefficient of Bi crystal from 2-300

    K. (B) Specific heat of Bi from 0.1-275 K.

  • 9

    Fig. S5. Resistivity of Bi single crystal: (A) The resistivity of Bi crystal from 4.2 − 300 K. (B) Low temperature resistivity of Bi crystal with RRR = 430.

  • 10

    Fig. S6. Quantum oscillation measurements: (A) The magnetoresistance data at 2 K for

    0 ≤ H ≤ 14 T. (B) The derivative of the magnetoresistance, dR/dH at 2 K shows clear quantum oscillations.

  • 11

    Fig. S7 SQUID output for Pb and Bi crystals: (A) SQUID output voltage across the

    superconducting transition of Pb showing Tc=7.2K. (B) SQUID output voltage across the

    superconducting transition of Bi showing Tc=0.53 mK. The jump in the output voltage is

    comparable indicating large Meissner fraction in Bi crystal below Tc.

  • 12

    Table S1. Atomic % and ppm level of impurity elements in Bi

    Element Atomic % ppm level

    Al

    Cu

    Ni

    Zn

    Ag

    0.00024

    0.00024

    0.00069

    0.00012

    0.00076

    2.4

    2.4

    6.9

    1.2

    7.6

    Bi 99.9980 ----

  • 13

    Table S2. Shubnikov-de Haas resonant magnetic field (in T) in Bi (H ∥ binary axis)

    Landau level index Our experiment Hiruma et.al. (exp) Smith et.al. (theory)

    eh(0+)

    h(4±)

    eh(1-)

    eh(1+)

    h(5±)

    eh(2-)

    eh(2+)

    h(6±)

    h(7±)

    h(8±)

    10.8

    8.5

    7.6

    5.8

    5.0

    3.3

    2.8

    8.5

    7.5

    5.9

    5.1

    4.4

    3.4

    2.9

    10.8

    8.4

    7.6

    6.6

    5.8

    5.4

    5.0

    4.2

    3.3

    2.8

  • References and Notes 1. A. H. Wilson, The theory of metals. I. Proc. R. Soc. London A 138, 594–606 (1932).

    doi:10.1098/rspa.1932.0205

    2. N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publications, 1958).

    3. V. Édel’man, Electrons in bismuth. Adv. Phys. 25, 555–613 (1976). doi:10.1080/00018737600101452

    4. A. v. Ettingshausen, W. Nernst, Ueber das Auftreten electromotorischer Kräfte in Metallplatten, welche von einem Wärmestrome durchflossen werden und sich im magnetischen Felde befinden. Ann. Phys. Chem. 265, 343–347 (1886). doi:10.1002/andp.18862651010

    5. Y. Fuseya, M. Ogata, H. Fukuyama, Transport properties and diamagnetism of Dirac electrons in bismuth. J. Phys. Soc. Jpn. 84, 012001 (2015). doi:10.7566/JPSJ.84.012001

    6. L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong, Phase transitions of Dirac electrons in bismuth. Science 321, 547–550 (2008). doi:10.1126/science.1158908 Medline

    7. M. Tian, J. Wang, N. Kumar, T. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, M. H. W. Chan, Observation of superconductivity in granular Bi nanowires fabricated by electrodeposition. Nano Lett. 6, 2773–2780 (2006). doi:10.1021/nl0618041 Medline

    8. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, C. L. Chien, Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999). doi:10.1126/science.284.5418.1335 Medline

    9. K. Behnia, M.-A. Méasson, Y. Kopelevich, Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007). doi:10.1103/PhysRevLett.98.166602 Medline

    10. J. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, J. F. Mansfield, Bismuth nanowire arrays: Synthesis and galvanomagnetic properties. Phys. Rev. B 61, 2921–2930 (2000). doi:10.1103/PhysRevB.61.2921

    11. J. Heremans, C. M. Thrush, Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, D. T. Morelli, Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization. Phys. Rev. B 58, R10091–R10095 (1998). doi:10.1103/PhysRevB.58.R10091

    12. B. Weitzel, H. Micklitz, Superconductivity in granular systems built from well-defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity. Phys. Rev. Lett. 66, 385–388 (1991). doi:10.1103/PhysRevLett.66.385 Medline

    13. F. M. Muntyanu, A. Gilewski, K. Nenkov, J. Warchulska, A. J. Zaleski, Experimental magnetization evidence for two superconducting phases in Bi bicrystals with large

    http://dx.doi.org/10.1098/rspa.1932.0205http://dx.doi.org/10.1080/00018737600101452http://dx.doi.org/10.1002/andp.18862651010http://dx.doi.org/10.7566/JPSJ.84.012001http://dx.doi.org/10.1126/science.1158908http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18653888&dopt=Abstracthttp://dx.doi.org/10.1021/nl0618041http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17163704&dopt=Abstracthttp://dx.doi.org/10.1126/science.284.5418.1335http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10334983&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevLett.98.166602http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17501444&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.61.2921http://dx.doi.org/10.1103/PhysRevB.58.R10091http://dx.doi.org/10.1103/PhysRevLett.66.385http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10043792&dopt=Abstract

  • crystallite disorientation angles. Phys. Rev. B 73, 132507 (2006). doi:10.1103/PhysRevB.73.132507

    14. D. Shoenberg, The magnetic properties of bismuth. III. Further measurements on the de Haas-Van Alphen effect. Proc. R. Soc. London A 170, 341 (1939).

    15. J. W. Wells, J. H. Dil, F. Meier, J. Lobo-Checa, V. N. Petrov, J. Osterwalder, M. M. Ugeda, I. Fernandez-Torrente, J. I. Pascual, E. D. L. Rienks, M. F. Jensen, P. Hofmann, Nondegenerate metallic states on Bi(114): A one-dimensional topological metal. Phys. Rev. Lett. 102, 096802 (2009). doi:10.1103/PhysRevLett.102.096802 Medline

    16. K. Behnia, L. Balicas, Y. Kopelevich, Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007). doi:10.1126/science.1146509 Medline

    17. Y. Liu, R. E. Allen, Electronic structure of the semimetals Bi and Sb. Phys. Rev. B 52, 1566–1577 (1995). doi:10.1103/PhysRevB.52.1566 Medline

    18. G. E. Smith, G. A. Baraff, J. M. Rowell, Effective g factor of electrons and holes in bismuth. Phys. Rev. 135, A1118–A1124 (1964). doi:10.1103/PhysRev.135.A1118

    19. E. H. Sondheimer, The thermal conductivity of metals at low temperatures. Proc. Phys. Soc. A 65, 562–564 (1952). doi:10.1088/0370-1298/65/7/115

    20. A. B. Pippard, R. G. Chambers, The mean free path of conduction electrons in bismuth. Proc. Phys. Soc. A 65, 955–956 (1952). doi:10.1088/0370-1298/65/11/117

    21. R. Hartman, Temperature dependence of the low-field galvanomagnetic coefficients of bismuth. Phys. Rev. 181, 1070–1086 (1969). doi:10.1103/PhysRev.181.1070

    22. T. Hamada, K. Yamakawa, F. E. Fujita, Superconductivity of vacuum-deposited bismuth films. J. Phys. F Met. Phys. 11, 657–670 (1981). doi:10.1088/0305-4608/11/3/013

    23. M. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, M. H. W. Chan, Superconductivity and quantum oscillations in crystalline Bi nanowire. Nano Lett. 9, 3196–3202 (2009). doi:10.1021/nl901431t Medline

    24. P. J. Hakonen, G. Nunes Jr., Electrical transport in bismuth whiskers at millikelvin temperatures. J. Phys. Condens. Matter 3, 7153–7160 (1991). doi:10.1088/0953-8984/3/37/007

    25. Materials and methods are available as supplementary materials on Science Online. 26. C. Uher, J. L. Opsal, Superconductivity in lightly doped crystalline bismuth. Phys. Rev.

    Lett. 40, 1518–1521 (1978). doi:10.1103/PhysRevLett.40.1518 27. J. P. Michenaud, J. P. Issi, Electron and hole transport in bismuth. J. Phys. C Solid State

    Phys. 5, 3061–3072 (1972). doi:10.1088/0022-3719/5/21/011 28. N. E. Phillips, Nuclear quadrupole and electronic heat capacities of bismuth. Phys. Rev.

    118, 644–647 (1960). doi:10.1103/PhysRev.118.644

    http://dx.doi.org/10.1103/PhysRevB.73.132507http://dx.doi.org/10.1103/PhysRevLett.102.096802http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19392548&dopt=Abstracthttp://dx.doi.org/10.1126/science.1146509http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17702909&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.52.1566http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9981218&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRev.135.A1118http://dx.doi.org/10.1088/0370-1298/65/7/115http://dx.doi.org/10.1088/0370-1298/65/11/117http://dx.doi.org/10.1103/PhysRev.181.1070http://dx.doi.org/10.1088/0305-4608/11/3/013http://dx.doi.org/10.1021/nl901431thttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19736972&dopt=Abstracthttp://dx.doi.org/10.1088/0953-8984/3/37/007http://dx.doi.org/10.1088/0953-8984/3/37/007http://dx.doi.org/10.1103/PhysRevLett.40.1518http://dx.doi.org/10.1088/0022-3719/5/21/011http://dx.doi.org/10.1103/PhysRev.118.644

  • 29. I. N. Zhilyaev, L. P. Mezhov-Deglin, Electric conductivity and transport lengths of electrons in bismuth at low temperatures. Sov. Phys. JETP 43, 507 (1976).

    30. H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, S. Ramakrishnan, Setting up of a MicroKelvin refrigerator facility at TIFR. AIP Conf. Proc. 1447, 503 (2012).

    31. C. Buchal, F. Pobell, R. M. Mueller, M. Kubota, J. R. Owers-Bradley, Superconductivity of rhodium at ultralow temperatures. Phys. Rev. Lett. 50, 64–67 (1983). doi:10.1103/PhysRevLett.50.64

    32. J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). doi:10.1103/PhysRev.108.1175

    33. M. L. Cohen, Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511–A521 (1964). doi:10.1103/PhysRev.134.A511

    34. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, M. S. Dresselhaus, Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992). doi:10.1103/PhysRevB.45.768 Medline

    35. L. P. Gor’kov, Superconducting transition temperature: Interacting Fermi gas and phonon mechanisms in the nonadiabatic regime. Phys. Rev. B 93, 054517 (2016). doi:10.1103/PhysRevB.93.054517

    36. X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S. Krämer, M. Nardone, B. Fauqué, K. Behnia, Critical doping for the onset of a two-band superconducting ground state in SrTiO3−δ. Phys. Rev. Lett. 112, 207002 (2014). doi:10.1103/PhysRevLett.112.207002

    37. L. Pietronero, S. Strässler, Theory of nonadiabatic superconductivity. Europhys. Lett. 18, 627 (1992). doi:10.1209/0295-5075/18/7/010

    38. L. Pietronero, S. Strässler, C. Grimaldi, Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. Phys. Rev. B 52, 10516–10529 (1995). doi:10.1103/PhysRevB.52.10516 Medline

    39. C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, E. R. Pfeiffer, Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163, 380–390 (1967). doi:10.1103/PhysRev.163.380

    40. C. S. Koonce, M. L. Cohen, Theory of superconducting semiconductors and semimetals. Phys. Rev. 177, 707–719 (1969). doi:10.1103/PhysRev.177.707

    41. W. Kohn, J. M. Luttinger, New mechanism for superconductivity. Phys. Rev. Lett. 15, 524–526 (1965). doi:10.1103/PhysRevLett.15.524

    42. J. M. Luttinger, New mechanism for superconductivity. Phys. Rev. 150, 202–214 (1966). doi:10.1103/PhysRev.150.202

    43. A. Migdal, Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 34, 1438 (1958).

    http://dx.doi.org/10.1103/PhysRevLett.50.64http://dx.doi.org/10.1103/PhysRev.108.1175http://dx.doi.org/10.1103/PhysRev.134.A511http://dx.doi.org/10.1103/PhysRevB.45.768http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10001117&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.93.054517http://dx.doi.org/10.1103/PhysRevLett.112.207002http://dx.doi.org/10.1209/0295-5075/18/7/010http://dx.doi.org/10.1103/PhysRevB.52.10516http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9980106&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRev.163.380http://dx.doi.org/10.1103/PhysRev.177.707http://dx.doi.org/10.1103/PhysRevLett.15.524http://dx.doi.org/10.1103/PhysRev.150.202

  • 44. G. Éliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696 (1960).

    45. Z. Mata-Pinzón, A. A. Valladares, R. M. Valladares, A. Valladares, Superconductivity in bismuth. A new look at an old problem. PLOS ONE 11, e0147645 (2016). doi:10.1371/journal.pone.0147645 Medline

    46. M. Cohen, in Superconductivity, vols. 1 and 2, R. D. Parks, Ed. (Marcel Dekker, 1969), pp 615–664.

    47. D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, J. B. Hastings, Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with x-rays. Science 315, 633–636 (2007). doi:10.1126/science.1135009 Medline

    48. Y. Shu, W. Hu, Z. Liu, G. Shen, B. Xu, Z. Zhao, J. He, Y. Wang, Y. Tian, D. Yu, Coexistence of multiple metastable polytypes in rhombohedral bismuth. Sci. Rep. 6, 20337 (2016). doi:10.1038/srep20337 Medline

    49. P. Hofmann, The surfaces of bismuth: Structural and electronic properties. Prog. Surf. Sci. 81, 191–245 (2006). doi:10.1016/j.progsurf.2006.03.001

    50. K. Hiruma, G. Kido, N. Miura, Shubnikov-de Haas effect in Bismuth in high magnetic fields. Solid State Commun. 31, 1019–1022 (1979). doi:10.1016/0038-1098(79)90023-1

    51. M. P. Vecchi, J. R. Pereira, M. S. Dresselhaus, Anomalies in the magnetoreflection spectrum of bismuth in the low-quantum-number limit. Phys. Rev. B 14, 298–317 (1976). doi:10.1103/PhysRevB.14.298

    http://dx.doi.org/10.1371/journal.pone.0147645http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26815431&dopt=Abstracthttp://dx.doi.org/10.1126/science.1135009http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17272718&dopt=Abstracthttp://dx.doi.org/10.1038/srep20337http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26883895&dopt=Abstracthttp://dx.doi.org/10.1016/j.progsurf.2006.03.001http://dx.doi.org/10.1016/0038-1098(79)90023-1http://dx.doi.org/10.1016/0038-1098(79)90023-1http://dx.doi.org/10.1103/PhysRevB.14.298

    aaf8227-Prakash-SM.ref-list.pdfReferences and Notes