89
Subdivision Surfaces 1

Subdivision Surfaces - Stanford University

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Subdivision Surfaces - Stanford University

Subdivision Surfaces

1

Page 2: Subdivision Surfaces - Stanford University

Geometric ModelingGeometric Modeling

• Sometimes need more than polygon meshes• Sometimes need more than polygon meshes– Smooth surfaces

• Traditional geometric modeling used NURBSN if ti l B S li– Non uniform rational B-Spline

– Demo

2

Page 3: Subdivision Surfaces - Stanford University

Problems with NURBSProblems with NURBS

• A single NURBS patch is either a topological• A single NURBS patch is either a topological disk, a tube or a torus

• Must use many NURBS patches to model complex geometry

• When deforming a surface made of NURBS• When deforming a surface made of NURBS patches, cracks arise at the seams

3

Page 4: Subdivision Surfaces - Stanford University

SubdivisionSubdivision “Subdivision defines a smooth curve or surface asSubdivision defines a smooth curve or surface as

the limit of a sequence of successive refinements”refinements

4

Page 5: Subdivision Surfaces - Stanford University

Subdivision SurfacesSubdivision Surfaces

• Generalization of spline curves / surfaces• Generalization of spline curves / surfaces– Arbitrary control meshes– Successive refinement (subdivision)– Converges to smooth limit surfaceg– Connection between splines and meshes

5

Page 6: Subdivision Surfaces - Stanford University

Subdivision SurfacesSubdivision Surfaces

• Generalization of spline curves / surfaces• Generalization of spline curves / surfaces– Arbitrary control meshes– Successive refinement (subdivision)– Converges to smooth limit surfaceg– Connection between splines and meshes

6

Page 7: Subdivision Surfaces - Stanford University

Example: Geri’s Game (Pixar)

• Subdivision used for

Example: Geri s Game (Pixar)

• Subdivision used for– Geri’s hands and head– Clothing– Tie and shoes

7

Page 8: Subdivision Surfaces - Stanford University

Example: Geri’s Game (Pixar)Example: Geri s Game (Pixar)

Woody’s hand (NURBS) Geri’s hand (subdivision)

8

Page 9: Subdivision Surfaces - Stanford University

Example: Geri’s Game (Pixar)Example: Geri s Game (Pixar)

• Sharp and semi sharp features• Sharp and semi-sharp features

9

Page 10: Subdivision Surfaces - Stanford University

Example: GamesExample: Games

Supported in hardware in DirectX 11Supported in hardware in DirectX 11

10

Page 11: Subdivision Surfaces - Stanford University

Subdivision CurvesSubdivision CurvesGiven a control polygon...Given a control polygon...

...find a smooth curve related to that polygon.

11

Page 12: Subdivision Surfaces - Stanford University

Subdivision Curve TypesSubdivision Curve Types

• Approximating

• Interpolating• Interpolating

• Corner Cuttingg

12

Page 13: Subdivision Surfaces - Stanford University

ApproximatingApproximating

13

Page 14: Subdivision Surfaces - Stanford University

ApproximatingApproximatingSplitting step: split each edge in two

14

Page 15: Subdivision Surfaces - Stanford University

ApproximatingApproximatingAveraging step: relocate each (original) vertex according to some (simple) rule...

15

Page 16: Subdivision Surfaces - Stanford University

ApproximatingApproximatingStart over ...Start over ...

16

Page 17: Subdivision Surfaces - Stanford University

ApproximatingApproximating...splitting......splitting...

17

Page 18: Subdivision Surfaces - Stanford University

ApproximatingApproximating...averaging......averaging...

18

Page 19: Subdivision Surfaces - Stanford University

ApproximatingApproximating...and so on......and so on...

19

Page 20: Subdivision Surfaces - Stanford University

ApproximatingApproximatingIf the rule is designed carefully...If the rule is designed carefully...

... the control polygons will converge to a smooth limit curve!smooth limit curve!

20

Page 21: Subdivision Surfaces - Stanford University

Equivalent to …

• Insert single new point at mid edge

Equivalent to …

• Insert single new point at mid-edge

• Filter entire set of points.p

Catmull-Clark rule: Filter with (1/8, 6/8, 1/8)

21

Page 22: Subdivision Surfaces - Stanford University

Corner Cutting

• Subdivision rule:

Corner Cutting

• Subdivision rule:– Insert two new vertices at ¼ and ¾ of each edge– Remove the old vertices– Connect the new vertices

22

Page 23: Subdivision Surfaces - Stanford University

B-Spline CurvesB Spline Curves

• Piecewise polynomial of degree n• Piecewise polynomial of degree n

control pointsB spline curve control pointsB-spline curve

parameter value basis functionsparameter value

23

Page 24: Subdivision Surfaces - Stanford University

B-Spline CurvesB Spline Curves

• Distinguish between odd and even points• Distinguish between odd and even points

• Linear B spline• Linear B-spline– Odd coefficients (1/2, 1/2)– Even coefficient (1)

24

Page 25: Subdivision Surfaces - Stanford University

B-Spline Curves

• Quadratic B Spline (Chaikin)

B Spline Curves

• Quadratic B-Spline (Chaikin)– Odd coefficients (¼, ¾) demo– Even coefficients (¾ , ¼)

• Cubic B-Spline (Catmull-Clark)– Odd coefficients (4/8, 4/8)– Even coefficients (1/8, 6/8, 1/8)Even coefficients (1/8, 6/8, 1/8)

25

Page 26: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

even odd

26

Page 27: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

27

Page 28: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

28

Page 29: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

29

Page 30: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

30

Page 31: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

31

Page 32: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

32

Page 33: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

33

Page 34: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

34

Page 35: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

35

Page 36: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

36

Page 37: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

37

Page 38: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

38

Page 39: Subdivision Surfaces - Stanford University

Cubic B-SplineCubic B Spline

evenodd

39

Page 40: Subdivision Surfaces - Stanford University

B-Spline CurvesB Spline Curves

• Subdivision rules for control polygon• Subdivision rules for control polygon

• Mask of size n yields Cn-1 curve

40

Page 41: Subdivision Surfaces - Stanford University

Interpolating (4-point Scheme)

• Keep old vertices

Interpolating (4 point Scheme)

• Keep old vertices

• Generate new vertices by fitting cubic curve to y gold vertices

C1 ti li it• C1 continuous limit curve

41

Page 42: Subdivision Surfaces - Stanford University

InterpolatingInterpolating

42

Page 43: Subdivision Surfaces - Stanford University

InterpolatingInterpolating

43

Page 44: Subdivision Surfaces - Stanford University

InterpolatingInterpolating

44

Page 45: Subdivision Surfaces - Stanford University

InterpolatingInterpolating

45

Page 46: Subdivision Surfaces - Stanford University

InterpolatingInterpolating

demo

46

Page 47: Subdivision Surfaces - Stanford University

Subdivision SurfacesSubdivision Surfaces

• No regular structure as for curves• No regular structure as for curves– Arbitrary number of edge-neighbors– Different subdivision rules for each valence

47

Page 48: Subdivision Surfaces - Stanford University

Subdivision RulesSubdivision Rules

• How the connectivity changes• How the connectivity changes

• How the geometry changes– Old points– New pointse po ts

Page 49: Subdivision Surfaces - Stanford University

Subdivision ZooSubdivision Zoo

• Classification of subdivision schemes• Classification of subdivision schemes

Primal Faces are split into sub-faces

D l V ti lit i t lti l tiDual Vertices are split into multiple vertices

Approximating Control points are not interpolated

Interpolating Control points are interpolatedInterpolating Control points are interpolated

49

Page 50: Subdivision Surfaces - Stanford University

Subdivision ZooSubdivision Zoo

• Classification of subdivision schemes• Classification of subdivision schemesPrimal (face split)

T i l h Q d M hTriangular meshes Quad Meshes

Approximating Loop(C2) Catmull‐Clark(C2)

Interpolating Mod Butterfly (C1) Kobbelt (C1)Interpolating Mod. Butterfly (C1) Kobbelt (C1)

Dual (vertex split)

Doo‐Sabin, Midedge(C1)

Biquartic (C2)

• Many more...Biquartic (C )

50

Page 51: Subdivision Surfaces - Stanford University

Subdivision ZooSubdivision Zoo

• Classification of subdivision schemes• Classification of subdivision schemes

PrimalDual

Triangles RectanglesTriangles Rectangles

Approximating Loop Catmull-ClarkDoo-SabinDoo-SabinMidedgeInterpolating Butterfly Kobbelt

51

Page 52: Subdivision Surfaces - Stanford University

Catmull-Clark SubdivisionCatmull Clark Subdivision

• Generalization of bi cubic B Splines• Generalization of bi-cubic B-Splines

• Primal, approximation subdivision scheme

• Applied to polygonal meshes

G t G2 ti li it f• Generates G2 continuous limit surfaces:– C1 for the set of finite extraordinary points

• Vertices with valence ≠ 4

– C2 continuous everywhere elseC co t uous e e y e e e se

52

Page 53: Subdivision Surfaces - Stanford University

Catmull-Clark SubdivisionCatmull Clark Subdivision

53

Page 54: Subdivision Surfaces - Stanford University

Catmull-Clark SubdivisionCatmull Clark Subdivision

54

Page 55: Subdivision Surfaces - Stanford University

Classic Subdivision OperatorsClassic Subdivision Operators

• Classification of subdivision schemes• Classification of subdivision schemes

PrimalDual

Triangles RectanglesTriangles Rectangles

Approximating Loop Catmull-ClarkDoo-SabinDoo-SabinMidedgeInterpolating Butterfly Kobbelt

55

Page 56: Subdivision Surfaces - Stanford University

Loop SubdivisionLoop Subdivision

• Generalization of box splines• Generalization of box splines

• Primal, approximating subdivision scheme

• Applied to triangle meshes

G t G2 ti li it f• Generates G2 continuous limit surfaces:– C1 for the set of finite extraordinary points

• Vertices with valence ≠ 6

– C2 continuous everywhere elseC co t uous e e y e e e se

56

Page 57: Subdivision Surfaces - Stanford University

Loop SubdivisionLoop Subdivision

57

Page 58: Subdivision Surfaces - Stanford University

Loop SubdivisionLoop Subdivision

58

Page 59: Subdivision Surfaces - Stanford University

Subdivision ZooSubdivision Zoo

• Classification of subdivision schemes• Classification of subdivision schemes

PrimalDual

Triangles RectanglesTriangles Rectangles

Approximating Loop Catmull-ClarkDoo-SabinDoo-SabinMidedgeInterpolating Butterfly Kobbelt

59

Page 60: Subdivision Surfaces - Stanford University

Doo-Sabin SubdivisionDoo Sabin Subdivision

• Generalization of bi quadratic B Splines• Generalization of bi-quadratic B-Splines

• Dual, approximating subdivision scheme

• Applied to polygonal meshes

G t G1 ti li it f• Generates G1 continuous limit surfaces:– C0 for the set of finite extraordinary points

• Center of irregular polygons after 1 subdivision step

– C1 continuous everywhere elseC co t uous e e y e e e se

60

Page 61: Subdivision Surfaces - Stanford University

Doo-Sabin SubdivisionDoo Sabin Subdivision

61

Page 62: Subdivision Surfaces - Stanford University

Doo-Sabin SubdivisionDoo Sabin Subdivision

62

Page 63: Subdivision Surfaces - Stanford University

Classic Subdivision OperatorsClassic Subdivision Operators

• Classification of subdivision schemes• Classification of subdivision schemes

PrimalDual

Triangles RectanglesTriangles Rectangles

Approximating Loop Catmull-ClarkDoo-SabinDoo-SabinMidedgeInterpolating Butterfly Kobbelt

63

Page 64: Subdivision Surfaces - Stanford University

Butterfly SubdivisionButterfly Subdivision

• Primal interpolating scheme• Primal, interpolating scheme

• Applied to triangle meshes

• Generates G1 continuous limit surfaces:Co for the set of finite extraordinary points– Co for the set of finite extraordinary points

• Vertices of valence = 3 or > 7

– C1 continuous everywhere else

64

Page 65: Subdivision Surfaces - Stanford University

Butterfly SubdivisionButterfly Subdivision

65

Page 66: Subdivision Surfaces - Stanford University

Butterfly SubdivisionButterfly Subdivision

66

Page 67: Subdivision Surfaces - Stanford University

RemarkRemark

• Different masks apply on the boundary• Different masks apply on the boundary

• Example: Loopp p

67

Page 68: Subdivision Surfaces - Stanford University

ComparisonComparisonDoo-Sabin Catmull-ClarkDoo Sabin Catmull Clark

Loop ButterflyLoop Butterfly

68

Page 69: Subdivision Surfaces - Stanford University

ComparisonComparison

S bdi idi b• Subdividing a cube– Loop result is assymetric, because cube was triangulated

firstfirst– Both Loop and Catmull-Clark are better then Butterfly (C2

vs. C1 )– Interpolation vs. smoothness

69

Page 70: Subdivision Surfaces - Stanford University

ComparisonComparison

• Subdividing a tetrahedron• Subdividing a tetrahedron– Same insights– Severe shrinking for approximating schemes

70

Page 71: Subdivision Surfaces - Stanford University

ComparisonComparison

S t th diff ?• Spot the difference?

• For smooth meshes with uniform triangle size, different schemes provide very similar resultsprovide very similar results

• Beware of interpolating schemes for control polygons with sharp features

71

Page 72: Subdivision Surfaces - Stanford University

So Who Wins?So Who Wins?

L d C t ll Cl k b t h i t l ti i t i d• Loop and Catmull-Clark best when interpolation is not required

• Loop best for triangular meshes

• Catmull-Clark best for quad meshes– Don’t triangulate and then use Catmull-Clark

72

Page 73: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

• Invariant neighborhoodsInvariant neighborhoods– How many control-points affect a small

neighborhood around a point ?neighborhood around a point ?

• Subdivision scheme can be analyzed by looking at a local subdivision matrix

73

Page 74: Subdivision Surfaces - Stanford University

Local Subdivision MatrixLocal Subdivision Matrix

• Example: Cubic B-SplinesExample: Cubic B-Splines

• Invariant neighborhood size: 5Invariant neighborhood size: 5

74

Page 75: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

• Analysis via eigen decomposition of matrix S• Analysis via eigen-decomposition of matrix S– Compute the eigenvalues

– and eigenvectors

– Let be real and X a complete set of eigenvectors

75

Page 76: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

• Invariance under affine transformations• Invariance under affine transformations– transform(subdivide(P)) = subdivide(transform(P))

76

Page 77: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

• Invariance under affine transformations• Invariance under affine transformations– transform(subdivide(P)) = subdivide(transform(P))

• Rules have to be affine combinations– Even and odd weights each sum to 1

77

Page 78: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

• Invariance under reversion of point ordering• Invariance under reversion of point ordering

• Subdivision rules (matrix rows) have to be ( )symmetric

78

Page 79: Subdivision Surfaces - Stanford University

Analysis of SubdivisionAnalysis of Subdivision

Conclusion: 1 has to be eigenvector of S with i l λ 1eigenvalue λ0=1

79

Page 80: Subdivision Surfaces - Stanford University

Limit Behavior - PositionLimit Behavior Position

• Any vector is linear combination of eigenvectors:• Any vector is linear combination of eigenvectors:

rows of X-1

• Apply subdivision matrix:

80

Page 81: Subdivision Surfaces - Stanford University

Limit Behavior - PositionLimit Behavior Position

• For convergence we need• For convergence we need

• Limit vector:

independent of j !independent of j !

81

Page 82: Subdivision Surfaces - Stanford University

Limit Behavior - TangentLimit Behavior Tangent

• Set origin at a :• Set origin at a0:

• Divide by λ1j

y

• Limit tangent given by:• Limit tangent given by:

82

Page 83: Subdivision Surfaces - Stanford University

Limit Behavior - TangentLimit Behavior Tangent

• Curves:• Curves:– All eigenvalues of S except λ0=1 should be less

than λ1 to ensure existence of a tangent, i.e.

• Surfaces:– Tangents determined by λ1 and λ2Tangents determined by λ1 and λ2

83

Page 84: Subdivision Surfaces - Stanford University

Example: Cubic Splines

• Subdivision matrix & rules

Example: Cubic Splines

• Subdivision matrix & rules

Eigen al es• Eigenvalues

84

Page 85: Subdivision Surfaces - Stanford University

Example: Cubic Splines

• Eigenvectors

Example: Cubic Splines

• Eigenvectors

• Limit position and tangent

85

Page 86: Subdivision Surfaces - Stanford University

Properties of SubdivisionProperties of Subdivision

• Flexible modeling• Flexible modeling– Handle surfaces of arbitrary topology

Provably smooth limit surfaces– Provably smooth limit surfaces– Intuitive control point interaction

S l bilit• Scalability– Level-of-detail rendering– Adaptive approximation

• Usability– Compact representation– Simple and efficient code

86

Page 87: Subdivision Surfaces - Stanford University

Beyond Subdivision SurfacesBeyond Subdivision Surfaces

• Non linear subdivision [S h f t l 2008]• Non-linear subdivision [Schaefer et al. 2008]

Idea: replace arithmetic mean with other function

de Casteljau with

de Casteljau with

87

Page 88: Subdivision Surfaces - Stanford University

Beyond Subdivision SurfacesBeyond Subdivision Surfaces

• T Splines [S d b t l 2003]• T-Splines [Sederberg et al. 2003]

– Allows control points to be T-junctions– Can use less control points– Can model different topologies with single surfacep g g

NURBS T-Splines

NURBS T-Splines88

Page 89: Subdivision Surfaces - Stanford University

Beyond Subdivision SurfacesBeyond Subdivision Surfaces

• How do you subdivide a teapot?• How do you subdivide a teapot?

89