9
www.sciencesignaling.org/cgi/content/full/12/586/eaaw0936/DC1 Supplementary Materials for L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy David Soto, Mireia Olivella, Cristina Grau, Judith Armstrong, Clara Alcon, Xavier Gasull, Ana Santos-Gómez, Sílvia Locubiche, Macarena Gómez de Salazar, Roberto García-Díaz, Esther Gratacòs-Batlle, David Ramos-Vicente, Emeline Chu-Van, Benoit Colsch, Víctor Fernández-Dueñas, Francisco Ciruela, Àlex Bayés, Carlos Sindreu, Anna López-Sala, Àngels García-Cazorla*, Xavier Altafaj* *Corresponding author. Email: [email protected] (X.A.); [email protected] (À.G.-C.). Published 18 June 2019, Sci. Signal. 12, eaaw0936 (2019) DOI: 10.1126/scisignal.aaw0936 This PDF file includes: Fig. S1. Protein interactions and cellular trafficking of GluN2Bwt- and GluN2B(P553T)- containing NMDARs. Fig. S2. Altered biophysical properties of heterotrimeric GluN1-GluN2A-GluN2B(P553T) NMDARs. Fig. S3. GluN2B(P553T) mutation alters GluA1 abundance in hippocampal neurons. Fig. S4. Alignment of eumetazoan iGluRs showing the residues conservation of Pro 553 and Phe 653 . Table S1. Untargeted analysis of plasma sphingolipid profile in the GRIN2B(P553T) patient before and after L-serine dietary supplementation. References (78, 79)

Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

www.sciencesignaling.org/cgi/content/full/12/586/eaaw0936/DC1

Supplementary Materials for

L-Serine dietary supplementation is associated with clinical improvement of

loss-of-function GRIN2B-related pediatric encephalopathy

David Soto, Mireia Olivella, Cristina Grau, Judith Armstrong, Clara Alcon, Xavier Gasull, Ana Santos-Gómez, Sílvia Locubiche, Macarena Gómez de Salazar, Roberto García-Díaz, Esther Gratacòs-Batlle, David Ramos-Vicente,

Emeline Chu-Van, Benoit Colsch, Víctor Fernández-Dueñas, Francisco Ciruela, Àlex Bayés, Carlos Sindreu, Anna López-Sala, Àngels García-Cazorla*, Xavier Altafaj*

*Corresponding author. Email: [email protected] (X.A.); [email protected] (À.G.-C.).

Published 18 June 2019, Sci. Signal. 12, eaaw0936 (2019)

DOI: 10.1126/scisignal.aaw0936

This PDF file includes:

Fig. S1. Protein interactions and cellular trafficking of GluN2Bwt- and GluN2B(P553T)-containing NMDARs. Fig. S2. Altered biophysical properties of heterotrimeric GluN1-GluN2A-GluN2B(P553T) NMDARs. Fig. S3. GluN2B(P553T) mutation alters GluA1 abundance in hippocampal neurons. Fig. S4. Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile in the GRIN2B(P553T) patient before and after L-serine dietary supplementation. References (78, 79)

Page 2: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

Fig. S1. Protein interactions and cellular trafficking of GluN2Bwt- and GluN2B(P553T)-containing NMDARs. (A) Western blot analysis of heterologous

Page 3: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

expression of wildtype (first lane) and (P553T) mutant GFP-GluN2B (second lane) in equal amounts of proteins (actin loads) extracted from transiently transfected HEK-293T cells. (B) Representative western blot analysis of co-immunoprecipitation experiments from HEK-293T cells transiently co-transfected with HA-GluN2A, GluN1 and either GFP-GluN2Bwt or GFP-GluN2B(P553T). The co-immunoprecipitation was performed either with anti-GFP (pulling-down GFP-GluN2B constructs products and their interacting proteins) or IgGs (negative control). Interaction studies showed the ability of GFP-tagged GluN2B(P553T) subunit to interact with HA-GluN2A and GluN1 subunits, similarly to GluN2Bwt. Bar graph representing the densitometric analysis of immunoprecipitated proteins (relative to immunoprecipitated GFP-GluN2B for GluN2A and GluN1 subunits; relative to GFP-GluN2B load for GluN2B subunit) (mean ± SEM densitometric of three independent experiments; white bars: GluN2Bwt condition; red bars: GluN2B(P553T) condition). (C) Immunofluorescent analysis (left) of cell surface expression (red channel) and total expression (green channel) of wildtype (left panels) and mutant GFP-GluN2B (right panels) in COS-7 cells. ar graph (right) shows the relative surface to total expression of GFP-GluN2B constructs in COS-7 cells (n=35-38 cells per condition, from 3 independent experiments; *p=0.007, Student's t test). (D) Time-course analysis of GFP-GluN2B cell surface expression (green channel) and intracellular expression (red channel) of wildtype (left panels) and mutant GFP-GluN2B (right panels), in primary cortical neuronal cultures transiently transfected. Primary cultures were transfected at day in vitro 4 (DIV4) or DIV7, and immunofluorescence analysis of surface (green channel) and intracellular (red channel) expression was performed at DIV6, DIV11 and DIV16. Bar graph (bottom) shows the ability of mutant GluN2B(P553T)-containing NMDARs to reach the plasma membrane of the dendritic processes (insets) of transfected cortical neurons (n=25-62 cells per condition, from 3-4 independent experiments; *p=0.026, ns, non-significant; Student's t test). Scale bar = 40 µm (low magnification) or 3 µm (dendrites).

Page 4: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

Fig. S2. Altered biophysical properties of heterotrimeric GluN1-GluN2A-GluN2B(P553T) NMDARs. (A) Representative traces evoked by 1mM glutamate plus 1μM glycine (0.5 s; −60mV) in HEK-293T cells expressing triheteromeric GluN1-GluN2A-GluN2Bwt (2A-2B, left traces) or GluN1-GluN2A-2B(P553T) (2A-2B(P553T), right traces) in the absence (black traces) or in the presence (red traces) of 100 μM D-serine. (B) Normalized peak currents (−pA/pF) for GluN2A-2B- and GluN2A-2B(P553T)-expressing cells with single experiment values superimposed (open circles; p>0.05; Mann Whitney U-test; n=18 and 13, respectively). (C) Percentage of current increment in the presence of 100 μM D-serine, for GluN2A-2B and GluN2A-2B(P553T) expressing cells with single experiment values superimposed (open circles; p<0.05; Mann Whitney U-test; n=14 and 13, respectively). (D) Representative whole-cell currents evoked by 1mM glutamate plus 1μM glycine from HEK-293T cells expressing GluN2A-2B (black trace) or GluN2A-2B(P553T) (red trace), showing the faster kinetics of triheteromeric NMDARs containing GluN2B(P553T) subunit. Responses have been peak-scaled for comparison purposes. (E) Magnification of the tail deactivating currents (shown in panel D) after glutamate and glycine removal. Traces (aligned at the coagonists removal time-point) showed a faster deactivating kinetics of mutant triheteromeric NMDARs (0.14s for depicted cell, red trace) compared with GluN2Bwt-containing triheteromers (0.29s for depicted cell, black trace). Fits are shown overlapped in green. (F) Magnification of triheteromeric NMDARs desensitization (shown in panel D). Both currents have been aligned at the peak current. GluN2B(P553T)-containing receptors show a faster desensitization time constant (0.12s for depicted cell, red trace) compared with GluN2Bwt-containing triheteromers (0.38 s for depicted cell, black trace). Fits are shown in green. (G) Bar graph representing the deactivation time constant fitted from tail currents for triheteromeric GluN2A-2B and GluN2A-2B(P553T). GluN2B(P553T) mutation accelerates channel closure after coagonists

Page 5: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

removal (0.30 ± 0.02s for GluN2A-2B vs. 0.21 ± 0.02s for GluN2A-2B(P553T); p<0.01; Mann-Whitney U-test; n=17 and 14, respectively). Single experiment values are shown as open circles for each condition. (H) Bar graph representing the average desensitization time constant for GluN2A-2B- and GluN2A-2B(P553T)-expressing cells, measured in the presence of the agonists (as shown in panel F). P553T mutation accelerates desensitization of triheteromeric NMDARs (0.30 ± 0.02 s for GluN2A-2B vs. 0.15 ± 0.02 s for GluN2A-2B(P553T); p<0.0001; Mann-Whitney U-test; n=17 and 14 respectively). Single experiments values are shown as open circles for each condition.

Fig. S3. GluN2B(P553T) mutation alters GluA1 abundance in hippocampal neurons. Time course of surface expression of the AMPAR GluA1 subunit in primary hippocampal neurons transfected GFP-GluN2Bwt or GFP-GluN2B(P553T). Immunofluorescent analysis of surface GluA1 expression (red channel) was performed at different developmental stages (DIV6, 11 and 16) in GFP-GluN2B transfected neurons (green channel). Bar graph representing surface expression levels of GluA1. Note the significant increase of GluA1 surface levels of neurons expressing mutant GFP-GluN2B(P553T) at DIV11 (n=16-43 dendrites per condition, from 3 independent experiments; ***p < 0.001; ns, non-significant; Student's t test).

Page 6: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

Fig. S4. Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. The alignment includes 147 protein sequences from members of diverse phylogenetic groups of the iGluR protein family. Due to space limitation, the alignment is divided into two columns. The alignment includes sequences from bilaterian and cnidarian species (eumetazoans). Higher amino acid conservation is represented by increasing

GluN2A_Hsa

GluN2B_Hsa

GluN2C_Hsa

GluN2D_Hsa

GluN2ADalpha_Bbe

GluN2ADbeta_Bbe

GluN2ADgamma_Bbe

GluN2ADdelta_Bbe

GluN2ADalpha_Bla

GluN2ADbeta_Bla

GluN2ADalpha_Sko

GluN2ADalpha_Lgi

GluN2ADbeta_Lgi

GluN2ADgamma_Lgi

GluN2AD_Cte

GluN2ADalpha_Sma

GluN2ADbeta_Sma

GluN2ADgamma_Sma

GluN2AD_Ame

GluN1_Hsa

GluN1_Bbe

GluN1_Bla

GluN1alpha_Sko

GluN1beta_Sko

GluN1_Apl

GluN1_Lgi

GluN1_Cte

GluN1_Sma

GluN1_Ame

GluN1_Pca

GluN1_Nve

GluN3A_Hsa

GluN3B_Hsa

GluN3AB_Bbe

GluN3ABalpha_Sko

GluN3ABbeta_Sko

GluN3AB_Apl

GluN3AB_Lgi

GluN3AB_Cte

GluN3AB_Sma

GluN3AB_Ame

GluN23_Nve

GluNCni2_Nve

GluNCni3_Nve

GluNCni4_Nve

GluNCni5_Nve

GluA1_Hsa

GluA2_Hsa

GluA3_Hsa

GluA4_Hsa

GluA14alpha_Bbe

GluA14beta_Bbe

GluA14alpha_Bla

GluA14beta_Bla

GluA14_Sko

GluA14alpha_Spu

GluA14beta_Spu

GluA14alpha_Apl

GluA14beta_Apl

GluA14alpha_Lgi

GluA14beta_Lgi

GluA14gamma_Lgi

GluA14delta_Lgi

GluA14epsilon_Lgi

GluA14alpha_Cte

GluA14beta_Cte

GluA14gamma_Cte

GluA14delta_Cte

GluA14alpha_Sma

GluA14beta_Sma

GluA14gamma_Sma

GluA14_Ame

GluK1_Hsa

GluK2_Hsa

GluK3_Hsa

GluK4_Hsa

GluK5_Hsa

GluK15alpha_Bbe

GluK15beta_Bbe

GluK15alpha_Bla

GluK15betaA_Bla

GluK15betaB_Bla

GluK15_Sko

GluK15alpha_Spu

GluK15beta_Spu

GluK15alpha_Apl

GluK15beta_Apl

GluK15alpha_Lgi

GluK15beta_Lgi

GluK15_Cte

GluK15alpha_Sma

GluK15beta_Sma

GluK15gamma_Sma

GluK15delta_Sma

GluK15epsilon_Sma

GluK15alpha_Ame

GluK15beta_Ame

GluK15gamma_Ame

GluK15delta_Ame

GluK15epsilon_Ame

GluD1_Hsa

GluD2_Hsa

GluD12alpha_Bbe

GluD12beta_Bbe

GluD12gamma_Bbe

GluD12alpha_Bla

GluD12alpha_Sko

GluD12beta_Sko

GluD12_Spu

GluD12_Apl

GluD12alpha_Lgi

GluD12beta_Lgi

GluE1_Cin

GluE2_Cin

GluE1_Bbe

GluE2_Bbe

GluE3_Bbe

GluE4_Bbe

GluE5_Bbe

GluE6_Bbe

GluE7_Bbe

GluE8_Bbe

GluE1_Bla

GluE6_Bla

GluE1_Sko

GluE2_Sko

GluE1_Pfl

GluE2_Pfl

GluE1_Nve

GluE2_Nve

GluF1_Bbe

GluF2_Bbe

GluF1_Bla

GluF2_Bla

GluF1_Bfl

GluF2_Bfl

GluF3_Bfl

GluF4_Bfl

GluF_Sko

GluF_Pfl

GluF1_Spu

GluF2_Spu

GluF3_Spu

GluF_Apl

GluAkdf1_Nve

GluAkdf2_Nve

S A F L E P F S A S V A N L A A F M I - - - - Q E E

S A F L E P F S A D V A N L A A F M I - - - - Q E E

S A F L E P Y S P A V A N L A A F M I - - - - Q E Q

S A F L E P Y S P A V A N L A A F M I - - - - Q E E

T A F L E P F DWT F A N L A V F M I - - - - Q E Q

T A F L E P F D V F A A N L A A F M I - - - - Q E E

S A F L E P Y D A T L A N L A A F M I - - - - Q E Q

S A F L A P L D V WS A K L T A F M I - - - - L E E

T A F L E P F DWT F A N L A V F M I - - - - Q E Q

T A F L E P F D V F A A N L A A F M I - - - - Q E E

H A F L A P F D I A I G N L A A HM I - - - - H E E

T A F L E P Y D Y P A A N L A A F M I - - - - T K E

T A F L E P Y D Y P S A N L A A F M I - - - - T K E

K A F L E P Y D Y P S A N L A A F M I - - - - T K E

T A F L E P F D I L S A N L A A F M I - - - - T K E

K A F L E P F D T Y S A N L A A F M I - - - - T G E

K A F L E P F D T M S A N L A A F M I - - - - T R E

K A F L E P F D N I S A N L A A F M I - - - - T R E

T A F L E P F D T A S A N L A A F M I - - - - T R E

D S F MQ P F Q S T L A N L A A F L V - - - - L D R

D S F L Q P F Q S T L A N L A A F L V - - - - L D R

D S F L Q P F Q S T L A N L A A F L V - - - - L D R

T S F L Q P F E S A L A N L A A F L V - - - - L D R

A S F F Q P F E S A L A N L A A F L V - - - - L D R

L S F M R P F Q I S L A N L A A Y L V - - - - L D K

A S F L Q P F Q D T L A N L A A F L V - - - - L D R

A S F L Q P F Q D T L A N L A A F L V - - - - L D R

V S F L Q P F Q D T L A N L A A F L V - - - - L E R

V S F L Q P F S N T L A N L A A F L V - - - - L E R

T S F L Q P F Q D S L A N L A A F L V - - - - L D K

D S F L R P F Q I H L A N L A A F L V - - - - L D R

G A F MWP L HWT M A N L A A V M V - - - - G E K

G A F MWP L HWS T A N L A A V M V - - - - G D K

A S F M K P L DWSM A N L A A F M V - - - - D E K

G S F M E P L EWT M A N L A A F M V - - - - G E K

D S F L E P L DWS V A N L A A Y M A - - - - GQ T

G A F L A P L H P N V A N L A A F L A - - - - GQM

Q A F L E P F A T Q V A N L A A F I A - - - - G K H

Y A F M E P F D S WV A N L A A F L A - - - - G K N

H A F L L T F S P Y L A N I A R L F A - - - - G L F

F A F L F P F S P E L A N I A A L I A - - - - G L F

DG F L K P F K V S A A N L A A F M V - - - - L Q D

WN F Q D P F HWD L A N L T A F L L - - - - E D N

L A F I R P F D N S L A N L T A S L V - - - - Q E L

F A F F D P F T WQ L A N L T A H L V - - - - S D D

M D F M I P L S S Q L A E L A A F K V - - - - K E Q

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L D P L A Y E I A N L A A F L T - - - - V E R

F S F L H P L S H E I A N L A A F L T - - - - V E R

F S F M H P L S Y E I A N L A A F L T - - - - V E R

F S F F Q P F T N E I A N L A A F L T - - - - T Q S

F S F M H P L S Y E I A N L A A F L T - - - - V E R

F T F MQ P L A P E I A N L A A F L T - - - - A K R

F S F M D P L S Y E I A N L A A F L T - - - - V E R

F S F M E P L S S E I A N L A A H L T - - - - F M R

F S F M E P L S F Q I A N L A A F L T - - - - I E R

F S F M S P L A K Y V A N L A A F L T - - - - I E K

F S F MQ P L DM T V A N L A A F L T - - - - I E K

F S F M Y P L S Y E I A N L A A F L T - - - - V S R

F S F M Y P L S Y E I A N L A A F L T - - - - V S R

F S F M Y P L S T E I A N L A A F L T - - - - V A R

F S F M D P L S Y E I A N L A A F L T - - - - V E R

F S F M N P L S K E I A N L A A F L T - - - - V E R

L S F M K P L S I E I A N L A A V L T - - - - V E R

F S F M K P L SM E I A N L A A F L T - - - - V E R

F S F L N P L S K E I A N L A A F L T - - - - V E R

F S F L N P L S P D I

F S F L N P L S P D I

F S F L N P L S P D I

F S F L D P F S PG V

F S F L D P F S P A V

F A F L S P L S Y D I

F S F L N P L S Y D I

F A F L S P L S Y D I

F S F L N P L S Y D I

F S F L N P L S Y D I

F S F L S P L D F D I

F S F L N P L S F D I

F S F L N P L S P D V

F S F L N P L S F D V

F S F L N P L S F D I

F S F L N P L A I E I

F S F L S P L S V E V

F S F L N P L A I E I

F S F L N P F S E D V

F S F L S P F S V E V

F A F L N P F S E D V

WV F L A P F E SG V

F S F M N P L A I E I

F S F L S P L S L D V

F S F L S P L S T D V

F S F L S P F S AG V

F S F M N P L A V E I

F S F M N P L A I Q I

F S L F A P F D F A V

F A C L A P F D L S L

F A F L E P F N F Q V

F G F MG P F T P E V

L G F L G P F S V Y V

F A F L E P F N F Q V

F A F L Q P L R I S V

F A F M E P L S G P V

F A F L E P L D I K V

F A F L E P L H I K V

F R S F K P F T T N V

F K M F T P F A P V V

Y A F L E P F E T N L

YG F L R P F T WT L

F K F L D V F E P N L

F K F L E P F E I R L

F N F F G P L E K R L

M N F S R P F Q P E L

WG F V K P F E G R L

WG F I S P F QG E L

WG F I S P F QG E L

WG F V S P F Q A D L

F K F L D V F E P N L

WG F I S P F E G E L

F A F L D P F S Y D L

F Q F L E P F S T D L

F A F L D P F S Y D L

F R F A E P F S G D L

F R F L E P F K S D L

F A I L R P F R Y D L

F E F L A P F D N L V

L A F M T P L S P L M

F E F L A P F D I WV

L S F M T P L S PQM

L Q F L N P F S Y T V

L A F M T P L S P P M

F Q F L A P F S T T V

F Q F MG P F S V E V

F G I F T P F T F WV

F A F L T P YQ A P V

F V P V F P Y DWN V

F V P V F P F N I Y A

F R L T Y P F G I E V

F R I M Y P F G I E V

F A F L L P F D E K L

F A F L M P F Q K D L

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V Q R

A N L A A F L T - - - - V Q R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A T L A A F L T - - - - A G R

A N L A A F L M - - - - L E P

A T L A A F I T - - - - S D R

A N L A A I L V H HM D V V S

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V D K

A N L A A F L T - - - - V E T

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V E R

A N L A A F L T - - - - V S R

A N L A A F L T - - - - I T R

A N L A A F L T - - - - V T R

A N L A A F L T - - - - V T R

A N L A A F L T - - - - V T R

A N L A A F L T - - - - V T R

A N L A A F L T - - - - V S R

A N L T A F L T - - - - V S R

A N L A A F L T - - - - V T R

A N L A A F L T - - - - V T R

A S L A A F L T - - - - V A F

A N L A A F L T - - - - V T I

A NM V A V - - - - - - V S R

A NM V T F V S - - - - I K I

A N L A A F L T - - - - V S R

A K L A A F L T - - - - I S R

A N L A A H L T - - - - I G R

A N L A A F L T - - - - I S R

A N L A A F L T - - - - V S S

A N L A A F L T - - - - V R N

A N L A A F L T - - - - I R N

A N L A A F L T - - - - V R N

A N L A A F L T - - - - V S R

A N L A A F L T - - - - V R N

A N L A A F L T - - - - V A R

A N L A A Y L T - - - - A A R

A N L A A F L T - - - - V A R

A N L A A F L T - - - - A A R

A NM A A F L T - - - - T T R

A N L A A F L T - - - - I K R

A N L A A F L G - - - - R A N

A N L A A F L T - - - - V K P

A N L A A F L G - - - - R A N

A N L A A F L T - - - - V K P

A N L A A F L T - - - - K T N

A N L A A F L T - - - - V K P

A N L A A F L T - - - - Q T R

A N L A A F L S - - - - R P S

S N L G A F L T - - - - V E R

S T V A A F L T - - - - V E R

I N L T P F L K - - - - A S K

S N L T P F L M - - - - A S K

F N L T F F I N - - - - S N K

L N L T H F V T - - - - T N K

A N L A A Y F T - - - - G E R

A N L A A F F T - - - - A Q N

2 4 + 8 2 + 7 2 1 2 5

F S F L E P F S Y E V

+ + + 8 + 9 6 - - - - 5 3 5

A N L A A F L T H HM D V E R

553 653 553 653

GluN1_Adi D S F L R P F Q I N L A N L A A F L V - - - - L D R

+

Page 7: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

intensity of blue background and by a bar chart at the bottom of the second column. Protein numbering corresponds to mature human GluN2B sequence. Figure was prepared with Jalview v2.10.4b1 (78). Species are identified by a three letters code: Branchiostoma belcheri, Bbe; Branchiostoma floridae, Bfl; Branchiostoma lanceolatum, Bla; Ciona intestinalis, Cin; Ptychodera flava, Pfl; Saccoglossus kowalevskii, Sko; Acanthaster planci, Apl; Strongylocentrotus purpuratus, Spu; Apis mellifera, Ame; Priapulus caudatus, Pca; Strigamia maritima, Sma; Lottia gigantea, Lgi; Capitella teleta, Cte; Nematostella vectensis, Nve; Acropora digitifera, Adi. Gene names are taken from Ramos-Vicente et al. (79).

Page 8: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

Table S1. Untargeted analysis of plasma sphingolipid profile in the GRIN2B(P553T) patient before and after L-serine dietary supplementation. Table representing

Mean SD Pre-treatment L-Ser Pre-treatment L-Ser

Ceramide_(34:1)_C34H67O3N 1,46E+06 1,91E+05 1,18E+06 1,50E+06 0,81 1,03

Ceramide_(36:1)_C36H71O3N 7,07E+05 1,77E+05 6,51E+05 7,73E+05 0,92 1,09

Ceramide_(38:1)_C38H75O3N 1,07E+06 1,37E+05 7,80E+05 1,21E+06 0,73 1,13

Ceramide_(39:1)_C39H77O3N 6,57E+05 8,56E+04 2,93E+05 4,05E+05 0,45 0,62

Ceramide_(40:2)_C40H77O3N 1,22E+06 1,20E+05 8,65E+05 1,11E+06 0,71 0,91

Ceramide_(40:1)_C40H79O3N 5,98E+06 7,64E+05 4,66E+06 5,75E+06 0,78 0,96

Ceramide_(41:2)_C41H79O3N 1,37E+06 2,26E+05 7,89E+05 9,31E+05 0,58 0,68

Ceramide_(41:1)_C41H81O3N 7,08E+06 9,76E+05 4,42E+06 5,47E+06 0,62 0,77

Ceramide_(42:2)_C42H81O3N 1,15E+07 2,83E+05 9,44E+06 1,20E+07 0,82 1,04

Ceramide_(42:1)_C42H83O3N 1,85E+07 1,06E+06 1,61E+07 2,00E+07 0,87 1,08

Ceramide_(43:2)_C43H83O3N 1,48E+06 7,07E+03 5,57E+05 7,14E+05 0,38 0,48

Ceramide_(43:1)_C43H85O3N 3,26E+06 3,54E+05 1,54E+06 1,96E+06 0,47 0,60

Ceramide_(44:2)_C44H85O3N 2,49E+05 7,07E+02 2,25E+05 3,03E+05 0,91 1,22

Ceramide_(44:1)_C44H87O3N 8,90E+05 5,87E+04 9,02E+05 1,14E+06 1,01 1,28

Ceramide_(38:0)_C38H77O3N 3,37E+05 1,84E+04 2,36E+05 4,15E+05 0,70 1,23

Ceramide_(40:0)_C40H81O3N 1,90E+06 3,32E+05 1,25E+06 1,32E+06 0,66 0,70

Ceramide_(41:0)_C41H83O3N 1,32E+06 4,65E+05 5,82E+05 6,05E+05 0,44 0,46

Ceramide_(42:0)_C42H85O3N 3,46E+06 1,34E+05 1,20E+06 1,51E+06 0,35 0,44

Ceramide_(43:0)_C43H87O3N 4,37E+05 8,49E+03 3,26E+05 3,20E+05 0,75 0,73

Ceramide_(44:0)_C44H89O3N 4,60E+05 6,01E+04 4,46E+05 6,04E+05 0,97 1,31

Total Ceramides 6,33E+07 1,24E+06 4,64E+07 5,80E+07 0,73 0,92

Sphingomyelin_(32:2)_C37H73N2O6P 8,46E+06 1,21E+06 2,79E+06 3,04E+06 0,33 0,36

Sphingomyelin_(32:1)_C37H75N2O6P 2,68E+08 1,41E+06 1,07E+08 1,19E+08 0,40 0,44

Sphingomyelin_(32:0)_C37H77N2O6P 5,53E+06 3,25E+05 1,40E+06 1,49E+06 0,25 0,27

Sphingomyelin_(33:2)_C38H75N2O6P 3,31E+06 4,60E+05 9,11E+05 1,06E+06 0,28 0,32

Sphingomyelin_(33:1)_C38H77N2O6P 7,13E+07 2,55E+06 2,90E+07 3,31E+07 0,41 0,46

Sphingomyelin_(34:3)_C39H75N2O6P 2,79E+06 3,46E+05 7,34E+05 8,73E+05 0,26 0,31

Sphingomyelin_(34:2)_C39H77N2O6P 1,76E+08 7,78E+06 9,72E+07 1,10E+08 0,55 0,63

Sphingomyelin_(34:1)_C39H79N2O6P 1,43E+09 1,13E+08 9,85E+08 1,12E+09 0,69 0,78

Sphingomyelin_(34:0)_C39H81N2O6P 6,13E+07 2,90E+06 5,77E+07 4,03E+07 0,94 0,66

Sphingomyelin_(35:2)_C40H79N2O6P 5,47E+06 3,89E+05 2,06E+06 2,44E+06 0,38 0,45

Sphingomyelin_(35:1)_C40H81N2O6P 3,87E+07 1,70E+06 1,79E+07 2,15E+07 0,46 0,56

Sphingomyelin_(36:3)_C41H79N2O6P 1,96E+07 2,83E+05 1,06E+07 1,23E+07 0,54 0,63

Sphingomyelin_(36:2)_C41H81N2O6P 1,22E+08 1,48E+07 7,67E+07 8,75E+07 0,63 0,72

Sphingomyelin_(36:1)_C41H83N2O6P 2,62E+08 1,06E+07 1,83E+08 2,01E+08 0,70 0,77

Sphingomyelin_(36:0)_C41H85N2O6P 1,59E+07 2,76E+06 8,81E+06 9,93E+06 0,56 0,63

Sphingomyelin_(37:2)_C42H83N2O6P 4,14E+06 6,93E+05 1,57E+06 1,61E+06 0,38 0,39

Sphingomyelin_(37:1)_C42H85N2O6P 1,94E+07 1,84E+06 8,16E+06 8,72E+06 0,42 0,45

Sphingomyelin_(38:2)_C43H85N2O6P 6,92E+07 7,50E+06 4,75E+07 5,45E+07 0,69 0,79

Sphingomyelin_(38:1)_C43H87N2O6P 1,92E+08 7,07E+06 1,26E+08 1,46E+08 0,66 0,76

Sphingomyelin_(39:2)_C44H87N2O6P 1,18E+07 9,90E+05 3,80E+06 4,15E+06 0,32 0,35

Sphingomyelin_(39:1)_C44H89N2O6P 7,50E+07 1,84E+06 3,00E+07 3,58E+07 0,40 0,48

Sphingomyelin_(40:3)_C45H87N2O6P 2,12E+07 2,33E+06 9,83E+06 1,11E+07 0,46 0,52

Sphingomyelin_(40:2)_C45H89N2O6P 2,89E+08 2,83E+06 1,59E+08 1,83E+08 0,55 0,63

Sphingomyelin_(40:1)_C45H91N2O6P 3,86E+08 1,41E+07 2,51E+08 2,92E+08 0,65 0,76

Sphingomyelin_(41:3)_C46H89N2O6P 1,31E+07 1,63E+06 3,94E+06 4,82E+06 0,30 0,37

Sphingomyelin_(41:2)_C46H91N2O6P 1,54E+08 3,54E+06 6,72E+07 7,98E+07 0,44 0,52

Sphingomyelin_(41:1)_C46H93N2O6P 1,90E+08 9,19E+06 9,83E+07 1,17E+08 0,52 0,62

Sphingomyelin_(42:3)_C47H91N2O6P 3,66E+08 2,47E+07 2,26E+08 2,62E+08 0,62 0,72

Sphingomyelin_(42:2)_C47H93N2O6P 7,93E+08 1,19E+08 5,32E+08 6,25E+08 0,67 0,79

Sphingomyelin_(42:1)_C47H95N2O6P 2,42E+08 5,37E+07 1,73E+08 2,10E+08 0,71 0,87

Sphingomyelin_(43:3)_C48H93N2O6P 9,75E+06 2,62E+06 2,38E+06 2,85E+06 0,24 0,29

Sphingomyelin_(43:2)_C48H95N2O6P 3,40E+07 1,10E+07 1,00E+07 1,23E+07 0,29 0,36

Sphingomyelin_(43:1)_C48H97N2O6P 1,67E+07 4,60E+06 6,21E+06 7,43E+06 0,37 0,45

Sphingomyelin_(44:3)_C49H95N2O6P 4,15E+06 8,34E+05 3,06E+06 4,19E+06 0,74 1,01

Sphingomyelin_(44:2)_C49H97N2O6P 4,16E+06 9,19E+05 3,91E+06 5,02E+06 0,94 1,21

Sphingomyelin_(44:1)_C49H99N2O6P 1,57E+06 4,53E+05 1,05E+06 1,65E+06 0,67 1,05

Total Sphingomyelins 5,38E+09 3,06E+08 3,34E+09 3,83E+09 0,62 0,71

Sphingosine_d18:1_C18H37NO2

Total Sphingosines 5,41E+05 8,20E+04 4,06E+05 6,05E+05 0,75 1,12

Sp

hin

go

sin

es

Sp

hin

go

my

eli

ns

Controls Patient Fold-change (patient vs. controls)C

era

mid

es

Page 9: Supplementary Materials for€¦ · Alignment of eumetazoan iGluRs showing the residues conservation of Pro553 and Phe653. Table S1. Untargeted analysis of plasma sphingolipid profile

quantitative analysis of untargeted phospholipid profile of control individuals and the GRIN2B(P553T) patient. The values correspond to the chromatographic peak area (arbitrary units). The ratios between the chromatographic peak areas of the sphingolipids detected in the patient (before and after L-serine treatment) and controls are represented in the right column (in bold, phospholipids with a fold-change < 0.5 or >1 .5).