23
science.sciencemag.org/content/366/6462/eaav2642/suppl/DC1 Supplementary Materials for The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep Sara B. Noya, David Colameo, Franziska Brüning, Andrea Spinnler, Dennis Mircsof, Lennart Opitz, Matthias Mann, Shiva Tyagarajan*, Maria S. Robles*, Steven A. Brown* *Corresponding author. Email: [email protected] (S.A.B.); [email protected] (M.S.R.); [email protected] (S.T.) Published 11 October 2019, Science 366, eaav2642 (2019) DOI: 10.1126/science.aav2642 This PDF file includes: Figs. S1 to S12 Captions for Excel Tables S1 to S9 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/366/6462/eaav2642/suppl/DC1) Excel Tables S1 to S9

Supplementary Materials for · 2019. 10. 11. · 3 Fig. S3. (A) Representative images (top) of time course for single-molecule in situ hybridization of Cry1 in the stratum pyramidale

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • science.sciencemag.org/content/366/6462/eaav2642/suppl/DC1

    Supplementary Materials for

    The forebrain synaptic transcriptome is organized by clocks

    but its proteome is driven by sleep Sara B. Noya, David Colameo, Franziska Brüning, Andrea Spinnler, Dennis Mircsof,

    Lennart Opitz, Matthias Mann, Shiva Tyagarajan*, Maria S. Robles*, Steven A. Brown*

    *Corresponding author. Email: [email protected] (S.A.B.); [email protected] (M.S.R.); [email protected] (S.T.)

    Published 11 October 2019, Science 366, eaav2642 (2019)

    DOI: 10.1126/science.aav2642

    This PDF file includes:

    Figs. S1 to S12 Captions for Excel Tables S1 to S9 References

    Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/366/6462/eaav2642/suppl/DC1)

    Excel Tables S1 to S9

  • 1

    Fig. S1. (A) Overlap of the Enriched synaptic transcriptome with that from the synaptoneurosomal

    fraction from the mouse cortex identified in a recent study (32). (B) Quantification by real-time

    PCR of Neat1, an intronic region of Meg3, Arc and CamKII in whole-forebrain homogenate, pellet

    (containing nuclei) and gradient-purified synaptoneurosomes. (Two-way ANOVA, ***p

  • 2

    Fig. S2. (A) Overlap of cycling transcripts from synaptic enriched mRNAs using Perseus (Perseus

    Time Series Periodic analysis, period=24h, q-value

  • 3

    Fig. S3. (A) Representative images (top) of time course for single-molecule in situ hybridization

    of Cry1 in the stratum pyramidale of the CA1 of the hippocampus. For better visualization, a red

    line surrounds nuclei and size of single mRNA (black dots) is increased to 0.5 μm. (Bottom) Plot

    showing the quantification of the in situ hybridization (n=13-18, from 3 biological replicates, Mean

    ± SD). (B) Same as in A, from the axodendritic compartment of cortex.

  • 4

    Fig. S4. (A) Confirmation of rhythmicity by single-molecule in situ hybridization of Lingo1 in the

    stratum radiatum of the CA1 of the hippocampus (top panels) and in the axodendritic compartment

    of cortex (lower panels, top). For better visualization, a red line segments nuclei and size of single

  • 5

    mRNA is increased to 0.5 μm. (Bottom) mRNA in the somas of the cortex. (B) Plot showing the

    quantification of the in situ hybridization of A (n=13-18, from 3 biological replicates, Mean ± SD).

  • 6

    Fig. S5. Overlap of the GO Biological Processes enriched in the synaptic transcriptome compared

    to the forebrain transcriptome (grey), for transcripts peaking in the light phase, anticipating dusk

    (yellow), and for transcripts peaking in the dark phase, anticipating dawn (blue). Complete

    functional segregation is observed between light and dark phase terms (http://www.funrich.org,

    BH adjusted p-value

  • 7

    A

    B

    C

    D

    ZT4 ZT12 ZT20ZT8 ZT0ZT16

    ZT4 ZT12 ZT20ZT8 ZT0ZT16

    Time (h)

    RE

    MS

    (h/4

    h)

    NR

    EM

    S(h

    /4h

    )

    0 12 24 36 48 60 720.0

    0.2

    0.4

    0.6

    0

    1

    2

    3ZT4 ZT12 ZT120

    Time (h)

    RE

    MS

    (h/4

    h)

    0 12 24 36 48 60 720.0

    0.2

    0.4

    0.6

    ZT8 ZT16 ZT0

    NR

    EM

    S(h

    /4h

    )

    0

    1

    2

    3

  • 8

    Fig. S6. (A) and (B ) Time spent in NREM (up) and REM bottom during the time course. This

    data supplements Fig. 5A and B. (C) Sleep onset latency, calculated from the end of the sleep

    deprivation to the first consolidated NREM sleep bout (1-way ANOVA, ***P

  • 9

    Fig. S7. (A) Heatmap of expression of transcripts for which cycling is not affected by SD (Perseus

    Time Series Periodic analysis, period=24h, q-value 0.05). Note that the oscillations of most transcripts

    are blunted after SD, but time-dependent variations remain clearly visible.

  • 10

    Fig. S8. (A) Overlap of the synaptic cycling transcriptome with synaptic locally translated RNAs

    identified by SynapTRAP in a recent study looking at synaptic mRNAs from the mouse cortex

    (24).

  • 11

    Fig. S9. (A) Overlap of common proteins quantified in the synaptic and corresponding forebrain

    proteomes. (B) Fraction of cycling (Perseus Time Series Periodic analysis, period=24h, q-value

  • 12

    Fig. S10. (A) Pie chart showing the fraction of cycling proteins (Perseus Time Series Periodic

    analysis, period=24h, q-value

  • 13

    Overlap of the rhythmic proteome (Perseus Time Series Periodic analysis, period=24h, q-value

  • 14

    Fig. S11. (A) Heatmap of the intensities of cycling proteins in forebrain (Perseus Time Series

    Periodic analysis, period=24h, q-value

  • 15

    free z-scored normalized intensity values and proteins are ordered by peak of abundance. (B)

    Heatmap of the intensities of cycling proteins in synapses (Perseus Time Series Periodic analysis,

    period=24h, q-value

  • 16

    Fig. S12. (A) Overlap of the synaptic proteome and synaptic enriched transcriptome. (B) Pie chart

    depicting the fraction of the synaptic cycling proteome (Perseus Time Series Periodic analysis,

    period=24h, q-value

  • 17

    References and Notes 1. K. F. Storch, C. Paz, J. Signorovitch, E. Raviola, B. Pawlyk, T. Li, C. J. Weitz, Intrinsic

    circadian clock of the mammalian retina: Importance for retinal processing of visual information. Cell 130, 730–741 (2007). doi:10.1016/j.cell.2007.06.045 Medline

    2. R. Zhang, N. F. Lahens, H. I. Ballance, M. E. Hughes, J. B. Hogenesch, A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 111, 16219–16224 (2014). doi:10.1073/pnas.1408886111 Medline

    3. S. Maret, S. Dorsaz, L. Gurcel, S. Pradervand, B. Petit, C. Pfister, O. Hagenbuchle, B. F. O’Hara, P. Franken, M. Tafti, Homer1a is a core brain molecular correlate of sleep loss. Proc. Natl. Acad. Sci. U.S.A. 104, 20090–20095 (2007). doi:10.1073/pnas.0710131104 Medline

    4. S. Panda, M. P. Antoch, B. H. Miller, A. I. Su, A. B. Schook, M. Straume, P. G. Schultz, S. A. Kay, J. S. Takahashi, J. B. Hogenesch, Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002). doi:10.1016/S0092-8674(02)00722-5 Medline

    5. N. Koike, S.-H. Yoo, H.-C. Huang, V. Kumar, C. Lee, T.-K. Kim, J. S. Takahashi, Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012). doi:10.1126/science.1226339 Medline

    6. D. Feng, T. Liu, Z. Sun, A. Bugge, S. E. Mullican, T. Alenghat, X. S. Liu, M. A. Lazar, A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011). doi:10.1126/science.1198125 Medline

    7. I. Schmutz, J. A. Ripperger, S. Baeriswyl-Aebischer, U. Albrecht, The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010). doi:10.1101/gad.564110 Medline

    8. G. Rey, F. Cesbron, J. Rougemont, H. Reinke, M. Brunner, F. Naef, Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLOS Biol. 9, e1000595 (2011). doi:10.1371/journal.pbio.1000595 Medline

    9. M. S. Robles, J. Cox, M. Mann, In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLOS Genet. 10, e1004047 (2014). doi:10.1371/journal.pgen.1004047 Medline

    10. B. G. Robinson, D. M. Frim, W. J. Schwartz, J. A. Majzoub, Vasopressin mRNA in the suprachiasmatic nuclei: Daily regulation of polyadenylate tail length. Science 241, 342–344 (1988). doi:10.1126/science.3388044 Medline

    11. C. B. Green, Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb. Perspect. Biol. 10, a030692 (2018). doi:10.1101/cshperspect.a030692 Medline

    12. C. Vollmers, S. Gill, L. DiTacchio, S. R. Pulivarthy, H. D. Le, S. Panda, Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 21453–21458 (2009). doi:10.1073/pnas.0909591106 Medline

    13. K. S. Kosik, Life at Low Copy Number: How Dendrites Manage with So Few mRNAs. Neuron 92, 1168–1180 (2016). doi:10.1016/j.neuron.2016.11.002 Medline

    http://dx.doi.org/10.1016/j.cell.2007.06.045http://dx.doi.org/10.1016/j.cell.2007.06.045http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17719549&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17719549&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.1408886111http://dx.doi.org/10.1073/pnas.1408886111http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25349387&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25349387&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.0710131104http://dx.doi.org/10.1073/pnas.0710131104http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18077435&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18077435&dopt=Abstracthttp://dx.doi.org/10.1016/S0092-8674(02)00722-5http://dx.doi.org/10.1016/S0092-8674(02)00722-5http://dx.doi.org/10.1016/S0092-8674(02)00722-5http://dx.doi.org/10.1016/S0092-8674(02)00722-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12015981&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12015981&dopt=Abstracthttp://dx.doi.org/10.1126/science.1226339http://dx.doi.org/10.1126/science.1226339http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22936566&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22936566&dopt=Abstracthttp://dx.doi.org/10.1126/science.1198125http://dx.doi.org/10.1126/science.1198125http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21393543&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21393543&dopt=Abstracthttp://dx.doi.org/10.1101/gad.564110http://dx.doi.org/10.1101/gad.564110http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20159955&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20159955&dopt=Abstracthttp://dx.doi.org/10.1371/journal.pbio.1000595http://dx.doi.org/10.1371/journal.pbio.1000595http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21364973&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21364973&dopt=Abstracthttp://dx.doi.org/10.1371/journal.pgen.1004047http://dx.doi.org/10.1371/journal.pgen.1004047http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24391516&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24391516&dopt=Abstracthttp://dx.doi.org/10.1126/science.3388044http://dx.doi.org/10.1126/science.3388044http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3388044&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3388044&dopt=Abstracthttp://dx.doi.org/10.1101/cshperspect.a030692http://dx.doi.org/10.1101/cshperspect.a030692http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28778869&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28778869&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.0909591106http://dx.doi.org/10.1073/pnas.0909591106http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19940241&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19940241&dopt=Abstracthttp://dx.doi.org/10.1016/j.neuron.2016.11.002http://dx.doi.org/10.1016/j.neuron.2016.11.002http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28009273&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28009273&dopt=Abstract

  • 18

    14. A. R. Buxbaum, G. Haimovich, R. H. Singer, In the right place at the right time: Visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015). doi:10.1038/nrm3918 Medline

    15. J. L. Dynes, O. Steward, Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447 (2007). doi:10.1002/cne.21189 Medline

    16. R. B. Knowles, J. H. Sabry, M. E. Martone, T. J. Deerinck, M. H. Ellisman, G. J. Bassell, K. S. Kosik, Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996). doi:10.1523/JNEUROSCI.16-24-07812.1996 Medline

    17. S. Miller, M. Yasuda, J. K. Coats, Y. Jones, M. E. Martone, M. Mayford, Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519 (2002). doi:10.1016/S0896-6273(02)00978-9 Medline

    18. S. Hutten, T. Sharangdhar, M. Kiebler, Unmasking the messenger. RNA Biol. 11, 992–997 (2014). doi:10.4161/rna.32091 Medline

    19. G. H. Diering, R. S. Nirujogi, R. H. Roth, P. F. Worley, A. Pandey, R. L. Huganir, Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017). doi:10.1126/science.aai8355 Medline

    20. G. Tononi, C. Cirelli, Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014). doi:10.1016/j.neuron.2013.12.025 Medline

    21. S. Ray, A. B. Reddy, Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. BioEssays 38, 394–405 (2016). doi:10.1002/bies.201500056 Medline

    22. P. R. Dunkley, P. E. Jarvie, P. J. Robinson, A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718–1728 (2008). doi:10.1038/nprot.2008.171 Medline

    23. I. J. Cajigas, G. Tushev, T. J. Will, S. tom Dieck, N. Fuerst, E. M. Schuman, The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012). doi:10.1016/j.neuron.2012.02.036 Medline

    24. R. Ouwenga, A. M. Lake, D. O’Brien, A. Mogha, A. Dani, J. D. Dougherty, Transcriptomic Analysis of Ribosome-Bound mRNA in Cortical Neurites In Vivo. J. Neurosci. 37, 8688–8705 (2017). doi:10.1523/JNEUROSCI.3044-16.2017 Medline

    25. S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann, J. Cox, The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). doi:10.1038/nmeth.3901 Medline

    26. M. E. Hughes, J. B. Hogenesch, K. Kornacker, JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372–380 (2010). doi:10.1177/0748730410379711 Medline

    27. R. T. Fremeau Jr., S. Voglmaier, R. P. Seal, R. H. Edwards, VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27, 98–103 (2004). doi:10.1016/j.tins.2003.11.005 Medline

    http://dx.doi.org/10.1038/nrm3918http://dx.doi.org/10.1038/nrm3918http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25549890&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25549890&dopt=Abstracthttp://dx.doi.org/10.1002/cne.21189http://dx.doi.org/10.1002/cne.21189http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17120280&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17120280&dopt=Abstracthttp://dx.doi.org/10.1523/JNEUROSCI.16-24-07812.1996http://dx.doi.org/10.1523/JNEUROSCI.16-24-07812.1996http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8987809&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8987809&dopt=Abstracthttp://dx.doi.org/10.1016/S0896-6273(02)00978-9http://dx.doi.org/10.1016/S0896-6273(02)00978-9http://dx.doi.org/10.1016/S0896-6273(02)00978-9http://dx.doi.org/10.1016/S0896-6273(02)00978-9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12408852&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12408852&dopt=Abstracthttp://dx.doi.org/10.4161/rna.32091http://dx.doi.org/10.4161/rna.32091http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25482894&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25482894&dopt=Abstracthttp://dx.doi.org/10.1126/science.aai8355http://dx.doi.org/10.1126/science.aai8355http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28154077&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28154077&dopt=Abstracthttp://dx.doi.org/10.1016/j.neuron.2013.12.025http://dx.doi.org/10.1016/j.neuron.2013.12.025http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24411729&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24411729&dopt=Abstracthttp://dx.doi.org/10.1002/bies.201500056http://dx.doi.org/10.1002/bies.201500056http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26866932&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26866932&dopt=Abstracthttp://dx.doi.org/10.1038/nprot.2008.171http://dx.doi.org/10.1038/nprot.2008.171http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18927557&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18927557&dopt=Abstracthttp://dx.doi.org/10.1016/j.neuron.2012.02.036http://dx.doi.org/10.1016/j.neuron.2012.02.036http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22578497&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22578497&dopt=Abstracthttp://dx.doi.org/10.1523/JNEUROSCI.3044-16.2017http://dx.doi.org/10.1523/JNEUROSCI.3044-16.2017http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28821669&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28821669&dopt=Abstracthttp://dx.doi.org/10.1038/nmeth.3901http://dx.doi.org/10.1038/nmeth.3901http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27348712&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27348712&dopt=Abstracthttp://dx.doi.org/10.1177/0748730410379711http://dx.doi.org/10.1177/0748730410379711http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20876817&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20876817&dopt=Abstracthttp://dx.doi.org/10.1016/j.tins.2003.11.005http://dx.doi.org/10.1016/j.tins.2003.11.005http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15102489&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15102489&dopt=Abstract

  • 19

    28. A. Karlén, T. E. Karlsson, A. Mattsson, K. Lundströmer, S. Codeluppi, T. M. Pham, C. M. Bäckman, S. O. Ogren, E. Aberg, A. F. Hoffman, M. A. Sherling, C. R. Lupica, B. J. Hoffer, C. Spenger, A. Josephson, S. Brené, L. Olson, Nogo receptor 1 regulates formation of lasting memories. Proc. Natl. Acad. Sci. U.S.A. 106, 20476–20481 (2009). doi:10.1073/pnas.0905390106 Medline

    29. A. Jilg, S. Lesny, N. Peruzki, H. Schwegler, O. Selbach, F. Dehghani, J. H. Stehle, Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20, 377–388 (2010). Medline

    30. M. Megías, Z. Emri, T. F. Freund, A. I. Gulyás, Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001). doi:10.1016/S0306-4522(00)00496-6 Medline

    31. M. K. Bunger, L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B. Hogenesch, M. C. Simon, J. S. Takahashi, C. A. Bradfield, Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000). doi:10.1016/S0092-8674(00)00205-1 Medline

    32. P. Franken, D. Chollet, M. Tafti, The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001). doi:10.1523/JNEUROSCI.21-08-02610.2001 Medline

    33. D. Bell-Pedersen, V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin, T. L. Thomas, M. J. Zoran, Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556 (2005). doi:10.1038/nrg1633 Medline

    34. H. Nakatsuka, K. Natsume, Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices. Neurosci. Res. 80, 1–9 (2014). doi:10.1016/j.neures.2013.12.007 Medline

    35. T. A. Wang, Y. V. Yu, G. Govindaiah, X. Ye, L. Artinian, T. P. Coleman, J. V. Sweedler, C. L. Cox, M. U. Gillette, Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337, 839–842 (2012). doi:10.1126/science.1222826 Medline

    36. C. M. Pennartz, R. Hamstra, A. M. Geurtsen, Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J. Physiol. 532, 181–194 (2001). doi:10.1111/j.1469-7793.2001.0181g.x Medline

    37. K. Richter, I. Schmutz, M. Darna, J.-F. Zander, R. Chavan, U. Albrecht, G. Ahnert-Hilger, VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience 371, 29–37 (2018). doi:10.1016/j.neuroscience.2017.11.034 Medline

    38. G. Benegiamo, S. A. Brown, S. Panda, RNA Dynamics in the Control of Circadian Rhythm. Adv. Exp. Med. Biol. 907, 107–122 (2016). doi:10.1007/978-3-319-29073-7_5 Medline

    39. J. S. Menet, J. Rodriguez, K. C. Abruzzi, M. Rosbash, Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012). doi:10.7554/eLife.00011 Medline

    http://dx.doi.org/10.1073/pnas.0905390106http://dx.doi.org/10.1073/pnas.0905390106http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19915139&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19915139&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19437502&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19437502&dopt=Abstracthttp://dx.doi.org/10.1016/S0306-4522(00)00496-6http://dx.doi.org/10.1016/S0306-4522(00)00496-6http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11226691&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11226691&dopt=Abstracthttp://dx.doi.org/10.1016/S0092-8674(00)00205-1http://dx.doi.org/10.1016/S0092-8674(00)00205-1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11163178&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11163178&dopt=Abstracthttp://dx.doi.org/10.1523/JNEUROSCI.21-08-02610.2001http://dx.doi.org/10.1523/JNEUROSCI.21-08-02610.2001http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11306614&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11306614&dopt=Abstracthttp://dx.doi.org/10.1038/nrg1633http://dx.doi.org/10.1038/nrg1633http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15951747&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15951747&dopt=Abstracthttp://dx.doi.org/10.1016/j.neures.2013.12.007http://dx.doi.org/10.1016/j.neures.2013.12.007http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24406747&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24406747&dopt=Abstracthttp://dx.doi.org/10.1126/science.1222826http://dx.doi.org/10.1126/science.1222826http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22859819&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22859819&dopt=Abstracthttp://dx.doi.org/10.1111/j.1469-7793.2001.0181g.xhttp://dx.doi.org/10.1111/j.1469-7793.2001.0181g.xhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11283234&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11283234&dopt=Abstracthttp://dx.doi.org/10.1016/j.neuroscience.2017.11.034http://dx.doi.org/10.1016/j.neuroscience.2017.11.034http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29199069&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29199069&dopt=Abstracthttp://dx.doi.org/10.1007/978-3-319-29073-7_5http://dx.doi.org/10.1007/978-3-319-29073-7_5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27256384&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27256384&dopt=Abstracthttp://dx.doi.org/10.7554/eLife.00011http://dx.doi.org/10.7554/eLife.00011http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23150795&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23150795&dopt=Abstract

  • 20

    40. N. P. Hoyle, E. Seinkmane, M. Putker, K. A. Feeney, T. P. Krogager, J. E. Chesham, L. K. Bray, J. M. Thomas, K. Dunn, J. Blaikley, J. S. O’Neill, Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci. Transl. Med. 9, eaal2774 (2017). doi:10.1126/scitranslmed.aal2774 Medline

    41. B. L. Timney, J. Tetenbaum-Novatt, D. S. Agate, R. Williams, W. Zhang, B. T. Chait, M. P. Rout, Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006). doi:10.1083/jcb.200608141 Medline

    42. T. Dange, D. Grünwald, A. Grünwald, R. Peters, U. Kubitscheck, Autonomy and robustness of translocation through the nuclear pore complex: A single-molecule study. J. Cell Biol. 183, 77–86 (2008). doi:10.1083/jcb.200806173 Medline

    43. A. Zappulo, D. van den Bruck, C. Ciolli Mattioli, V. Franke, K. Imami, E. McShane, M. Moreno-Estelles, L. Calviello, A. Filipchyk, E. Peguero-Sanchez, T. Müller, A. Woehler, C. Birchmeier, E. Merino, N. Rajewsky, U. Ohler, E. O. Mazzoni, M. Selbach, A. Akalin, M. Chekulaeva, RNA localization is a key determinant of neurite-enriched proteome. Nat. Commun. 8, 583 (2017). doi:10.1038/s41467-017-00690-6 Medline

    44. O. Rawashdeh, A. Jilg, P. Jedlicka, J. Slawska, L. Thomas, A. Saade, S. W. Schwarzacher, J. H. Stehle, PERIOD1 coordinates hippocampal rhythms and memory processing with daytime. Hippocampus 24, 712–723 (2014). doi:10.1002/hipo.22262 Medline

    45. W. Hauber, A. Bareiss, Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: Selective enhancement of reference memory retention during the light period. Behav. Brain Res. 118, 43–52 (2001). doi:10.1016/S0166-4328(00)00307-7 Medline

    46. Y. Takahashi, K. Sawa, T. Okada, The diurnal variation of performance of the novel location recognition task in male rats. Behav. Brain Res. 256, 488–493 (2013). doi:10.1016/j.bbr.2013.08.040 Medline

    47. K. L. Eckel-Mahan, T. Phan, S. Han, H. Wang, G. C.-K. Chan, Z. S. Scheiner, D. R. Storm, Circadian oscillation of hippocampal MAPK activity and cAmp: Implications for memory persistence. Nat. Neurosci. 11, 1074–1082 (2008). doi:10.1038/nn.2174 Medline

    48. J. J. Zhu, Y. Qin, M. Zhao, L. Van Aelst, R. Malinow, Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–455 (2002). doi:10.1016/S0092-8674(02)00897-8 Medline

    49. P. Chen, Z. Gu, W. Liu, Z. Yan, Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol. 72, 40–51 (2007). doi:10.1124/mol.107.034942 Medline

    50. M. Ikeda, Y. Hojo, Y. Komatsuzaki, M. Okamoto, A. Kato, T. Takeda, S. Kawato, Hippocampal spine changes across the sleep-wake cycle: Corticosterone and kinases. J. Endocrinol. 226, M13–M27 (2015). doi:10.1530/JOE-15-0078 Medline

    51. J. H. Benington, H. C. Heller, Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360 (1995). doi:10.1016/0301-0082(94)00057-O Medline

    http://dx.doi.org/10.1126/scitranslmed.aal2774http://dx.doi.org/10.1126/scitranslmed.aal2774http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29118260&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29118260&dopt=Abstracthttp://dx.doi.org/10.1083/jcb.200608141http://dx.doi.org/10.1083/jcb.200608141http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17116750&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17116750&dopt=Abstracthttp://dx.doi.org/10.1083/jcb.200806173http://dx.doi.org/10.1083/jcb.200806173http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18824568&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18824568&dopt=Abstracthttp://dx.doi.org/10.1038/s41467-017-00690-6http://dx.doi.org/10.1038/s41467-017-00690-6http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28928394&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28928394&dopt=Abstracthttp://dx.doi.org/10.1002/hipo.22262http://dx.doi.org/10.1002/hipo.22262http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24550127&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24550127&dopt=Abstracthttp://dx.doi.org/10.1016/S0166-4328(00)00307-7http://dx.doi.org/10.1016/S0166-4328(00)00307-7http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11163632&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11163632&dopt=Abstracthttp://dx.doi.org/10.1016/j.bbr.2013.08.040http://dx.doi.org/10.1016/j.bbr.2013.08.040http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24008072&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24008072&dopt=Abstracthttp://dx.doi.org/10.1038/nn.2174http://dx.doi.org/10.1038/nn.2174http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19160506&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19160506&dopt=Abstracthttp://dx.doi.org/10.1016/S0092-8674(02)00897-8http://dx.doi.org/10.1016/S0092-8674(02)00897-8http://dx.doi.org/10.1016/S0092-8674(02)00897-8http://dx.doi.org/10.1016/S0092-8674(02)00897-8http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12202034&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12202034&dopt=Abstracthttp://dx.doi.org/10.1124/mol.107.034942http://dx.doi.org/10.1124/mol.107.034942http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17400762&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17400762&dopt=Abstracthttp://dx.doi.org/10.1530/JOE-15-0078http://dx.doi.org/10.1530/JOE-15-0078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26034071&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26034071&dopt=Abstracthttp://dx.doi.org/10.1016/0301-0082(94)00057-Ohttp://dx.doi.org/10.1016/0301-0082(94)00057-Ohttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7624482&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7624482&dopt=Abstract

  • 21

    52. M. Mackiewicz, K. R. Shockley, M. A. Romer, R. J. Galante, J. E. Zimmerman, N. Naidoo, D. A. Baldwin, S. T. Jensen, G. A. Churchill, A. I. Pack, Macromolecule biosynthesis: A key function of sleep. Physiol. Genomics 31, 441–457 (2007). doi:10.1152/physiolgenomics.00275.2006 Medline

    53. F. Brüning, S. B. Noya, T. Bange, S. Koutsouli, J. D. Rudolph, S. Tyagarajan, J. Cox, M. Mann, S. A. Brown, M. S. Robles, Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366, XXX–XXX (2019).

    54. A. Laposky, A. Easton, C. Dugovic, J. Walisser, C. Bradfield, F. Turek, Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28, 395–409 (2005). doi:10.1093/sleep/28.4.395 Medline

    55. J. P. Wisor, B. F. O’Hara, A. Terao, C. P. Selby, T. S. Kilduff, A. Sancar, D. M. Edgar, P. Franken, A role for cryptochromes in sleep regulation. BMC Neurosci. 3, 20 (2002). doi:10.1186/1471-2202-3-20 Medline

    56. L. de Vivo, M. Bellesi, W. Marshall, E. A. Bushong, M. H. Ellisman, G. Tononi, C. Cirelli, Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017). doi:10.1126/science.aah5982 Medline

    57. M. Jasinska, A. Grzegorczyk, O. Woznicka, E. Jasek, M. Kossut, G. Barbacka-Surowiak, J. A. Litwin, E. Pyza, Circadian rhythmicity of synapses in mouse somatosensory cortex. Eur. J. Neurosci. 42, 2585–2594 (2015). doi:10.1111/ejn.13045 Medline

    58. J. A. Ainsley, L. Drane, J. Jacobs, K. A. Kittelberger, L. G. Reijmers, Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience. Nat. Commun. 5, 4510 (2014). doi:10.1038/ncomms5510 Medline

    59. S. Hüttelmaier, D. Zenklusen, M. Lederer, J. Dictenberg, M. Lorenz, X. Meng, G. J. Bassell, J. Condeelis, R. H. Singer, Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005). doi:10.1038/nature04115 Medline

    60. K. M. Huber, M. S. Kayser, M. F. Bear, Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000). doi:10.1126/science.288.5469.1254 Medline

    61. K. C. Martin, A. Casadio, H. Zhu, E. Yaping, J. C. Rose, M. Chen, C. H. Bailey, E. R. Kandel, Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: A function for local protein synthesis in memory storage. Cell 91, 927–938 (1997). doi:10.1016/S0092-8674(00)80484-5 Medline

    62. S. A. Brown, A. Azzi, Peripheral circadian oscillators in mammals. Handb. Exp. Pharmacol. 217, 45–66 (2013). doi:10.1007/978-3-642-25950-0_3 Medline

    63. M. Brancaccio, R. Enoki, C. N. Mazuski, J. Jones, J. A. Evans, A. Azzi, Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J. Neurosci. 34, 15192–15199 (2014). doi:10.1523/JNEUROSCI.3233-14.2014 Medline

    http://dx.doi.org/10.1152/physiolgenomics.00275.2006http://dx.doi.org/10.1152/physiolgenomics.00275.2006http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17698924&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17698924&dopt=Abstracthttp://dx.doi.org/10.1093/sleep/28.4.395http://dx.doi.org/10.1093/sleep/28.4.395http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16171284&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16171284&dopt=Abstracthttp://dx.doi.org/10.1186/1471-2202-3-20http://dx.doi.org/10.1186/1471-2202-3-20http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12495442&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12495442&dopt=Abstracthttp://dx.doi.org/10.1126/science.aah5982http://dx.doi.org/10.1126/science.aah5982http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28154076&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28154076&dopt=Abstracthttp://dx.doi.org/10.1111/ejn.13045http://dx.doi.org/10.1111/ejn.13045http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26274013&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26274013&dopt=Abstracthttp://dx.doi.org/10.1038/ncomms5510http://dx.doi.org/10.1038/ncomms5510http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25072471&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25072471&dopt=Abstracthttp://dx.doi.org/10.1038/nature04115http://dx.doi.org/10.1038/nature04115http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16306994&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16306994&dopt=Abstracthttp://dx.doi.org/10.1126/science.288.5469.1254http://dx.doi.org/10.1126/science.288.5469.1254http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10818003&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10818003&dopt=Abstracthttp://dx.doi.org/10.1016/S0092-8674(00)80484-5http://dx.doi.org/10.1016/S0092-8674(00)80484-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9428516&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9428516&dopt=Abstracthttp://dx.doi.org/10.1007/978-3-642-25950-0_3http://dx.doi.org/10.1007/978-3-642-25950-0_3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23604475&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23604475&dopt=Abstracthttp://dx.doi.org/10.1523/JNEUROSCI.3233-14.2014http://dx.doi.org/10.1523/JNEUROSCI.3233-14.2014http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25392488&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25392488&dopt=Abstract

  • 22

    64. J. Morf, G. Rey, K. Schneider, M. Stratmann, J. Fujita, F. Naef, U. Schibler, Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338, 379–383 (2012). doi:10.1126/science.1217726 Medline

    65. H. Reinke, C. Saini, F. Fleury-Olela, C. Dibner, I. J. Benjamin, U. Schibler, Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev. 22, 331–345 (2008). doi:10.1101/gad.453808 Medline

    66. V. Mongrain, S. A. Hernandez, S. Pradervand, S. Dorsaz, T. Curie, G. Hagiwara, P. Gip, H. C. Heller, P. Franken, Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33, 1147–1157 (2010). doi:10.1093/sleep/33.9.1147 Medline

    67. I. Tobler, K. Jaggi, Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. J. Comp. Physiol. A 161, 449–459 (1987). doi:10.1007/BF00603970 Medline

    68. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). doi:10.1093/bioinformatics/btu170 Medline

    69. B. Li, C. N. Dewey, RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011). doi:10.1186/1471-2105-12-323 Medline

    70. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). doi:10.1093/bioinformatics/btp616 Medline

    71. N. Nagaraj, N. A. Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm, M. Mann, System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell. Proteomics 11, 013722 (2012). doi:10.1074/mcp.M111.013722 Medline

    72. S. B. Noya, D. Colameo, F. Brüning, A. Spinnler, D. Mircsof, L. Opitz, M. Mann, S. Tyagarajan, M. S. Robles, S. A. Brown, mRNA in situ images for: The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep, Zenodo (2019); https://doi.org/10.5281/zenodo.2546770

    http://dx.doi.org/10.1126/science.1217726http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22923437&dopt=Abstracthttp://dx.doi.org/10.1101/gad.453808http://dx.doi.org/10.1101/gad.453808http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18245447&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18245447&dopt=Abstracthttp://dx.doi.org/10.1093/sleep/33.9.1147http://dx.doi.org/10.1093/sleep/33.9.1147http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20857860&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20857860&dopt=Abstracthttp://dx.doi.org/10.1007/BF00603970http://dx.doi.org/10.1007/BF00603970http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3668881&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3668881&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btu170http://dx.doi.org/10.1093/bioinformatics/btu170http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24695404&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24695404&dopt=Abstracthttp://dx.doi.org/10.1186/1471-2105-12-323http://dx.doi.org/10.1186/1471-2105-12-323http://dx.doi.org/10.1186/1471-2105-12-323http://dx.doi.org/10.1186/1471-2105-12-323http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21816040&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21816040&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btp616http://dx.doi.org/10.1093/bioinformatics/btp616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19910308&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19910308&dopt=Abstracthttp://dx.doi.org/10.1074/mcp.M111.013722http://dx.doi.org/10.1074/mcp.M111.013722http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22021278&dopt=Abstracthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22021278&dopt=Abstract

    aav2642-Noya-SM-FRONTaav2642-Noya-BODY-CORRECTEDaav2642-Noya-SM-REFSReferences and NotesReferences and Notes