33
EDX Marco Cantoni 1 Training 2009 Introduction to EDX Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) EDX Marco Cantoni 2 Training 2009 Basics of EDX a) Generation of X-rays b) Detection Si(Li) Detector, SDD Detector, EDS (<-> WDS) c) Quantification EDX in SEM, Interaction volume Monte-Carlo-Simulations EDX in TEM [ d) EDX in SEM-STEM ]

Introduction to EDX

Embed Size (px)

Citation preview

Page 1: Introduction to EDX

EDX Marco Cantoni 1Training 2009

Introduction to EDXEnergy Dispersive X-ray Microanalysis

(EDS, Energy dispersive Spectroscopy)

EDX Marco Cantoni 2Training 2009

Basics of EDX

a) Generation of X-rays

b) DetectionSi(Li) Detector, SDD Detector, EDS (<-> WDS)

c) QuantificationEDX in SEM, Interaction volumeMonte-Carlo-SimulationsEDX in TEM

[ d) EDX in SEM-STEM ]

Page 2: Introduction to EDX

EDX Marco Cantoni 3Training 2009

Inelastic scattering of electrons at atomsEelectron_in > Eelectron_out

• Continuum X-ray production(Bremsstrahlung, Synchrotron)

•• Continuum XContinuum X--ray ray productionproduction((BremsstrahlungBremsstrahlung, , Synchrotron)Synchrotron)

SE

SE, BSE, EELS

•Inner shell ionization

••Inner shell Inner shell ionizationionization

EDX Marco Cantoni 4Training 2009

Core shell ionisation: chemical microanalysis by X-ray, Auger electrons and Electron Energy Loss

Spectrometries

e-

K

L1 L2L3

KL2L3

Emission Auger

+K

L1 L2L3

Kα2

RX

Emission X

+

K

L1 L2L3

e-

e-

Ionisation

+

Ka1 Ka2 Kb

La1 La2

KL1L2 KL1L3 KL2L3

L1M1M2

M5

M4

M3

M2

M1

L3

L2

L1

K

Rayons X Electrons Auger

1ps

Page 3: Introduction to EDX

EDX Marco Cantoni 5Training 2009

Emission of characteristic X-ray and Auger electron

EDX Marco Cantoni 6Training 2009

Designation of x-ray emission lines

Page 4: Introduction to EDX

EDX Marco Cantoni 7Training 2009

EDX Marco Cantoni 8Training 2009

Efficiency of X-ray generationRelative efficiency of X-ray and Auger emission vs. atomic number for K lines

Ionization cross-section vs. overvoltage U=Eo/Eedge

(electron in -> X-ray out)

To ionized the incident electron MUST have an energy larger than the core shell level U>1. To be efficient, it should have about twice the edge energy U>2.

Light element atoms return to fundamental state mainly by Auger emission. For that reason, their K-lines are weak. In addition their low energy makes them easily absorbed.

SEM TEM ->Light elements

Auger Spectroscopy

Heavy elements

EDS

Cu-K 8.1kV, HT 15kVU = 15/8.1 = 1.85

Page 5: Introduction to EDX

EDX Marco Cantoni 9Training 2009

X-ray production vs. atomic number Z

Low efficiencyfor light

elements!

EDX Marco Cantoni 10Training 2009

Characteristic lines: Moseley's Law

EDS range ~ 0.3-20 keV

To assess an elementall detectables lines

MUST be present!!!

!

known ambiguities:

Al Kα = Br LlS Kα = Mo Ll

Page 6: Introduction to EDX

EDX Marco Cantoni 11Training 2009

Moseley‘s law for K-series

Frequency ν of X-rays emitted from K-level vs. atomic number

E= hν et λ=c/ν

with the Planck constant:h=6.626 068 76(52) × 10-34 J·sand 1eV = 1.6 10-19 J

( )215 1Z4810.2 −=ν

So, lets measure the X-rays emitted from my sample and determine the composition !

But how to detect it ?

Energy of characteristic XEnergy of characteristic X--rayray--> Element> ElementQualitative EDXQualitative EDX--AnalysisAnalysis

EDX Marco Cantoni 12Training 2009

b) Detection of X-rays (EDX)

Page 7: Introduction to EDX

EDX Marco Cantoni 13Training 2009

EDX Marco Cantoni 14Training 2009

X-Ray energy conversion to electrical charges:3.8eV / electron-hole pair in averageelectronic noise+ imperfect charge collection:130 eV resolution / Mn Ka line

• Detector acts like a diode: at room temperaturethe leak current for 1000V would be too high !

• The FET produces less noise if cooled !• Li migration at room temperature !• ->Detector cooling by L-N

Page 8: Introduction to EDX

EDX Marco Cantoni 15Training 2009

Pulse detection and analysis

Pulse detection: Charge ~ energy

Shorter time constant = process time to analyze voltage-> peak broadening (lower energy resolution)

Longer time constant (higher energy resolution)

->pulse rejection (dead time)

EDX Marco Cantoni 16Training 2009

Process timetime constant

Long

low count rate

Higher dead time

narrow peaks

short

high count rate

lower dead time

broad peaks~2’00050

~4’50030

~11’00015

~30’0004

Count rate, cts/sec.

(30% dead time)

Time const.

(μsec.)

resolutionpeak identification

beam currentcount rate

Page 9: Introduction to EDX

EDX Marco Cantoni 17Training 2009

Silicon Drift Detectors

Extremely fast (up to 100’000 counts/sec.)No L-N cooling required

Similar priced as Si/Li detectors

Peak tail at lower energies

Lower resolution for light elements

EDX Marco Cantoni 18Training 2009

Detection and artifacts

X-Ray energy conversion to electrical charges:3.8eV / electron-hole pair in averageelectronic noise+ imperfect charge collection:130 eV resolution / Mn Ka line

Take care when looking for “trace” elements (low concentrations). Don’t confuse small peaks with escape peaks !

Page 10: Introduction to EDX

EDX Marco Cantoni 19Training 2009

Wavelength Dispersive Spectroscopy (WDS)

The specimen, the diffracting crystal and the detector stay on the Rowland circle. To scan the wavelength, this circle rotates around the specimen to satisfyingthe Bragg law

Johansson focusing spectrometer:The diffracting crystal is bent with a curvatureradius double of that of the Rowland circleThe crystal surface is cylindrically ground to the radius of the Rowland circle

EDX Marco Cantoni 20Training 2009

Electron Microprobe EPMA (Electron Probe MicroAnalyser)with WDS

Page 11: Introduction to EDX

EDX Marco Cantoni 21Training 2009

5-30min.1 min.Acquisition time

1000:1100:1

Peak to background

ratio

difficult++StandardlessAnalysis

difficultEasyUse

≈5eV80-180eVEnergy Resolution

WDSEDS

EDS <-> WDS

EDX Marco Cantoni 22Training 2009

(K,Na)NbO3

Overvoltage,10keV

Continuum,Bremsstrahlung

Electron beam: 10keV Duane-Hunt limit

Page 12: Introduction to EDX

EDX Marco Cantoni 23Training 2009

Bremstrahlung (background)

• when a charged particle (des-) accelarates or changes direction, it emits an electromagnetic wave.

– This is widely used to produce synchrotron radiation

• On a bulk sample of atomic number Z:• N(E) is the number of photons of energy E, E0 the energy of the incident electron and K the

Kramers constant

( ) ( )E

EEKZEN 0 −

=

EDX Marco Cantoni 24Training 2009

EDS in SEM• Acquisition under best conditions

– Flat surface without contamination(no Au coating, use C instead)

– Sample must be homogenous at the place of analysis (interaction volume !!)

– Horizontal orientation of the surface– High count rate (but dead time below 30%)– Overvoltage U=Eo/Ec >1.5-2

•• For acquisition times of 100sec. :For acquisition times of 100sec. :detection of ~0.5at% for almost all elementsdetection of ~0.5at% for almost all elements

Page 13: Introduction to EDX

EDX Marco Cantoni 25Training 2009

(K,Na)NbO3

Overvoltage,10keV

Continuum,Bremsstrahlung

Not ideal !

Duane-Hunt limit

EDX Marco Cantoni 26Training 2009

60.4820.368.667.82Min.

61.5121.1310.259.79Max.

100.0061.1420.869.408.60Spectrum 8

100.0060.4920.3710.258.89Spectrum 7

100.0060.8420.639.079.46Spectrum 6

100.0061.0220.779.358.86Spectrum 5

100.0060.4820.369.379.79Spectrum 4

100.0061.5121.139.547.82Spectrum 3

100.0061.0020.758.669.59Spectrum 2

100.0060.9320.7010.188.19Spectrum 1

TotalONbKNaSpectrum

(K,Na)NbO3

Page 14: Introduction to EDX

EDX Marco Cantoni 27Training 2009

c) Quantification

• First approach:compare X-ray intensity with a standard (sample with known concentration, same beam current of the electron beam)

ci: wt concentration of element i

Ii: X-ray intensity of char. Line

ki: concentration ratio

istdi

istdi

i kI

I

c

c==

Yes, but…..

EDX Marco Cantoni 28Training 2009

Intensity ~ Concentration…?

How manydifferent

samples…?

Page 15: Introduction to EDX

EDX Marco Cantoni 29Training 2009

EDX Marco Cantoni 30Training 2009

Electron Flight Simulator

Page 16: Introduction to EDX

EDX Marco Cantoni 31Training 2009

Casino

EDX Marco Cantoni 32Training 2009

Page 17: Introduction to EDX

EDX Marco Cantoni 33Training 2009

QuantificationWhen the going gets tough…..

[ ] istdi

istdi

i kI

I

c

cFAZ ==××

• "Z" describe how the electron beampenetrates in the sample (Z-dependant and density dependant) and loose energy

• "A" takes in account the absorption of the X-rays photons along the path to samplesurface

• "F" adds some photons when (secondary) fluorescence occurs

Correction matrix

EDX Marco Cantoni 34Training 2009

Flow chart of quantificationMeasure the intensities

and calculate the concentrationswithout ZAF corrections

Calculate the ZAF correctionsand the density of the sample

Calculate the concentrations with the corrections

Is the differencebetween the new and the old

concentrations smaller than the calculation error?

no Yes !stop

Page 18: Introduction to EDX

EDX Marco Cantoni 35Training 2009

Correction methods:

• ZAF (purely theoretical)

• PROZA Phi-Rho-Z

• PaP (Pouchou and Pichoir)

• XPP (extended Puchou/Pichoir)

• with standards (same HT, current, detector settings)

• Standardless: theoretical calculation of Istd

• Standardless optimized: « hidden » standards, user definedpeak profiles

EDX Marco Cantoni 36Training 2009

Quantitative EDX in SEM• Acquisition under best conditions

– Flat surface without contamination, horizontal orientation of the surface (no Au coating, use C instead)

– Sample must be homogenous at the place of analysis (interaction volume !!)

– High count rate (but dead time below 30%)

– Overvoltage U=Eo/Ec >1.5-2

• For acquisition times of 100sec. :detection of ~0.5at% possible for almost all elements

•• StandardlessStandardless acquisitionacquisition possible with high accuracy (intensities of references under the given conditions can be calculated for a great range of elements), test with samples of known composition, light elements (like O) are critical…

• Spatial resolution depends strongly on HT and the density of the sample

Page 19: Introduction to EDX

EDX Marco Cantoni 37Training 2009

Demo NSS/INCA

• Peak finding, synthetic spectrum

• Spectrum imaging (extraction of elements)

EDX Marco Cantoni 38Training 2009

Modern EDX systems:

• User friendly interfaces• New and more powerful

electronics (stability of calibrations, higher count rate)

• Drift compensation for long acquisition times (element mapping on CM300 at high mag, “sitelock”)

• Synthesized spectra(spectrum overlay)easier identification

• Advanced element mapping: Spectral imaging (data cube), selection of elements and regions post-acquisition

• Powerfull reporting and Export tools (Word, Powerpoint, html, tifetc.)

Page 20: Introduction to EDX

EDX Marco Cantoni 39Training 2009

Synthesized spectrum

Spectrum imaging

Data cube

Extraction of element maps

EDX Marco Cantoni 40Training 2009

EDS in TEM

PZT bulk

20nm thick PZTHigh spatial resolution !

Page 21: Introduction to EDX

EDX Marco Cantoni 41Training 2009

EDS in TEM• Thin samples -> correction

factors weak (A and F can be neglected)

• Very weak beam broadening -> high spatial resolution ~ beam diameter (~nm)

High energy: artifacts !

If only there wasn’t this specimen preparation……

EDX Marco Cantoni 42Training 2009

STEM point analysisSTEM point analysisPbMg1/3Nb2/3O3 (bulk)

Processing option : Oxygen by stoichiometry (Normalised)

Spectrum Mg Si Nb Pb O Total Spectrum 1 30.02 13.32 56.66 100.00 Spectrum 2 19.15 7.96 4.11 11.72 57.06 100.00 Spectrum 3 6.01 12.49 22.13 59.37 100.00 Spectrum 4 5.65 12.39 22.67 59.29 100.00 Spectrum 5 5.63 12.48 22.52 59.36 100.00 Spectrum 6 5.98 13.66 20.11 60.25 100.00 Spectrum 7 5.55 12.45 22.66 59.34 100.00 Spectrum 8 5.49 12.96 21.84 59.72 100.00 Spectrum 9 5.63 12.19 23.04 59.14 100.00 Max. 30.02 13.32 13.66 23.04 60.25 Min. 5.49 7.96 4.11 11.72 56.66

All results in Atomic Percent

Page 22: Introduction to EDX

EDX Marco Cantoni 43Training 2009

STEM STEM linescanlinescanPb(Zr,Ti)O3 (thick film), slight Pb excess

EDX Marco Cantoni 44Training 2009

STEM Element MappingSTEM Element MappingPMN/PT 90/10 (bulk)

Page 23: Introduction to EDX

EDX Marco Cantoni 45Training 2009

Artifactshow to recognize/minimize them

EDX Marco Cantoni 46Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

X-Ray collection in TEM EDS

collimator

sampleholder collection solid angle

Page 24: Introduction to EDX

EDX Marco Cantoni 47Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

X-Ray collection in TEM EDS

collimator

sampleholder collection solid angle

EDX Marco Cantoni 48Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

Stray X-Rays in TEM EDS

collimator

sampleholder collection solid angle

X-rays shower

hole count

Page 25: Introduction to EDX

EDX Marco Cantoni 49Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

Stray X-Rays in TEM EDS

collimator

back-scattered e-

to thick sample

EDX Marco Cantoni 50Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

Stray X-Rays in TEM EDS

collimator

scattered e- to polepieces + thick sample

Page 26: Introduction to EDX

EDX Marco Cantoni 51Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

Stray X-Rays in TEM EDS: characteristic x-rays

collimator

EDX Marco Cantoni 52Training 2009

EDSdetector

upper obj. lens polepiece

lower obj. lens polepiece

Stray X-Rays in TEM EDS: continuum (Bremsstrahlung)

collimator

Page 27: Introduction to EDX

EDX Marco Cantoni 53Training 2009

Ideal samples:

• FIB samples: almost uniform thickness, smallsample size(less bulk material around)

EDX Marco Cantoni 54Training 2009

EDS in TEM

• Thin samples -> correction factors weak (A and F can be neglected), quantification “easy”

• Very weak beam broadening -> high spatial resolution ~ beam diameter (~nm)

• High energy -> artifacts

• Sample preparation, sample geometry……

Page 28: Introduction to EDX

EDX Marco Cantoni 55Training 2009

Bonus

EDX Marco Cantoni 56Training 2009

SEM

TEMholey Carbon film

KNbO3

Nano-rods

EDX ofPowders

nano particlesSEM or TEM ???

EDX ofEDX ofPowdersPowders

nanonano particlesparticlesSEM or TEM ???SEM or TEM ???

Optical microscopereflected light

Page 29: Introduction to EDX

EDX Marco Cantoni 57Training 2009

Simulation Electron Flight Simulator EFS

Sample holder

C film

x

x

EDX Marco Cantoni 58Training 2009

SEM 10kVTEM 300kV

x

x

Page 30: Introduction to EDX

EDX Marco Cantoni 59Training 2009

SEM 10kVSEM-STEM 30kV

x

x

EDX Marco Cantoni 60Training 2009

SEM 10kV STEM 30kV

• Easy interpretation“no” contribution from substrate (C)

• MBTF corrections for quantification

• Interaction volume >> particle size• Sample holder analyzed• No deconvolution possible• Low HT = limited energy range for

ionization energies

Page 31: Introduction to EDX

EDX Marco Cantoni 61Training 2009

SEM/STEM

TEM sample

BSE-Detector (upside-down)

XL30XL30--SFEGSFEG

Annular dark Annular dark fieldfield

Bright fieldBright field

““Poor manPoor man’’s TEMs TEM””

EDX Marco Cantoni 62Training 2009

SEMSEM--STEM BFSTEM BF SEMSEM--STEM ADFSTEM ADF

KNbO3

Page 32: Introduction to EDX

EDX Marco Cantoni 63Training 2009

SEM-STEM BF SE detector

EDX Marco Cantoni 64Training 2009

SEMSEM--STEM ADF 30kV, FIB lamellaSTEM ADF 30kV, FIB lamella

SEMSEM--SE 30kVSE 30kV

Page 33: Introduction to EDX

EDX Marco Cantoni 65Training 2009

FIBSEM SE of TEM sampleSEM SE of TEM sample

SEM STEM ADF, 30kVSEM STEM ADF, 30kV

“true” STEM, CM300, 300kV. ADF