42
Subspace Clustering Algorithms and Applications for Computer Vision Amir Adler

Subspace Clustering Algorithms and Applications for Computer Vision Amir Adler

  • View
    238

  • Download
    0

Embed Size (px)

Citation preview

  • Slide 1
  • Subspace Clustering Algorithms and Applications for Computer Vision Amir Adler
  • Slide 2
  • Agenda The Subspace Clustering Problem Computer Vision Applications A Short Introduction to Spectral Clustering Algorithms Sparse Subspace Clustering (CVPR 2009) Low Rank Representation (ICML 2010) Closed Form Solutions (CVPR 2011) 2
  • Slide 3
  • Agenda The Subspace Clustering Problem Computer Vision Applications A Short Introduction to Spectral Clustering Algorithms Sparse Subspace Clustering (CVPR 2009) Low Rank Representation (ICML 2010) Closed Form Solutions (CVPR 2011) 3
  • Slide 4
  • The Subspace Clustering Problem 4 Given a set of points drawn from a union-of-subspaces, obtain the following: 1) Clustering of the points 2) Number of subspaces 3) Bases of all subspaces Challenges: 1) Subspaces layout 2) Corrupted data
  • Slide 5
  • Subspace Clustering Challenges 5 Independent subspaces: Disjoint subspaces: Independent Disjoint However, disjoint subspaces are not necessarily independent, and considered more challenging to cluster.
  • Slide 6
  • Subspace Clustering Challenges 6 Intersecting subspaces: Corrupted data: Noise Outliers
  • Slide 7
  • Agenda The Subspace Clustering Problem Computer Vision Applications A Short Introduction to Spectral Clustering Algorithms Sparse Subspace Clustering (CVPR 2009) Low Rank Representation (ICML 2010) Closed Form Solutions (CVPR 2011) 7
  • Slide 8
  • Video Motion Segmentation 8 Input: video frames of a scene with multiple motions Output: Segmentation of tracked feature points into motions.
  • Slide 9
  • Video Motion Segmentation 9
  • Slide 10
  • Affine Camera Model 10
  • Slide 11
  • Video Motion Segmentation 11
  • Slide 12
  • Video Motion Segmentation 12
  • Slide 13
  • Temporal Video Segmentation 13 R. Vidal, Applications of GPCA for Computer Vision, CVPR 2008.
  • Slide 14
  • Face Clustering 14 Moghaddam & Pentland, Probabalistic Visual Learning for Object Recognition, IEEE PAMI 1997.
  • Slide 15
  • Face Clustering 15
  • Slide 16
  • Agenda The Subspace Clustering Problem Computer Vision Applications A Short Introduction to Spectral Clustering Algorithms Sparse Subspace Clustering (CVPR 2009) Low Rank Representation (ICML 2010) Closed Form Solutions (CVPR 2011) 16
  • Slide 17
  • The Spectral Clustering Approach 17
  • Slide 18
  • Agenda The Subspace Clustering Problem Computer Vision Applications A Short Introduction to Spectral Clustering Algorithms Sparse Subspace Clustering (CVPR 2009) Low Rank Representation (ICML 2010) Closed Form Solutions (CVPR 2011) 18
  • Slide 19
  • The Data Model 19
  • Slide 20
  • Sparse Subspace Clustering (SSC) 20
  • Slide 21
  • Self Expressive Data Single Subspace 21
  • Slide 22
  • Self Expressive Data Multiple Subspaces 22
  • Slide 23
  • 23
  • Slide 24
  • Extension to Noisy Data 24
  • Slide 25
  • Performance Evaluation 25 Applied to the motion segmentation problem. Utilized the Hopkins-155 database:
  • Slide 26
  • Performance Evaluation 26
  • Slide 27
  • Paper Evaluation 27 Novelty Clarity Experiments Code availability Limitations High complexity: O(L^2)+O(L^3) Sensitivity to noise (data represented by itself)
  • Slide 28
  • 28 Low Rank Representation (LRR)
  • Slide 29
  • 29 Why Low Rank Representation(1/3)?
  • Slide 30
  • 30 Why Low Rank Representation(2/3)?
  • Slide 31
  • 31 Why Low Rank Representation(3/3)?
  • Slide 32
  • 32 Summary of the Algorithm
  • Slide 33
  • 33 Performance Face Clustering
  • Slide 34
  • Paper Evaluation 34 Novelty Clarity Experiments Code availability Limitations High complexity: kO(L^3), k=200~300 Sensitivity to noise (data represented by itself) Parameter setting not discussed
  • Slide 35
  • Closed Form Solutions 35 Favaro, Vidal & Ravichandran (CVPR 2011) Separation between clean and noisy data. Provides several relaxations to:
  • Slide 36
  • Case 1:Noiseless Data & Relaxed Constraint 36
  • Slide 37
  • Noiseless Data & Relaxed Constraint 37
  • Slide 38
  • Case 2: Noisy Data & Relaxed Constraints 38
  • Slide 39
  • Polynomial Shrinkage Operator 39
  • Slide 40
  • Performance Evaluation 40 The motion segmentation problem (Hopkins-155). Case 1 algorithm. Comparable to SSC, LRR. Processing time of 0.4 sec/sequence.
  • Slide 41
  • Paper Evaluation 41 Novelty Clarity Experiments Partial Complexity Analysis Spectral clustering remains O(L^3) Parameter setting unclear
  • Slide 42
  • Thank You! 42