28
Superconducting Proximity Effect in Quantum-Dot Systems urgen K ¨ onig Institut f ¨ ur Theoretische Physik Universit ¨ at Duisburg-Essen – p. 1

Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Superconducting Proximity Effect in

Quantum-Dot Systems

Jurgen Konig

Institut fur Theoretische Physik

Universitat Duisburg-Essen

– p. 1

Page 2: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Transport through S-N and S-I-S Interfaces

BCS superconductivity: pair potential ∆ = g〈c−k↓ck↑〉

quasiparticles with gap |∆| in density of states

Cooper-pair condensate

subgap transport

Andreev reflection

S N

V

Cooper pair breaks/forms

Josephson current

S S

transfer of Cooper pairs

Jjos(Φ) = Jc sinΦ– p. 2

Page 3: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

QDs Coupled to Superconductors - Exps

carbon nanotube quantum dot

Buitelaar, Nussbaumer, Schonenberger, PRL ’02; Cleziou, Wernsdorfer, Bouchiat,

Ondarcuhu, Monthioux, Nature Nanotech. ’06; Jarillo-Herrero, van Dam,

Kouwenhoven, Nature ’06; Jorgensen, Grove-Rasmussen, Novotny, Flensberg,

Lindelof, PRL ’06; Hermann, Portier, Roche, Levy Yeyati, Kontos, Strunk, PRL ’10; Pillet,

Quay, Morfin, Bena, Levy Yeyati, Joyez, Nature Phys. ’10; . . .

quantum dot in InAs nanowire

van Dam, Nazarov, Bakkers, De Franceschi, Kouwenhoven, Nature ’06; Hofstetter,

Csonka, Nygard, Schonenberger, Nature ’10; . . .

InAs quantum dot with Al electrodes

Buizert, Oiwa, Shibata, Hirakawa, Tarucha, PRL ’07; Deacon, Tanaka, Oiwa, Sakano,

Yoshida, Shibata, Hirakawa, Tarucha, PRL ’10; . . .

quantum dot in graphene

Dirks, Hughes, Lal, Uchoa, Chen, Chialvo, Goldbart, Mason, Nature Phys. ’11– p. 3

Page 4: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

QDs Coupled to Superconductors - Thy

Andreev and multiple Andreev reflections through QDs

Levy Yeyati, Cuevas, Lopez-Davalos, Martin-Rodero, PRB ’97; Fazio,

Raimondi, PRL ’98, PRL ’99; Kang, PRB ’98; Schwab, Raimondi, PRB ’99;

Johansson, Bratus, Shumeiko, Wendin, PRB ’99; Clerk, Ambegaokar,

Hershfield, PRB ’00; Cuevas, Levy Yeyati, Martin-Rodero, PRB ’01; . . .

transport in Kondo regime

Clerk, Ambegaokar, PRB ’00; Avishai, Golub, Zaikin, PRB ’03; Choi, Lee,

Kang, Belzig, PRB ’04; Siano, Egger, PRL ’04; Sellier, Kopp, Kroha, Barash, PRB

’05; Nussinov, Shnirman, Arovas, Balatsky, Zhu, PRB ’05; Bergeret, Levy Yeyati,

Martin-Rodero, PRB ’06; Lopez, Choi, Aguado, PRB ’07; Karrasch, Oguri,

Meden, PRB ’08; Karrasch, Meden, PRB ’09; . . .

Josephson current through QD with spin-orbit coupling

Dell’Anna, Zazunov, Egger, Martin, PRB ’07; Zazunov, Egger, Jonckheere,

Martin, PRL ’09; . . .

– p. 4

Page 5: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Nature 442, 667 (2006)

quantum dot in InAs nanowire

– p. 5

Page 6: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Nature 442, 667 (2006)

Josephson coupling due to

cotunneling

Jjos ∝ Γ2

π-state for odd occupation

theory:

van Dam et al., Nature ’06

Glazman, Matveev, JETP Lett. ’89

Rozhkov, Arovas, Guinea, PRB ’01

– p. 5

Page 7: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

How to Establish a Josephson Coupling?

higher-order tunneling (cotunneling)

Jjos ∝ Γ2

(equilibrium) proximity effect in single-level QD

finite pair amplitude: 〈d↓d↑〉 6= 0

requirement: E0 ≈ E↑↓ < E↑ = E↓ ⇒ 0 < ǫ ≈ −U/2

impossible for large charging energy, U ≫ kBT,Γ

nonequilibrium proximity effect in single-level QD

finite pair amplitude: 〈d↓d↑〉 6= 0

third, normal electrode drives dot out of equilibrium

– p. 6

Page 8: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Model: Anderson Hamiltonian

ΓS ΓS

J

ΓN

L JR

µ N

−Φ/2Φ/2

N

QDE = 0 ǫ ǫ 2ǫ+ U

quantum dot: HD =∑

σ ǫd†σdσ + Un↑n↓

leads: Hη =∑

kσ ǫkc†ηkσcηkσ −

k

(

∆ηc†ηk↑c

†η−k↓ +H.c.

)

superconducting leads: phase biased with ±iΦ/2

normal lead: voltage biased with µN

tunneling: Htunn,η = Vη

(

c†ηkσdσ +H.c.)

⇒ charging energy, superconductivity, and nonequilibrium– p. 7

Page 9: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Diagrammatic Transport Theory

Pala, Governale, J.K., NJP ’07; Governale, Pala, J.K., PRB ’08

general idea: reduced density matrix for dot

– integrate out leads: contractions 〈c†ηkσcηkσ〉 and 〈cηkσc†ηkσ〉

– expand in tunnel coupling, treat interaction exactly

ρ0

A

0 00

0

0

0 000

L R L R L

LR

L

changes due to superconductivity:

– anomalous contractions: 〈c†ηkσc†η−k−σ〉 and 〈cη−k−σcηkσ〉

– finite pair amplitude on dot: 〈d↓d↑〉 6= 0

00 0

0

– p. 8

Page 10: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

2S-dot-N in Nonequilibrium

ΓS ΓS

J

ΓN

L JR

µ N

−Φ/2Φ/2

N

QD

Governale, Pala, J.K., PRB ’08

|∆| → ∞: all orders in ΓS

first order in ΓN

isospin representation

Ix = Re〈d↓d↑〉; Iy = Im〈d↓d↑〉; Iz =〈d†↑d↑ + d†↓d↓〉 − 1

2

kinetic equation for isospin:dI

dt= A−R · I+ I×B

how to proximize the dot:

combined S-dot-N Andreev reflection: A(1)

Andreev reflection at S-dot interface: I×B(0)

– p. 9

Page 11: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Andreev bound states

without SC: resonances at ǫ and ǫ+ U

with SC: Andreev bound-state energies (for ∆ → ∞):

EA,γ′,γ = γ′U

2+ γ

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

-1.5 -1 -0.5 0 0.5ε / U

-1.5

-1

-0.5

0

0.5

1

1.5

ΕΑ

,γ,γ

’ / U

EA,+,+

EA,+,-

EA,-,+

EA,-,-

four resonances

avoided crossing

at δ = 2ǫ+ U = 0

with gap 2ΓS| cos(Φ/2)|

– p. 10

Page 12: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

– p. 11

Page 13: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

– p. 12

Page 14: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Andreev Bound States for Finite ∆

Futterer, Swiebodzinski, Governale, J.K., PRB ’13

resummation scheme for finite ∆

exact for ∆ → ∞

very nice agreement with NRG

Martin Rodero, Levy Yeyati, JPCM ’12

much better than Hartree Fock

– p. 13

Page 15: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Josephson Current JL − JR

ΓS/U = 0.1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−4

−2

0

2

4

µN/U

hJjos/(2eΓN)

ǫ/U

(a)

ΓS/U = 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−20

−10

0

10

20

−1.5 −1 −0.5 0 0.5

µN/U

hJjos/(2eΓN)

ǫ/U

(a)

ΓS/U = 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−40

0

40

80

µN/U

hJjos/(2eΓN)

ǫ/U

µN/U

hJjos/(2eΓN)

ǫ/U

(a)(a)

equilibrium Josephson current suppressed by charging

nonequilibrium Josephson current for finite µN

π-transition driven by ǫ or µN

Andreev bound-state energies:

EA,γ′,γ = γ′U2 + γ√

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

Governale, Pala, J.K., PRB ’08– p. 14

Page 16: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Andreev Current JL + JR

ΓS/U = 0.1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−0.4

−0.2

0

0.2 0.4

µN/U

ǫ/U

hJand/(2eΓN) (b)

ΓS/U = 0.5

0

−0.4

−0.2

0.2

0.4

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

µN/U

ǫ/U

hJand/(2eΓN) (b)

ΓS/U = 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

µN/U

ǫ/U

hJand/(2eΓN) (b)

Andreev current probes nonequilibrium proximity effect

maximal around ε = −U/2

Andreev bound-state energies:

EA,γ′,γ = γ′U2 + γ√

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

Governale, Pala, J.K., PRB ’08

– p. 15

Page 17: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Shot Noise Reveals Proximity Effect

Braggio, Governale, Pala, J.K., SSC ’11

ΓSΓNSN QD

off resonance (|δ| ≫ ΓS)

Cooper pair cotunneling

Poissonian transfer of 2e

Fano factor F = 2

on resonance (|δ| ≪ ΓS)

Cooper pair oscillations,

interrupted by SET

Poissonian transfer of e

Fano factor F = 1

a)

−1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1.5

1

0.5

1

1.5

2

F 3

−1

0

1

F 2

ǫ/U

µ = 1.5Uµ = 0.5U

µ/U

hκ1/(eΓN )

b)

1

2

3

4

Skew

ness

Fano f

acto

r

Andreev current

– p. 16

Page 18: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

DC current into N lead

resonance at Ω = δ

−4 −2 0 2 4

Ω/U

0.0

0.5

1.0

I N[(e/h)Γ

N]

δ/U = 3

δ/U = 2

δ/U = 1

– p. 17

Page 19: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Cooper Pair Splitter with Double Dots

double dot in InAs quantum wire

Hofstetter, Csonka, Nygard, Schonenberger, Nature ’09

Das, Ronen, Heiblum, Mahalu, Kretinin, Shtrikman, Nat. Comm. ’12

double dot in CNT

Hermann, Portier, Levy Yeyati, Kontos, Strunk, PRL ’10

→ spin-entangled electron pair in normal leads– p. 18

Page 20: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Nonlocal Proximity Effect in Double Dots

Eldridge, Pala, Governale, J.K., PRB ’10

ΓNL

ΓSL ΓSR

ΓNR

N RQD

S

N L QD

non-local pair amplitude:

〈dL↑dR↓ − dL↓dR↑〉 6= 0

negative bias µS < 0:

transport through singlet

Cooper pair splitter

positive bias µS > 0:

spin triplet occupied

triplet blockade

µ/U

δ/U

hIS/(eΓN )

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2

−1

0

0.6

– p. 19

Page 21: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Unconventional Superconductivity

pair amplitudes: Fiσ,i′σ′(t) = 〈Tciσ(t)ci′σ′(0)〉

symmetry: under exchange of spin/orbital/time

even-singlet: odd/even/even, BCS

even-triplet: even/odd/even, 3He, Sr2RuO4

odd-triplet: even/even/odd, FM-SC hybids

odd-singlet: odd/odd/odd, ?

even/odd - singlet/triplet pairing in double dots?

– p. 20

Page 22: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Unconventional SC in Double Dots

Weiss, Sothmann, Governale, J.K., in preparation

.

.

+µ −µ

Sµ = 0

QD

B

QD

B

S B

S

0

T

T

T

+

0

− ΓS

∆B

large B field: T− occupied

supercond. lead: 0 ↔ S

inhom. B field: S ↔ T 0

noncol. B field: T 0 ↔ T−

triplet pairing detectable in transport– p. 21

Page 23: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Superconducting Proximity Effect in . . .

quantum dot + superconductor

0-π-transitions for Josephson current

local and non-local Andreev transport

double dot + superconductor

non-local Cooper pairs

triplet blockade

double dot + superconductor + magnetic field

non-local unconventional pairing

– p. 22

Page 24: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Collaborators

Alessandro Braggio Uni Genova, Italy

James Eldridge VU Wellington, New Zealand

Rosario Fazio SNS Pisa, Italy

David Futterer Uni Duisburg-Essen, Germany

Michele Governale VU Wellington, New Zealand

Bastian Hiltscher Uni Duisburg-Essen, Germany

Ali Moghaddam Uni Duisburg-Essen, Germany

Marco Pala CNRS Grenoble, France

Bjorn Sothmann Uni Geneva, Switzerland

Janine Splettstoesser RWTH Aachen, Germany

Jacek Swiebodzinski Uni Duisburg-Essen, Germany

Fabio Taddei SNS Pisa, Italy

Stephan Weiß Uni Duisburg-Essen, Germany– p. 23

Page 25: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

extra slides

– p. 24

Page 26: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

ac-induced proximity

resonances at Ω = δ±ΓS

−4 −2 0 2 4

Ω/U

−0.25

0.0

0.25

∆QD

δ/U = 3

δ/U = 2

δ/U = 1

– p. 25

Page 27: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

DC current into N lead

resonance at Ω = δ

−4 −2 0 2 4

Ω/U

0.0

0.5

1.0

I N[(e/h)Γ

N]

δ/U = 3

δ/U = 2

δ/U = 1

– p. 25

Page 28: Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU Wellington, New Zealand Bastian Hiltscher Uni Duisburg-Essen, Germany Ali Moghaddam

Quantum Dot + FM + SC

Sothmann, Futterer, Governale, J.K., PRB ’10

ΓS

ΓL ΓR

S

+µ −µ

µ = 0

.

.

S

QDF F

non-collinear fm leads

spin accumulation on QD

fm leads → exchange field

current into superconductor (symmetric in µ)

very sensitive to exchange field

indication of unconventional pairing

– p. 26