19
1 st IET Colloquium on Antennas, Wireless and Electromagnetics 29 May 2013, Loughborough University, Loughborough, UK Substrate Integrated Waveguide Technology for the Development of 60 GHz Photonic Transmitters Ivan Flammia, Besher Khani, Andreas Stöhr

Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

  • Upload
    others

  • View
    1

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

1st IET Colloquium on Antennas, Wireless and Electromagnetics 29 May 2013, Loughborough University, Loughborough, UK

Substrate Integrated Waveguide Technology for the

Development of 60 GHz Photonic Transmitters

Ivan Flammia, Besher Khani, Andreas Stöhr

Page 2: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Affiliation University of Duisburg-Essen

Centre for Semiconductor Technology and Optoelectronics

Lotharstr. 55

47057 Duisburg, Germany

Email: [email protected]

Page 3: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Introduction

The 7 GHz bandwidth recently allocated worldwide in the 60 GHz band for unlicensed wireless communication has opened the possibility to a wide range of indoor and outdoor wireless gigabit-per-second applications [1].

In this scenario, the fiber-like wireless connectivity guaranteed by Radio-over-Fibre (RoF) technology plays a fundamental role in allowing the development of new high-data rate systems, without the need for complicated modulation formats [2].

In this work we discuss the development a 60 GHz photonic transmitter for indoor RoF applications, based on substrate integrated waveguide (SIW) technology implemented on high-frequency laminates.

Page 4: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Radio-over-Fibre (RoF)

• Potentially able to provide multi-gigabit data rates, allowing fibre-like wireless connectivity.

• Expansion of existing optical networks.

• Indoor/outdoor applications.

Photonic transmitter:

Operates the optical-to-electrical conversion by means of a high-frequency photodiode (PD) and transmits the RF signal via an opportune antenna.

Fig. 1. Typical Radio-over-Fibre link.

Page 5: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

60 GHz • 57-64 GHz band (7 GHz of unlicensed

spectrum bandwidth).

• Multi-gigabits data rate possible.

• Wireless PANs intended range: 10m.

• Replace various cables used today in office/home environment (gigabit Ethernet, USB, or IEEE 1394, HDMI).

• Increased mobility within the home.

• Frequency reuse / security (attenuation of oxygen, walls) [4].

• Several international standards for HD video streaming and file transfer (WirelessHD , ECMA-387 , 802.15.3c , 802.11ad , WiGig) [5].

Fig. 2. Typical scenario of in-building Radio-over-Fibre [3].

Page 6: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

60 GHz Photonic Transmitter based on SIW Technology

Integration approach:

• Use of RF laminates as integration platform for RoF applications: – Successfully demonstrated [6]:

– E-Band photonic transmitter with off-the-shelf horn antenna.

• Integration of photodiode (wire bonds).

Use of SIW technology:

• No need for external (horn) antennas (eliminates mounting steps, tolerances, enables higher frequency operation).

• Requires transition from GCPW-to-SIW and suitable antennas.

Fig. 3. Interface between the high-frequency PD and the RF laminate. Wire bonds are used to connect the PD output to a grounded coplanar waveguide (GCPW) on the RF laminate.

G S G

Wire bonds

ROGERS 5880

PD Chip (InP)

Page 7: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Substrate Integrated Waveguide

W

Fig. 4. Substrate integrated waveguide transmission line, with highlighted via holes parameters.

H

• Promising candidate for the implementation of millimetre-wave integrated circuits [7, 8].

• Cost-effective technology suitable for mass production. d

p

Page 8: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Fig. 5. Field propagation (60 GHz) in SIW on ROGERS 5880 laminate. Geometrical parameters: W = 2.9 mm, H = 0.38 mm, d = 0.2 mm, p = 0.4 mm, Z0 ~ 75 Ω.

H

W

d

p

Substrate Integrated Waveguide • Proper dimensioning is necessary

to guarantee single mode operation:

• RF laminate: ROGERS 5880

– Low-loss high-frequency substrate: εr =2.2, tgδ = 0.0009.

αTE20 Single mode

operation

Fig. 7. Propagation constant of the SIW depicted in Fig. 4.

αTE10

βTE10

βTE20

Fig. 6. Electric field distribution for the TE10 (top) and TE20 (bottom) modes.

TE10

TE20

Page 9: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

GCPW-to-SIW Transition Requirements:

• Must allow biasing of the photodiode!

• DC block and RF choke:

– Use of coupled lines [9]:

• Constrains due to line/gap etching resolution (~100 µm):

• Z0e= 187 Ω, Z0o= 76 Ω.

• Zin=46 Ω, Zout= 78 Ω.

Fig. 8. Layout of the transition.

Fig. 9. S-parameters of the transition. Fig. 10. 3D view of the transition.

Page 10: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

GCPW-to-SIW Transition Requirements:

• Must allow biasing of the photodiode!

• DC block and RF choke:

– Quarter-wave capacitive stubs + quarter-wave transformer.

Fig. 12. S-parameters of the RF choke.

RF IN

RF OUT DC

Fig. 11. 3D view of the RF choke.

Page 11: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

GCPW-to-SIW Transition • Allows correct biasing of the photodiode!

– DC block and RF isolation.

• In the 57-64 GHz band guarantees:

– Low loss (IL < 0.8 dB), excellent matching (RL > 19 dB) and excellent isolation (IS > 28 dB ).

• Opens the possibility to the development of 60 GHz photonic transmitters based on SIW technology!

Fig. 13. 3D view of the transition.

Fig. 14. S-Parameters of the transition. Fig. 15. Integration concept for SIW photonic transmitter.

Page 12: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

60 GHz Photonic Transmitter for Indoor Applications

Indoor HD video streaming:

• Uncompressed HDMI wireless streaming (carrier: 60 GHz).

• Requires sector antenna to increase energy efficiency.

• Focus of the radiated power in a predefined „user area“.

• Possible candidate:

• SIW H-plane horn antenna!

Fig. 16. Indoor distribution of uncompressed

HD video signal.

Note: the size of the photonic transmitter is in

the order of a few centimetres; for

visualization purposes, the antenna and the

room are not represented in scale.

Page 13: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Dielectric-filled H-Plane Horn Antenna

• H-plane horn antenna on thin laminate (H = 381 um):

– Poor return loss (RL ~ 2 dB).

– Poor front-to-back ratio (FTBR < 3 dB).

-200 -150 -100 -50 0 50 100 150 200-50

-40

-30

-20

-10

-0

10

Angle (degree)

Ga

in (

dB

)

Fig. 17. Antenna model (left) and its RL (right). Fig. 18. Radiation pattern: 3D view (top) and

rectangular plot (bottom).

50 55 60 65 70-15

-10

-5

0

Frequency (GHz)

S11

(dB

)

-2

H-Plane

E-Plane

Page 14: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

SIW H-Plane Horn Antenna with Grating Transition

• Equivalent SIW H-plane horn antenna:

– Use of grating transition [10] to achieve satisfying matching (RL > 9 dB) and high front-to-back ratio (FTBR > 23 dB)!

-200 -100 0 100 200-50

-40

-30

-20

-10

-0

10

Ga

in (

dB

)

Angle (degree)

Fig. 19. Antenna model (left) and its RL (right). Fig. 20. Radiation pattern: 3D view (top) and

rectangular plot (bottom).

H-Plane

E-Plane

50 53 55 58 60 63 65 68 70-15

-13

-10

-8

-5

-3

0

Frequency (GHz)

S11

(d

B)

-9

Page 15: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

60 GHz Photonic Transmitter based on SIW Technology

~ 2.5 cm

Integration platform:

• Use of laminate-based SIW for photonic transmitters!

– GCPW-to-SIW transition with planar bias tee.

– SIW sector antenna with engineered radiation pattern.

Fig. 21. Integration concept for SIW photonic transmitter.

Fig. 22. GCPW-to-SIW transition and SIW H-plane horn antenna.

Page 16: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Conclusions

• 60 GHz Radio-over-Fiber.

• Integration approach for novel photonic transmitter:

– Substrate Integrated Waveguide (SIW) technology

• Novel GCPW-to-SIW transition:

– Integrated fully planar bias tee (DC-block, RF choke).

– 0.8 dB, RL > 15 dB, IS > 28 dB.

• 60 GHz photonic transmitter for indoor applications:

– SIW H-plane horn antenna.

– Sector antenna (improved efficiency).

– RL > 9 dB, FTBR > 23 dB.

Page 17: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

Acknowledgements

The University Duisburg-Essen acknowledges financial support by the European Commission and cooperation within the Marie Curie initial training network MITEPHO (grant agreement 238393).

Page 18: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

References [1] S.-K. Yong, P. Xia and A. Valdes-Garcia, Introduction to 60GHz, in 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice. John Wiley & Sons, Ltd, 2010.

[2] A. Stöhr, S. Babiel, P. Cannard; C. Charbonnier, F. Van Dijk, S. Fedderwitz, et. al., “Millimeter-wave photonic components for broadband wireless systems,” in Microwave Theory and Techniques, IEEE Transactions on, vol. 58, pp. 3071-3082, 2010.

[3] J. M- B. Oliveira et al.: “Performance Assessment of UWB-Over-Fiber and Applications”, in “Ultra Wideband - Current Status and Future Trends” InTech 2012.

[4] Langen, B.; Lober, G.; Herzig, W., "Reflection and transmission behaviour of building materials at 60 GHz," Personal, Indoor and Mobile Radio Communications, 1994. Wireless Networks - Catching the Mobile Future., 5th IEEE International Symposium on , vol., no., pp.505,509 vol.2, 18-23 Sep 1994.

[5] Singh, H.; Su-Khiong Yong; Jisung Oh; Chiu Ngo, "Principles of IEEE 802.15.3c: Multi-Gigabit Millimeter-Wave Wireless PAN," Computer Communications and Networks, 2009. ICCCN 2009. Proceedings of 18th International Conference on , vol., no., pp.1,6, 3-6 Aug. 2009.

[6] I. Flammia, C.C. Leonhardt, J. Honecker, A.G. Steffan, A. Stöhr, “Novel E-Band (71–76 GHz) photodiode module featuring a hermetic grounded-coplanar-waveguide-to-rectangular-waveguide transition,” Microwave Photonics, 2011 International Topical Meeting on & Microwave Photonics Conference, 2011 Asia-Pacific, MWP/APMP, vol., no., pp.405-408, 18-21 Oct. 2011.

Page 19: Substrate Integrated Waveguide Technology for the ...w3w.oe.uni-due.de/research/publications/0521-6386987c403f.pdf · Optoelectronics Lotharstr. 55 47057 Duisburg, Germany Email:

References [7] Bozzi, M.; Feng Xu; Deslandes, D.; Ke Wu, "Modeling and Design Considerations for Substrate Integrated Waveguide Circuits and Components," Telecommunications in Modern Satellite, Cable and Broadcasting Services, 2007. TELSIKS 2007. 8th International Conference on , vol., no., pp.P-VII,P-XVI, 26-28 Sept. 2007.

[8] Ke Wu; Deslandes, D.; Cassivi, Y., "The substrate integrated circuits - a new concept for high-frequency electronics and optoelectronics," Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. 6th International Conference on , vol.1, no., pp.P,III-P-X vol.1, 1-3 Oct. 2003.

[9] I. Flammia, B. Khani, A. Stöhr, A Novel Transition from Grounded Coplanar Waveguide to Substrate Integrated Waveguide for 60 GHz Radio-over-Fiber Photonic Transmitters, Microwave and Radio Electronics Week, Pardubice, Czech Republic, April 16-18, pp. 1 - 4, 2013.

[10] Esquius-Morote, M.; Fuchs, B.; Mosig, J.R., "A new type of printed Ku-band SIW horn antenna with enhanced performances," Antennas and Propagation (ISAP), 2012 International Symposium on , vol., no., pp.223,226, Oct. 29 2012-Nov. 2 2012.