167
Faculteit Wetenschappen Departement Biologie Study of intrapopulation variation in movement and habitat use in a stream fish (Cottus perifretum): integrating behavioural, ecological and genetic data Studie van individuele verschillen in verplaatsingsgedrag en habitatkeuze van een riviervis (Cottus perifretum): integratie van gedrag, ecologische en genetische data Dissertation for the degree of Doctor in Science: Biology at the University of Antwerp to be defended by ALEXANDER KOBLER Promotor: Prof. Dr. Marcel Eens Antwerpen, 2012

Studyof)intrapopulation)variationinmovement)and habitat

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

 

 

 

Faculteit  Wetenschappen  

Departement  Biologie  

 

 

Study  of  intrapopulation  variation  in  movement  and  habitat  use  in  a  stream  fish  (Cottus  perifretum):  

integrating  behavioural,  ecological  and  genetic  data    

 

Studie  van  individuele  verschillen  in  verplaatsingsgedrag  en                                        habitatkeuze  van  een  riviervis  (Cottus  perifretum):                                                                

integratie  van  gedrag,  ecologische  en  genetische  data  

 

Dissertation  for  the  degree  of  Doctor  in  Science:  Biology  

at  the  University  of  Antwerp  to  be  defended  by  

 

ALEXANDER  KOBLER  

 

 

Promotor:  Prof.  Dr.  Marcel  Eens  

Antwerpen,  2012

 

Doctoral  Jury  

 

Promotor  

Prof.  Dr.  Marcel  Eens  

 

Chairman  

Prof.  Dr.  Erik  Matthysen  

 

Jury  members  

Prof.  Dr.  Lieven  Bervoets  

Prof.  Dr.  Gudrun  de  Boeck  

Prof.  Dr.  Filip  Volckaert  

Dr.  Gregory  Maes  

Dr.  Michael  Ovidio  

 

 

ISBN:  9789057283864    

 

©  Alexander  Kobler,  2012.  

Any  unauthorized  reprint  or  use  of  this  material  is  prohibited.  No  part  of  this  book  may   be   reproduced   or   transmitted   in   any   form   or   by   any  means,   electronic   or  mechanical,  including  photocopying,  recording,  or  by  any  information  storage  and  retrieval   system   without   express   written   permission   from   the   author.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  naturalist’s  life  would  be  a  happy  one  if  he  had  only  to  observe  and  never  to  write.  

Charles  Darwin  

 

 

4

Acknowledgments    

My   Ph.D.   thesis   was   made   possible   through   a   FWO   (Fonds   Wetenschappelijk  Onderzoek   -­‐   Vlaanderen)   project-­‐collaboration   between   the   University   of  Antwerp  and  the  Catholic  University  of  Leuven.  

First  of  all,  I  wish  to  thank  Marcel  Eens,  the  head  of  the  Biology-­‐Ethology  research  group  in  Antwerp,  who  supervised  me  during  all  phases  of  my  thesis.  Marcel,  I  am  very  grateful   for  your   trust  and  patience.  You  gave  me  confidence  and   incentive  during  this  difficult  journey.  Hartelijk  bedankt!  

In   Leuven,   I   was   guided   by   Filip   Volckaert,   the   head   of   the   Biodiversity   and  Evolutionary  Genomics   research   group,   and  Gregory  Maes.   I   truly   appreciate   all  your   time,   patience,   knowledge,   spontaneous   inputs   and   happy   welcomes   that  you   gave  me.   I   learned   a   lot;   also   things   that   go   beyond   this   thesis   and   are   not  included  in  it.  Cheers!  

I   also   wish   to   thank   my   other   jury   and   committee   members.   Thanks   Lieven  Bervoets,   Gudrun   de   Boeck,   Erik   Matthysen   and   Michael   Ovidio   for   your  contribution.  I  really  appreciate  it.  

In  the  first  two  months  of  my  work  for  this  thesis,  I  had  also  a  co-­‐supervisor,  Guy  Knaepkens,  who  had  initiated  the  FWO  project  together  with  Greg.  Although  our  collaboration  was  only  of  short  duration,  I  am  happy  to  have  met  you.  Thanks  for  believing  in  my  abilities  to  achieve  this  high  goal.  Jammer  dat  we  samen  niet  meer  donderpadden  konden  vangen.  

In  Leuven,  I  met  Alexandros  Triantafyllidis,  who  was  in  Filip’s   lab  for  a  half  year  sabbatical.  You   invested  a   large  part  of  your   time   into   the   “bullhead  research”,   I  am   grateful   for   all   your   interest   and   your   help   to   guide   me   into   the   world   of  population  genetics.  I  also  met  Bart  Hellemans  in  Leuven,  a  very  nice  person  and  true   connoisseur   of   genetic   techniques   and   theory.   I   learned   a   lot   and   really  enjoyed  working  together  with  you  in  the  laboratory.  

I   got   much   support   from   the   Ethology   research   group   and   I   want   to   name   the  people   that  had   their  part   in   this   thesis,  motivated  me,   taught  me  Dutch  and/or  gave  me  friendship:  Berber  De  Jong  (Smakelijk!),  Geert  Eens,  Igor  Eulaers,  Laszlo  Garamszegi   (Egészségedre!),   Ann   Geens   (was   good   to   have   a   nice   fairy   in   the  office!),   Hector   Rivera   Gutierrez,   Veerle   Jaspers,   Stefanie   Lahaye   (keep   me  updated   about   the   villa),   Carsten   Lucass,   Josie   Meaney-­‐Ward,   Wendt   Müller,  Rianne  Pinxten,  Maud  Poisbleau,  Peter  Scheys  (Petri  Heil!),  Jeff  Van  Camp,  Evi  Van  

      5

den  Steen   (was  wel   een   leuke   tijd),  Alain  Van  Hout,   Jonas  Vergauwen.  Thanks  a  lot,  I  have  lovely  memories  of  all  of  you.  

During  my  thesis  I  also  shared  great  moments  with  the  students  that  I  supervised.  Big  cheers  goes  out  to  Dimitri  Geelhand  de  Merxem,  Katia  Geudens,  Yves  Humblet  and  Sofie  Vanwetswinkel.  

I  was  always  warm-­‐hearted  welcomed   in   the  Leuven   lab.   I  still  see   the  smiles  of  Alessia   Cariani,   Conny   Coeckelberghs,   Auguste   Chocha   Manda,   Eveline   Diopere,  Sarah   Geldof,   Pascal   Habluetzel,   Tine   Huyse,   Nellie   Konijnendijk,   Maarten  Larmuseau,   Joost   Raeymaekers,   Jo-­‐Ann   De   Roos,   Dirk   Schaerlaekens,   Sara  Vandamme,  Frederik  Van  den  Broeck,  Maarten  Vanhove  and  Jeroen  Van  Houdt.  

I   contemplated   about   science   and   biology   and   lived   together  with   Stuart   Baird,  Joelle  Gouy  de  Bellocq  and  Loran  Crespin.  You  were  very  important  to  me  in  my  scientific  but  also  personal  development.  Thanks  for  sharing  life  and  living  room.  It  was  great!  

Sabine  Convent,   thanks   for  having  been   such  as  nice   landlady,   you  provided  me  best  circumstances  to  start  a  new  stage  of  my  life  here  in  Flanders.    

I  also  received  great  support  of  many  other   friends  and  I  want  to  name  a   few  of  them:   Cordula   Altendorf,   Volker   Huckstorf,   Cecilia   Iribarren,   Karoline   Kühnelt,  Vito  Martorana,   Stefan,   Susi   and  Simon  Scharpf   (the  S-­‐family),   Solveig   Schröder,  the   triathlon   companions   Jeroen   Bartels,   Bob   Dejongh,   Dieter   Delbaere,   Fritz  Gerhart,   Dave   Lietaert,   Xenia   Luxem,   Yeray   Luxem,   Joris   Peeters,   Bart   Van   de  Velde   and   Andreas   Vicic,   and   the   fishing   buddies   Mathias   Birkle,   Lawrence   De  Geyseleer,   Jan  Hallerman,  Daniel  Hammer,  Mattias  Hempel,  Gilles  Lambert,  Wulf  Plickat,  Bastian  Reetz,  Jan-­‐Simon  Saamen,  Hendrik  Schuster,  Giovanni  Vanhooren  and  Jens  Verschaeren.  Good  to  have  friends  like  you!    

Many   thanks   also   to   Anne’s   family,   Martine   Gijsbrechts   and   Frederik   Moonen,  which  always  supported  me  and  gave  me  a  home  in  Turnhout.  Many  thanks!    

My  parents  Christine  and  Georg  Kobler,  my  sister  Katja  and  her  love  Mark  Dongus,  my   brother  Matthias   and  my   grandparents  Hilde   and  Reinhold   Rall   encouraged  and   supported   me   during   school,   study   and   Ph.D.   It   was   a   long   educational  journey  and  I  am  endlessly  grateful  that  you  made  this  possible.  I  love  you.  

My  girlfriend  Anne  shared  with  me  the  sweet  as  well  as  the  bitter  days  during  the  writing   of   this   thesis.   Anne,   je   was   een   heel   belangrijke   (en   zo   mooie)   steun  tijdens  moeilijke  perioden.  Zonder  jou  zal  dit  nooit  zo  leuk  geweest  zijn.  Daarvoor  ben  ik  jou  oneindig  dankbaar.  Dikke  kus,  ik  hou  van  jou.  

 

6

Table  of  Contents  

Summary  ..............................................................................................  8  

Samenvatting  .....................................................................................  10  

General  Introduction  ..........................................................................  13  Intrapopulation  heterogeneity  in  behaviour  .............................................  15  Individual  differences  in  movement  behaviour  .........................................  16  Intra-­‐population  heterogeneity  in  habitat  use  ..........................................  18  Temperament  traits  .................................................................................  19  Study  species  ............................................................................................  20  Passive  integrated  transponder  telemetry  ................................................  21  Objectives  and  thesis  outline  ....................................................................  22  

Comparison  of  laboratory  and  field  behaviour  ....................................  27  Abstract  ....................................................................................................  29  Introduction  .............................................................................................  30  Materials  and  methods  ............................................................................  31  Results  .....................................................................................................  33  Discussion  ................................................................................................  35  

Temperament  traits  and  habitat  use  ..................................................  39  Abstract  ....................................................................................................  41  Introduction  .............................................................................................  42  Materials  and  methods  ............................................................................  44  Results  .....................................................................................................  54  Discussion  ................................................................................................  59  

Diel  movement  of  bullhead  ................................................................  63  Abstract  ....................................................................................................  65  Introduction  .............................................................................................  66  Materials  and  Methods  ............................................................................  68  Results  .....................................................................................................  71  Discussion  ................................................................................................  75  

Period-­‐dependent  sex-­‐biased  movement  ...........................................  79  Abstract  ....................................................................................................  81  Introduction  .............................................................................................  82  Materials  and  methods  ............................................................................  84  Results  .....................................................................................................  88  Discussion  ................................................................................................  92  

      7

Movement  range  and  temperament  traits  ..........................................  95  Abstract  ....................................................................................................  97  Introduction  .............................................................................................  98  Materials  and  methods  ..........................................................................  100  Results  ...................................................................................................  110  Discussion  ..............................................................................................  113  

Movement  range,  fitness  and  heterozygosity  ...................................  117  Abstract  ..................................................................................................  119  Introduction  ...........................................................................................  120  Materials  and  methods  ..........................................................................  122  Results  ...................................................................................................  127  Discussion  ..............................................................................................  131  

General  discussion,  conclusions  and  future  research  ........................  135  Late  preface:  personal  reflection  ............................................................  137  Laboratory  activity  of  bullhead  ...............................................................  138  Aggressiveness  and  the  use  of  structured  habitats  .................................  139  Movement  range  and  dispersal  distance  ................................................  141  Movement  range  and  individual  fitness  ..................................................  142  Between-­‐year  consistency  in  individual  behaviour  .................................  143  Candidate  gene  -­‐  phenotype  association  ................................................  144  

References  .......................................................................................  147    

 

Summary  

8

SUMMARY  There   is   growing   interest   in   consistent   individual  differences   in  behaviour.  This  has   led   to   an   increasing   number   of   studies   that   distinguish   behavioural   groups  within   single   populations.   For   example,   individual   differences   in   movement  distances,   habitat   selection   or   temperament   traits   have   prompted   scientists   to  differentiate  populations  into  e.g.  resident  and  mobile,  specialist  and  generalist,  or  shy   and   bold   individuals.   Which   individual   characteristics   are   associated   with  such   behavioural   grouping   is   not   completely   understood.   There   are   indications  that   environmental   stimuli   during   early   life-­‐stage,   life-­‐history   traits   or   resource  limitations   may   be   related.   Furthermore,   there   may   be   a   genetic   basis   for   the  expression  of  certain  behavioural  traits,  which  may  also  be  heritable.    

Whereas   there   are   numerous   studies   examining   consistent   individual  differences  in  movement  patterns,  resource  specialisation  (e.g.  microhabitat  use)  or  temperament  traits,  there  are  only  few  studies  combining  these  research  areas.  This   is   one   of   the   aims   of   this   thesis.   A   non-­‐migratory   stream-­‐fish  with   known  intra-­‐population   heterogeneity   in   movement   patterns   (resident   and   mobile  individuals)   was   used   to   study   movement   behaviour,   microhabitat   use   and  temperament   traits.   Attention   was   paid   to   the   consistency   of   individual  differences.   Information  on   individual   life-­‐history   traits   such  as   sex  and  somatic  growth  rate,  body  size,  body  condition  and  genetic  variation  was  used  to  explain  individual  differences  in  behaviours.    

Individually   tagged   bullhead   (Cottus   perifretum)   from   a   lowland   stream  population   were   studied   in   the   field   over   ten   months,   a   subsample   of   these  individuals  were   recaptured   and   the   expression  of   temperament   traits   (activity,  boldness,  aggressiveness,  exploration  of  novel   food  and  novel  environment)  was  observed   in   subsequent   laboratory   observations.   Furthermore,   data   collected  before  this   thesis  was  used  to  compare  the  exploratory  behaviour   in   the  natural  environment  with  this  behaviour  under  laboratory  conditions.  The  main  findings  of  the  study  can  be  summarized  as  follows.  

The  exploratory  behaviour  in  the  laboratory  predicted  this  behaviour  under  field  conditions.  There  were  indications  that  passive  bullhead  showing  only  little  activity   during   the   tests   were   more   predictable   than   individuals   with   higher  activity.    

Two  temperament  trait  tests,  activity  and  novel  environment  activity,  were  repeated   in   the   laboratory   and   consistent   individual   behaviour   was   observed.  

Summary  

      9

There  was   no   association  with   sex.   Smaller   individuals  were  more   active   in   the  novel  environment.  

Individual   habitat   use   was   consistent   over   the   three-­‐months   observation    period.  Bullhead  positively  selected  structured  habitats  and  avoided  open  water.  However,   we   also   observed   some   individuals   that   were   regularly   tracked   in  stream   patches   with   only   little   complexity.   The   individual   habitat   use   was  unrelated  to  sex  or  body  size  but  an  association  with  aggressiveness  was   found:  bullhead  that  were  more  often  associated  with  highly  complex  habitats  were  less  aggressive.  Other  temperament  traits  were  not  associated  with  habitat  use.    

Movement  of  bullhead  varied  between  diel  and  seasonal  periods.  Bullhead  moved  farther  distances  at  night  and  dawn  than  during  daytime.  Some  individuals  expressed   site-­‐fidelity:   after   swimming   several  metres   at  night   they   returned   to  the   same   daytime   location.   Bullhead   moved   furthest   in   February   and   May.   In  these  months,  movement  distances  diversified  between   the  genders  and  period-­‐dependent  sex-­‐bias  was  observed:  females  moved  furthest  in  February  and  males  moved  furthest  in  May.    

Long-­‐term   movement   range   (the   distance   between   the   most   up-­‐   and  downstream   location   during   ten   months)   varied   considerably   between  individuals   and   ranged   from   1   to   1284   stream   metres.   A   clear   grouping   of  resident  and  mobile  fish  was,  however,  not  found.  Instead,  movement  distribution  seemed  to  be  leptokurtic.  The  inter-­‐individual  differences  were  not  related  to  sex,  body   size,   body   condition   and   growth   rate.   The   individual   expression   of  temperament  traits  was  also  not  associated  with  movement  range.  Furthermore,  individual  genetic  diversity  could  not  explain  differences  in  movement  range.  

Bullhead   with   better   body   condition   at   the   beginning   of   the   study   grew  faster  during  the  field  observation  period.  No  association  between  body  condition  and   microsatellite   heterozygosity   as   well   as   between   growth   rate   and  microsatellite  heterozygosity  was  found.  

The   main   conclusion   of   this   thesis   is   that   the   studied   population   was  heterogeneous   in   movement   behaviour,   habitat   use   and   temperament   traits.  These  behaviours  varied  consistently  between  individuals.  Individual  habitat  use  was   related   to   aggressiveness.   No   individual   characteristic   was   found   that   was  associated   with   movement   range.   The   thesis   highlights   the   importance   of  structured   habitat   types   for   bullhead.   The   study   suggests   that   inter-­‐sexual  differences   in   reproductive   behaviour   may   cause   (periodical)   sex-­‐bias   in   the  movement  of  many  fishes.    

Samenvatting  

10

SAMENVATTING  Er   bestaat   een   groeiende   interesse   voor   consistente   individuele  gedragsverschillen.   Dit   heeft   geleid   tot   een   stijgend   aantal   studies   die  gedragsgroepen  binnen  een  populatie  wil  onderscheiden.   Individuele  verschillen  in   verplaatsingsgedrag,   habitatkeuze   of   gedragskenmerken   hebben   ertoe   geleid  dat   wetenschappers   populaties   in   bijvoorbeeld   sedentaire   en   mobiele,  specialisten   en   generalisten,   of   onverschrokken   en   verschrokken   individuen  onderscheiden.   Welke   individuele   karakteristieken   met   de   gedragsgroepering  samenhangen,  is  niet  volledig  duidelijk.    

Hoewel   er   talrijke   studies   zijn   die   consistente   individuele   verschillen   in  verplaatsingspatronen,   habitatkeuze   of   gedragskenmerken   onderzoeken,   zijn   er  slechts  weinig  studies  die  deze  verschillende  aspecten  combineren.  Dit  is  één  van  de   doelstellingen   van   deze   thesis.   Een   niet-­‐migrerende   riviervis   met   gekende  intra-­‐populatie   heterogeniteit   in   verplaatsingspatronen   (sedentaire   en   mobiele  individuen)   werd   gebruikt   om   verplaatsingsgedrag,   habitatkeuze   en  gedragskenmerken  te  bestuderen.  Hierbij  werd  bijzondere  aandacht  besteed  aan  de  consistentie  van  individuele  gedragsverschillen.  

Individueel   gemarkeerde   rivierdonderpadden   (Cottus   perifretum)   van   een  laagland  beekpopulatie  werden  gedurende  tien  maanden  in  het  veld  bestudeerd.  Een   deel   van   deze   populatie   werd   opnieuw   gevangen   en   de   expressie   van  gedragskenmerken   (activiteit,   onverschrokkenheid,   agressiviteit   en   exploratie  naar  nieuw  voedsel  en  een  nieuwe  omgeving)  werd  onderzocht  in  opeenvolgende  laboratoriumobservaties.  Bovendien  werden  eerder  verzamelde  data  gebruikt  om  het   exploratiegedrag   in   de   natuurlijke   omgeving   te   vergelijken   met   het   gedrag  onder   laboratoriumomstandigheden.   De   belangrijkste   bevindingen   van   deze  studie  kunnen  als  volgt  worden  samengevat.    

Het  exploratiegedrag  in  het  laboratorium  voorspelde  het  gedrag  onder  veld-­‐  condities.  Er  waren  indicaties  dat  passieve  individuen,  die  slechts  weinig  activiteit  vertoonden,  voorspelbaarder  waren  dan  individuen  met  een  hogere  activiteit.  

Twee   testen   van   gedragskenmerken,   activiteit   en   activiteit   in   een   nieuwe  omgeving,   werden   herhaald   tijdens   de   labostudie.   Daaruit   bleek   dat   de  individuele   gedragsverschillen   consistent   waren.   Het   geslacht   verklaarde   deze  verschillen  niet.  Kleinere  individuen  waren  actiever  in  de  nieuwe  omgeving.  

De  individuele  habitatkeuze  was  consistent  over  de  drie  maanden  durende  observatieperiode.   Rivierdonderpadden   verkozen   gestructureerde   habitatten   en  

Samenvatting

      11

vermeden   open   water.   We   observeerden   echter   ook   enkele   individuen   die  regelmatig   voorkwamen   in   beekgebieden   met   maar   weinig   structuur.   De  individuele   habitatkeuze   was   niet   gerelateerd   met   geslacht   of   lichaamsgrootte.  Wel   werd   er   een   relatie   met   agressiviteit   gevonden:   rivierdonderpadden   die  vaker   met   structuurrijke   habitatten   geassocieerd   werden,   waren   minder  agressief.  Andere  gedragskenmerken  correleerden  niet  met  de  habitatkeuze.  

Verplaatsingsafstanden    waren  afhankelijk  van  de   tijden  van  de  dag  en  de  jaargetijden.   Rivierdonderpadden   verplaatsten   zich   ´s   nachts   en   tijdens   de  ochtendschemering   over   een   grotere   afstand   dan   overdag.   Sommige   individuen  vertoonden   een   sterke   plaatstrouw:   na   enkele  meters   te   hebben   afgelegd   in   de  nacht,   keerden   ze   terug   naar   dezelfde   locatie   van   overdag.   Rivierdonderpadden  verplaatsten   zich   het   verst   in   februari   en   mei.   In   deze   maanden   werden  uiteenlopende   verplaatsingsafstanden   tussen   mannetjes   en   vrouwtjes  waargenomen.  Vrouwtjes  zwommen  het  verst  in  februari,  mannetjes  in  mei.  

De  verplaatsingsspanwijdte   (de  afstand   tussen  de  meest   stroomopwaartse  en   meest   stroomafwaarste   locatie   gedurende   tien   maanden)   varieerde  onmiskenbaar   tussen   de   individuen   met   waardes   van   1   tot   1284   meters.   Een  duidelijke   groepering   van   sedentaire   en   mobiele   individuen   werd   echter   niet  gevonden;   de   verplaatsingsdistributie   bleek   leptokurtisch.   Inter-­‐individuele  verschillen   waren   niet   gerelateerd   met   geslacht,   lichaamsgrootte,   conditie   of  groeisnelheid.   De   individuele   expressie   van   gedragskenmerken   was   ook   niet  gerelateerd   met   de   verplaatsingsspanwijdte.   Bovendien   kon   de   individuele  genetische  diversiteit  de  verschillen  in  verplaatsingsspanwijdte  niet  verklaren.  

Rivierdonderpadden  met  een  betere  lichaamsconditie  aan  het  begin  van  de  studie   groeiden   sneller   tijdens   de   observatieperiode.   Lichaamsconditie   en  microsatelliet   heterozygositeit   waren   niet   gecorreleerd,   net   zoals   groeisnelheid  en  microsatelliet  heterozygositeit.  

De   hoofdconclusie   van   deze   thesis   is   dat   de   bestudeerde   populatie  heterogeen   was   wat   betreft   verplaatsingsgedrag,   habitatkeuze   en  gedragskenmerken.  De  onderzochte  gedragingen  varieerden  consistent  tussen  de  individuen.   Individuele   habitatkeuze   was   gecorreleerd   met   agressiviteit.   Er  werden  geen  individuele  karakteristieken  gevonden  die  geassocieerd  waren  met  de   verplaatsingsspanwijdte.   Deze   thesis   benadrukt   het   belang   van  gestructureerde  habitattypen  voor  de  rivierdonderpad.  De  studie  suggereert  dat  interseksuele   verschillen   in   voortplantingsgedrag   (periodieke)   seks-­‐bias   in   de  verplaatsing  van  vele  vissoorten  zouden  kunnen  veroorzaken.  

 

 

 

CHAPTER  1  

 

GENERAL  INTRODUCTION    

 

 

   

Introduction

      15

Intrapopulation  heterogeneity  in  behaviour  

The  variation  in  individual  behaviour  has  often  been  ignored  by  ecologists.  This  is  reflected   in   the   common   assumption   that   characterizing   a   species   by   the  population’s   average   phenotype   is   sufficient   to   understand   its   functional   role  within  an  ecosystem  (Bolnick  et  al.  2003;  Sih  et  al.  2004;  Réale  et  al.  2007).  This  view   has   been   challenged   through   the   identification   of   ecologically   relevant  variation  in  individual  behavioural  specialization  across  a  variety  of  taxa  ranging  from  gastropods   to  mammals   (Robinson  et   al.  1996;  Wilson  1998;  Bolnick  et   al.  2003;  Araujo  et  al.  2011).   Inter-­‐individual  variation  unrelated  to  sex,  size  or  age  has   been   observed   e.g.   in   diet   composition,   foraging   behaviour,   oviposition  preference,   microhabitat   use   (reviewed   by   Bolnick   et   al.   2003),   temperament  traits  (also  referred  to  as  personality  traits,  see  further  introduction;  reviewed  by  Sih  et  al.  2004;  Réale  et  al.  2007)  or  movement  patterns  (McLaughlin  et  al.  1992;  Rodriguez  2000;  Austin  et  al.  2004).    

There   is  growing   interest   in   individual  differences   in  behaviour  (Bell  et  al.  2009).  Recent  research  suggests   that  an   individual’s  behaviour,  once  considered  to  be  plastic,  may  be  more  predictable  than  previously  assumed  (Bell  et  al.  2009).  For   example,   juvenile   male   great   tits   (Aves:   Parus   major)   show   consistent  individual   differences   in   how   they   respond   to   novel   situations   (exploratory  behaviour,   Verbeek   et   al.   1994).   These   individual   differences   can   be   consistent  from   juvenile   phase   to   adulthood   (Carere   et   al.   2005),   correlate   with   other  behavioural  traits  (forming  behavioural  types:  Sih  et  al.  2004;  Bell  2007)  and  may  even  be  heritable  (Dingemanse  et  al.  2002).    

Recent   theory   suggests   that   the   behavioural   heterogeneity   may   be  explained   by   individual   differences   in   fitness   strategies.   For   instance,   trade-­‐offs  between  current  and  future  reproductive  success  may  cause  consistent  individual  differences   in   risk-­‐taking   behaviour;   individuals   with   high   future   expectations  should   be   more   risk-­‐averse   (Wolf   et   al.   2007).   Moreover,   consistent   individual  differences   in   growth   rates   may   encourage   consistent   individual   differences   in  behavioural   types   that   increase   both   growth   and  mortality   (Stamps   2007).   For  example,   more   risk-­‐prone   behaviour   while   foraging   (boldness)   and   higher  aggressiveness  during  territory  defence  may  result  in  higher  food  intake  but  also  increases   the   risk   of   predation   (Stamps   2007).   In   animals   with   indeterminate  growth  such  as  fish,  amphibians  or  reptiles  individuals  with  e.g.  bolder  behaviour  may,  therefore,  benefit  from  higher  growth  rate  but  suffer  from  greater  mortality  risk.  

Chapter  1  

16

Whereas   there   are   numerous   studies   examining   consistent   individual  differences   in  resource  specialization  (e.g.  diet  composition  or  microhabitat  use;  reviewed   by   Bolnick   et   al.   2003),   temperament   traits   (also   referred   to   as  personality   traits;   reviewed   by   Sih   et   al.   2004;   Réale   et   al.   2007)   or  movement  patterns   (McLaughlin  et  al.  1992;  Rodriguez  2000;  Austin  et  al.  2004),   there  are  surprisingly   few   studies   combining   these   research   areas.   Studying   relationships  between   microhabitat   use,   temperament   traits   and   movement   patterns   is,  therefore,   part   of   this   thesis   and   should   help   to   increase   knowledge   about   the  existence  of  consistent  behavioural  types.  

Individual  differences  in  movement  behaviour  

Movement   is   a   fundamental   feature   of   animals   (Nathan   et   al.   2008).  Movement  allows   the   exploitation   of   spatially   and   temporally   variable   resources   and   is  essential  for  the  persistence  of  a  species  (Bohonak  1999;  Bowler  &  Benton  2005;  Clobert  et  al.  2009).  The  importance  of  movement  behaviour  for  the  ecology  and  evolution  of  wild  populations  becomes  increasingly  apparent  as  populations  face  fragmentation   of   their   habitat   (Clobert   et   al.   2009).   Furthermore,   the   linking   of  movement  behaviour  with  a  quantitative  description  of  dispersal  (the  movement  from   a   natal/breeding   site   to   another   breeding   site,   Clobert   et   al.   2009)   has  become   increasingly   important   in   dispersal   ecology   (Hawkes   2009).   Successful  management   of   a   species,   therefore,   relies   on   an   understanding   of   the   patterns  and  dynamics  of  movement.  

The   variation   of   individual   movement   patterns   within   a   population   is   a  common  phenomenon  in  animal  ecology  and  has  been  found  in  many  taxa  ranging  from   crustaceans   (e.g.   Hays   et   al.   2001)   to   fishes   (e.g.   McLaughlin   et   al.   1992;  Kobler  et  al.  2009a),  reptiles  (e.g.  McLaughlin  1989),  birds  (e.g.  McLaughlin  1989)  and   mammals   (e.g.   Austin   et   al.   2004).   Intrapopulation   variation   in   movement  behaviour   reflects   the   different   strategies   in   e.g.   exploration,   foraging   or   mate  search  used  by   individuals  or  sexes  within  a  population  to  meet   the  demands  of  survival  (Austin  et  al.  2004).  The  examination  of  individual  variation  in  movement  patterns  thus  helps  to   increase  the  understanding  of  ecological  and  evolutionary  processes  within  a  population  of  a  species.  

An   extreme   example   of   individual   differences   in   movement   behaviour   is  partial   migration.   Populations   that   partially   migrate   consist   of   resident   and  migrant   individuals.   This   phenomenon   is   widespread   in   animal   kingdom   and  documented  in  migratory  invertebrates,  fish,  birds  and  mammals  (Chapman  et  al.  

Introduction

      17

2011).   It   is   particularly   expressed   in   migratory   birds   (reviewed   by   Lundberg  1988)  and  anadromous  fish  (reviewed  by  Jonsson  &  Jonsson  1993).  Anadromous  fish   species   such   as   salmonids   (family:   Salmonidae)  migrate   from   freshwater   to  saltwater.   Only   a   part   of   the   juvenile   population   will   transform   to   migrating  salmonids.   In   comparison   to   residents,   migrant   salmonids   benefit   from   faster  growth   but   suffer   from   greater   mortality   risk   during   migration   (reviewed   by  Jonsson  &  Jonsson  1993).  Male  salmonids  tend  to  be  less  migratory  than  females  (Jonsson  &  Jonsson  1993).  This  can  be  explained  by  the  greater  benefit  of   faster  growth  and   larger  body  size   for  migrating   females   (Jonsson  &   Jonsson  1993)  as  female  egg  production  increases  with  body  size  (Fleming  &  Gross  1991).    

Less   attention   has   been   paid   to   elucidating   the   patterns   of   movement   in  non-­‐migratory   stream   fish   especially   in   small   benthic   species   (Lucas   &   Baras  2001).  This  may  be  due  to   lower  economic  or  recreational  value  (Lucas  &  Baras  2001).  However,   small  benthic   stream   fish  are   important  biological   components  of   fish   assemblages   and   stream   ecosystems   and   often   also   target   species   for  nature   conservation   and   habitat   recovery   plans   (e.g.   species   included   in   the  European   Habitat   Directive)   (Matthews   1998;   Lucas   &   Baras   2001).   Non-­‐migratory  stream   fish  exhibit  different   life-­‐histories   than   for  example  salmonids  (e.g.  Atlantic  salmon,  Salmo  salar;  brown  trout,  Salmo  trutta).  Consequently,   it   is  difficult  to  infer  general  patterns  of  movement  behaviour  between  stream  fishes.    

Although  movement  distances  of  non-­‐migratory  stream  fish  are  often  very  restricted  (Gerking  1959),  movement  distribution  within  populations  can  also  be  heterogeneous  (e.g.  Skalski  &  Gilliam  2000;  Fraser  et  al.  2001).  Numerous  studies  highlighted   the   existence   of   a  mobile   fraction   that  moves   over   longer   distances  (e.g.   Gerking   1959;   Gowan   et   al.   1994;   Rodriguez   2002).   Owing   to   the   inter-­‐individual   differences   in   movement   behaviour,   numerous   studies   differentiated  non-­‐migratory  stream  fish  populations   into  resident  and  mobile   individuals  (e.g.  Funk   1957;   Gowan   et   al.   1994;   Smithson   and   Johnston   1999;   Rodriguez   2002;  Knaepkens  et  al.  2004;  Belica  &  Rahel  2008).  The  mobile   fraction   influences   the  level   of   inbreeding   through   the   spread   of   new   genes   (Howard   1960)   and   the  repopulation  of  depauperated  areas  (Gerking  1959).  However,  not  much  is  known  which  individual  characteristics  distinguish  resident  and  mobile  fish.    

There   are   indications   that   life-­‐history   traits   such   as   body   size   (Gowan   &  Fausch   1996)   or   age   (Hughes   2000;   Petty   &   Grossman   2004)   are   associated   to  individual   differences   in   movement   distances   of   non-­‐anadromous   stream   fish.  Other   studies   could   not   find   such   relation   although   intra-­‐population  heterogeneity   in   movement   was   high   (e.g.   Knaepkens   et   al.   2005;   Breen   et   al.  

Chapter  1  

18

2009;  Hudy  &  Shiflet  2009;  Ovidio  et  al.  2009).  In  the  absence  of  a  life-­‐history  trait  association,   a   behavioural   association   to   movement   patterns   or   a   behavioural  grouping   of   resident   and   mobile   stream   fish   may   exist   and   remains   to   be  determined   (Howard,   1960;   Rodriguez,   2002).   Fitness   traits   such   as   body  condition  or  growth  rate  may  also  be  associated  to  movement  differences  in  non-­‐migratory   stream   fish,   similar   to   what   has   been   observed   in   anadromous  salmonids.   Furthermore,   individual   genetic   diversity  may  be   linked   to   distances  moved.  For   instance,  microsatellite  heterozygosity   in  mountain  goats   (Oreamnos  americanus)  has  been  associated   to  a   lower  propensity   to  disperse   (Shafer  et  al.  2011).   Studies   that   relate   genetic   diversity   to   individual  movement  distances   in  fish   are   lacking   and   may   help   to   further   distinguish   resident   and   mobile  individuals.  

Intra-­‐population  heterogeneity  in  habitat  use    

Habitat   use   is   a   universal   activity   among   animals   that   affects   nearly   all   of   an  individual’s   subsequent   choices   (Orians   &   Wittenberger   1991).   The   study   of  habitat  use,  therefore,  requires  attention  to  individual  differences  in  the  use  of  the  environment   and   how   between-­‐individual   differences   in   behavioural   traits  influence   success   in   habitats   and   distributions   of   individuals   among   habitats  (Orians   1991).   Similar   to   niche   partitioning   between   species   under   competition  (Schoener   1974)   and   the   density-­‐dependent   ecological   divergence   between  species   (Rosenzweig   1991;  Morris   2003),   a   few   examples   exist   that   habitat   use  specialization   may   also   exist   within   a   population   of   a   species   (Bolnick   2001;  Swanson   et   al.   2003;   Svanbäck   &   Bolnick   2007).   Beyond   critical   density  thresholds,   single   individuals   of   the   population   may   expand   to   unused   or  underused   habitats   (Mayr   1926;   Svärdson   1949;   Svanbäck   et   al.   2008).   For  example,   at   high   levels   of   intraspecific   competition,   Arctic   charr   (Salvelinus  alpinus)   form   distinct   subpopulations   differing   in   habitat   use,   behaviour,  morphology  and  life  history  (resource  polymorphism,  Knudsen  et  al.  2006).    

Structurally  complex  habitats  like  reed,  submerged  macrophytes,  tree  roots,  stones   or   woody   debris   provide   more   niches   and   are   generally   the   preferred  habitat  of  benthic  fish  species.  However,  individual  habitat  specialization  between  structure-­‐rich,  near-­‐shore   littoral  and  open  water  has  been  observed  frequently,  for   example   in   bluegill   sunfish   (Lepomis   macrochirus),   European   perch   (Perca  fluviatilis)   and   roach   (Rutilus   rutilus;   Ehlinger   &   Wilson   1988;   Svanbäck   et   al.  2008).  In  most  of  the  studies,  habitat  divergence  was  attributable  to  intraspecific  competition   (Svanbäck   et   al.   2008).   Little   is   known   which   individual  

Introduction

      19

characteristics   correspond   to   the   habitat   use   differences.   The   individual  difference   in   environmental   choice  may   cause   a   diversification   of   temperament  traits.   For   example,   it   can   be   assumed   that   less   aggressive   individuals   may   be  displaced  to  less  structured  and  less  favourable  habitats  (Fausch  1984;  Weber  &  Fausch   2003).   Boldness   may   also   be   related   to   habitat   use;   individuals   in   less  structured  habitats  may  be  exposed   to  a  higher  predation   risk  and  show  riskier  and  bolder  behaviour  (Magnhagen  &  Borcherding  2008).  The  level  of  boldness  is  then   positively   adapted   to   the   level   of   predation   risk   (Brown   et   al.   2007).   The  other   causal   pathway   implicates   the   possibility   that   individuals   with   stronger  expressed   boldness,  which   can   be   heritable   (Brown   et   al.   2007),   are  more   risk-­‐prone  and  therefore  “freer”  in  habitat  choice.  As  a  consequence  they  might  exploit  more   open   habitats.   Irrespective   of   the   causal   pathway,   it   seems   plausible   that  temperament  traits  may  be  related  to  the  individual  use  of  differently  structured  microhabitats.  

Temperament  traits  

Temperament   traits   are   increasingly   used   to   highlight   consistent   differences   in  individual  behaviour  between  and  within  animal  populations  (Réale  et  al.  2007).  Recent  research  suggests  that  individual  behaviour,  once  considered  to  be  plastic,  may  be  more  predictable  than  previously  thought  (Bell  et  al.  2009).  Theoretically,  consistency   in   behaviour   is   likely   because   of   reduced   future   costs   of   ecological  adaptation  when   individual   behaviour   is   established   and   fine-­‐tuned   (Wolf   et   al.  2008).  Future  costs  involve  the  time,  energy,  and  mortality  costs  of  sampling  the  environment,   or   the   costs   of   building   and   maintaining   the   required   sensory  machinery   (Wolf   et   al.   2008).   Therefore,   even   small   positive   feedback   between  the  established  behaviour  and  fitness  may   induce  behavioural  consistency  (Wolf  et  al.  2008).  

Temperament   traits   are   summarized   in   five  main   categories:   1)   boldness-­‐shyness,  an  individual’s  reaction  to  any  risky  situation,  but  not  a  new  situation,  2)  exploration-­‐avoidance,   an   individual’s   reaction   towards   a   new   situation;   this  includes   behaviour   towards   a   new   habitat,   new   food   or   novel   objects   (in   this  paper:  activity  in  a  novel  environment,   interest   in  a  novel  food  item),  3)  activity,  the   general   level   of   activity   of   an   individual   in   a   non-­‐risky   and   non-­‐novel  environment,   4)   aggressiveness,   an   individual’s   antagonistic   reaction   towards  conspecifics  and  5)  sociability,  an  individual’s  reaction  to  the  presence  or  absence  of   conspecifics,   excluding   aggressive   behaviour   (for   more   details   on   these  definitions  see  Réale  et  al.  2007).  

Chapter  1  

20

To  date,  temperament  traits  have  mostly  been  measured  in  single,   isolated  individuals  in  a  laboratory  environment.  Whether  behaviour  in  captivity  predicts  this  behaviour  in  the  wild,  however,  is  seldom  tested  (but  see  Fraser  et  al.  2001;  Herborn   et   al.   2010;   Marentette   et   al.   2011).   Undoubtedly,   the   increased  complexity  of  a  natural  ecosystem  with  greater  habitat  variety  and  social  or  other  behavioural  interactions  can  result  in  a  different  reaction  of  an  individual  towards  a  challenging  situation  than  in  a  laboratory  environment.  For  instance,  individual  differences  in  temperament  traits  of  pumpkinseed  sunfish  (Lepomis  gibbosus)  are  relatively  stable  in  nature  but  seem  to  disappear  when  the  fish  are  held  in  social  and   ecological   isolation   in   the   laboratory   (Wilson   et   al.   1993).   Furthermore,  pumpkinseed   sunfish   show   markedly   increased   aggression   to   conspecifics   and  heterospecifics   under   isolated   laboratory   conditions   compared   to   under   field  conditions   (Coleman   &   Wilson   1998).   Therefore,   studies   that   compare  temperament   traits  measured   in  single   individual  experiments   in   the   laboratory  with   a   non-­‐isolated   situation   in   the   field   are   necessary   (Verbeek   et   al.   1994;  Herborn  et  al.  2010)  and  will  enable  evaluation  of  the  transferability  of  laboratory  results  to  “real  world”  circumstances.  

Study  species  

A  large  family  of  non-­‐migratory  stream  fish  are  freshwater  sculpins  (Cottus  ssp.).  Cottus  ssp.  are  small  benthic   fish  (<  20  cm;  Kottelat  &  Freyhof  2007),  known  for  their   benthic,   cryptic   (e.g.   Smyly   1957)   and   territorial   behaviour   (e.g.   Cottus  pollux,  Natsumeda  2001;  C.  bairdii,  Petty  &  Grossman  2004;  C.  rhenanus,  Ovidio  et  al.  2009).  Some  species  of   this   family   (e.g.  Cottus  gobio)  are  protected   in  several  European   countries   under   the   European   Habitat   Directive.   This   may   be   one  reason  why   this   stream   fish   family   is   increasingly  being  studied   in   recent  years.  Another  reason  may  be  the  development  of  small  passive  integrated  transponder  (PIT)   tags   that   facilitate   the   individual   observation   in   the   field   (see   further  introduction).   Numerous   studies   found   remarkable   intra-­‐population  heterogeneity   in  movement   distances   of  Cottus   ssp.   (Breen   et   al.   2009;   Hudy  &  Shiflet  2009;  Ovidio  et  al.  2009).  Whereas  some  individuals  stay  over  the  year  in  a  restricted  area  often  not  larger  than  a  few  square  meters,  other  individuals  move  more  than  one  kilometre  (Hudy  &  Shiflet  2009).  

Similar   differences   in   individual  movement   behaviour   have   been   found   in  Cottus   perifretum   (Knaepkens   et   al.   2004,   2005).   The   popular   name   of   C.  perifretum,   the   bullhead,   is   identical   to   that   of  C.  gobio   and   it  was   only   recently  that   these   two   very   closely   related   species   were   differentiated   (Freyhof   et   al.  

Introduction

      21

2005).   The   distribution   of   C.   perifretum   encompasses   Atlantic   drainages   from  Garonne   in   France   to   Scheldt   in   Belgium   but   also   major   Rhine   tributaries   in  France  and  Germany.    

Bullhead  have  a  strong  affinity  for  complex  habitats  (Greenberg  &  Holtzman  1987;   Davey   et   al.   2005;   Legalle   et   al.   2005),   which   they   use   for   spawning   (C.  pollux   and  C.  hangiongensis,   Fujimoto   et   al.   2008),   parental   care   (Morris   1954),  foraging  or  as  refuge  (Smyly  1957).   It   is  only  at  night   that  bullhead  wander   into  open   water   (Kobler   et   al.   2012a;   C.   pollux,   Natsumeda   1998).   However,   where  bullhead   occur   at   high   population   density,   sometimes   being   the   dominant   fish  species   in   the   ecosystem   (Prenda   et   al.   1997;  C.  bairdii,  McCleave  1964),   not   all  individuals  may  have  access  to  complex  habitats  (C.  pollux,  Natsumeda  2001).  

It   is   well-­‐known   that   freshwater   sculpins   are   mainly   active   at   night   (e.g.  Smyly   1957;   Andreasson   1969,   1973;   Brandt   1986;   Natsumeda   1998)   and   can  forage  in  total  darkness  (Hoekstra  &  Janssen  1985).  The  diel  movement  behaviour  has,  however,  not   yet  been  quantified.  Relevant  quantitative   information   is  only  available   from   aquarium   observations   (Andreasson   1969;   but   see   Greenberg   &  Holtzman  1987;  Natsumeda  2007  for  quantified  home  range  field  data).    

The  reproductive  behaviour  of  bullhead  has  been  extensively  studied  and  is  very  similar  to  that  of  the  Gasterosteidae  family  (e.g.  three-­‐spined  stickleback).  It  is   characterized   by   female   mate   choice   (Bisazza   &   Marconato   1988)   and   male  parental   care   (Morris   1954;   for   other  Cottus   spp.   see   also   Goto   1990).   Females  prefer   larger  males  (Bisazza  &  Marconato  1988;  C.  pollux,  Natsumeda  2001)  and  males  whose  nests  already  contain  eggs  (Marconato  &  Bisazza  1986).  The  nest  is  situated   in   a   cavity   that   the   male   digs   under   solid   habitat   types   such   as   rocks  (Morris  1954)  but  can  also  be  in  tree  root  systems  or  woody  debris.  Males  remain  at   the   nest   site   for   approximately   three   weeks   as   they   find   a   mate,   fan   eggs  (approximately   2   weeks)   and   guard   young-­‐of-­‐the-­‐year   (approximately   1   week;  Morris   1954).   Inter-­‐sexual   differences   in   reproductive   behaviours   such   as  mate  choice   or   parental   care   may   cause   sex-­‐bias   in   movement   distances.   While   this  relationship  has  been  extensively   studied   in  birds  and  mammals,   little   is  known  regarding  fishes.  

Passive  integrated  transponder  telemetry  

PIT  tags  are  small  (>  11  mm)  glass  cylinders  comprised  of  a  coil  and  an  integrated  circuit,  programmed  to  transmit  one  of  some  billions  of  codes.  An  induction  coil  is  

Chapter  1  

22

used  to  energize  each  tag,  causing  them  to  transmit  their  corresponding  10-­‐digit  alphanumeric  code  to  the  digital  display  of  the  reader  in  which  the  coil  is  housed  (Hutchings  &  Gerber  2001).  Roussel  et  al.  (2000)  investigated  the  application  of  a  portable  antenna  to  track  PIT-­‐tagged  fish  in  shallow  streams.  In  comparison  to  the  previously  used  radio-­‐telemetry,  the  portable  PIT-­‐tag  antenna  enabled  observing  fine-­‐scale   movements   of   smaller-­‐bodied   fish   (Roussel   et   al.   2000).   The   size   of  utilized  PIT-­‐tags  (23  ×  4  mm)  was  used  for  fishes  >  84  mm  fork  length  and  had  a  detection   range   of   up   to   100   cm   (Roussel   et   al.   2000).   In   order   to   study   even  smaller-­‐bodied  fishes,  a  similar  antenna  with  a  detection  range  of  up  to  36  cm  was  developed   for  11  ×  2  mm  PIT-­‐tags   (Cucherousset  et  al.  2005).  Owing   to   the   low  detection   range,   the   detection   efficiency   of   the   11   mm   PIT-­‐tag   antenna   is  dependent  on  the  studied  species  (Cucherousset  et  al.  2005);  less  mobile  fish  such  as  the  members  of  the  genus  Cottus   (>  60  species)  are  more  efficiently  detected.  The   detection   efficiency   is   also   related   to   the   stream   conditions   and   was  determined   for   Cottus   ssp.   in   several   conditions   to   be   greater   than   80%  (Cucherousset   et   al.   2005;   Keeler   2006;   Keeler   et   al.   2007).   Field   (C.   cognatus,  Keeler   et   al.   2007)   and   laboratory   observations   (C.   cognatus,   Keeler   2006;   C.  bairdii,  Ruetz  et  al.  2006;  C.  gobio,  Knaepkens  et  al.  2007)  revealed   that  surgical  implantation  of  11  mm  PIT-­‐tags  had  negligible  effects  on  the  survival  and  growth  of   Cottus   ssp.   >   50   mm   total   length.   Furthermore,   no   influence   on   swimming  capacity  was   found  (C.  gobio,  Knaepkens  et  al.  2007).  Therefore,  PIT-­‐tags  enable  researchers   to   gather  more   information   about   behaviour   of   individuals   of   small  fish  species   in  the  wild.  The  necessity  of  clear  water  or  good  light  conditions  for  visual   observations   (e.g.   Petty   &   Grossman   1996,   2004,   2007)   are   no   longer   a  prerequisite   and   freshwater   sculpins   can   be   observed   with   precision   in   turbid  water  and/or  at  night.    

Objectives  and  thesis  outline  

The   general   aim   of   this   thesis   was   to   investigate   whether   intra-­‐population  heterogeneity   in   movement   and   habitat   use   of   the   bullhead   is   associated   with  individual   characteristics   such   as   sex,   body   size,   body   condition,   growth   rate,  temperament   traits  and  genetic  diversity.  A   further  aim  was   to   test  whether   the  temperament   trait   test   results   were   independent   of   the   applied   methods   and  appropriate  to  draw  conclusions  about  bullhead  behaviour  in  the  wild.  Therefore,  the   comparability   of   field   and   laboratory   behaviour   as  well   as   the   behaviour   of  PIT-­‐tagged   and   untagged   individuals   was   evaluated.   We   also   aimed   to   address  other   gaps   in   the   knowledge   about   C.   perifretum   behaviour   such   as   the  quantification  of  movement  distances  during  diel  periods.  The  thesis  includes  six  

Introduction

      23

first-­‐author  articles,  four  of  which  are  already  published  (chapters  2  to  5)  and  two  that  are  in  preparation  (chapters  6  and  7).  

The  field  study  was  conducted  in  the  Laarse  Beek,  a  lowland  stream  in  the  region  of  Antwerp,  Belgium.  Most  of  the  work  was  carried  out  in  the  stream  reach  situated   in   the  beech-­‐oak   forest  Peerdsbos,  between  Brasschaat  and  Schoten,  an  area  that  is  protected  as  EU-­‐habitatzone  without  manipulation  of  the  stream  such  as   removal   of   woody   debris.   PIT-­‐tagged   bullhead   were   tracked   weekly   from  February  until  November  2008  in  stream  reaches  up  to  2500  m  length.  Additional  data   from   previous   tracking   studies   of   the   Biology-­‐Ethology   research-­‐group   of  Antwerp   between   March   and   May   2007   was   also   included   in   the   thesis.   The  laboratory  observation  of  behaviour  was  conducted  subsequent  to  the  field  study  at   the   Campus   Drie   Eiken   of   the   University   of   Antwerp.   Data   from   previous  studies   in   April   2007   was   used   and   own   observations   were   made   between  October   and   November   2008.   The   genetic   work  was   done   at   the   Laboratory   of  Biodiversity  and  Evolutionary  Genomics  of   the  University  of  Leuven  and  carried  out   between   2009   and   2010.   It   comprised   population   genetic   analysis   and   the  analysis   of   individual   genetic   variability   by   using   neutral   markers  (microsatellites).    

Chapter  2:  Comparability  of  laboratory  and  field  behaviour  

Bullhead  were   tested   in   the   laboratory   for   explorative  behaviour.   Subsequently,  the   same   individuals   were   released   into   the   stream   and   again   tested   for  exploratory  behaviour.  Owing  to  these  two  measurements,  in  the  aquarium  and  in  the   stream,   the   comparability   of   laboratory   and   field   observation   could   be  assessed.   Individuals  had  similar  exploratory   tendency  under  both  experimental  conditions.   Individuals   that   were   rather   non-­‐exploring   and   showed   passive  behaviour   in   both   trials   seemed   to   be  more   predictable   than   other   phenotypes.  These  findings  were  a  prerequisite  for  the  following  studies  including  behavioural  observations   in   the   laboratory   and   indicated   that   laboratory   observations   can  help  to  predict  behaviour  under  natural  circumstances.    

Chapter  3:  Temperament  traits  and  habitat  use    

Microhabitat   use   of   bullhead   was   determined   during   three  months   in   summer.  During   this   period,   the   stream   had   only   low   water   levels   and   the   temporal  occurrence  of  microhabitat  types  was  relatively  stable.  In  autumn,  after  recapture  of   the   field-­‐observed  bullhead,   individual   temperament   traits  were   examined   in  the   laboratory.   The   temperament   traits   comprised   boldness,   activity,  

Chapter  1  

24

aggressiveness  and  exploratory  tendency  (interest  in  novel  food  and  activity  in  a  novel   environment).   Both   microhabitat   use   and   repeated   temperament   traits  were  individually  consistent.  Aggressiveness  was  negatively  related  to  the  use  of  structurally   complex   habitats   (which   are   commonly   preferred):   bullhead   that  were  more  often   found   in   structured  microhabitats  were   less   aggressive  during  the   laboratory   assay.   It   was   speculated   that   this   relationship   was   caused   by   a  higher  level  of  aggressive  defence  of  less  structured  habitats.    

Chapter  4:  Diel  movement  of  bullhead    

Movement  behaviour  of  bullhead  was  differentiated  between  the  times  of  the  day.  In   two   years,   different   tracking   protocols   with   different   labour   intensity   were  used.  Bullhead  moved  furthest  at  night  and  shortest  during  daytime  in  2007  and  2008.  The  difference   in  2008  was,  however,  not  significant.   It   is   shown  that   this  may  be  due  to  site-­‐fidelity  of  some  individuals:  after  swimming  several  metres  at  night,  they  returned  to  the  location  they  previously  occupied  during  daytime.  It  is  discussed   that   longer   tracking   intervals   used   in   2008   (three   times   per   24-­‐h  instead  of   every   two  hours)  were  not   suitable   to   detect   the   sheer  magnitude   of  distances  covered  during  a  diel  period.      

Chapter  5:  Period-­‐dependent  sex-­‐biased  movement  

In   this   chapter,   the   long-­‐   and   short-­‐term  movement   distance   (movement   range,  respectively   minimum   displacement)   of   bullhead   was   analysed   and   compared  between   the   sexes.   Bullhead   moved   furthest   in   February   and   May.   In   these  months,  minimum  displacements  diversified  between   the   sexes.   Females  moved  furthest  in  February.  This  may  be  related  to  female  mate-­‐choice  at  the  beginning  of   the   reproductive  period.   In  May,  at   the  end  of   the  reproductive  period,  males  moved   longest   distances.   It   is   speculated   that   males   shift   to   resource-­‐richer  habitats  after  the  starvation  during  parental  care.  Long-­‐term  movement  range  did  not   differ   between   the   sexes   (and  was   also  not   related   to   body   size)   but   varied  considerably  between  individuals  ranging  from  1  to  1111  m.  The  importance  of  a  long  study  period  (e.g.  annual)  to  draw  conclusions  about  sex-­‐biased  movement  is  discussed.    

Chapter  6:  Movement  range  and  the  relation  to  temperament  traits      

After   the   previous   chapter   in   which   periodical   inter-­‐sexual   differences   in  movement   distances  were   observed,   chapter   6   aimed   to   get  more   insights   into  between-­‐individual   differences   in   long-­‐term   movement   range.   Individual  

Introduction

      25

movement   range   information   that   was   collected   in   the   stream   was   related   to  temperament   traits   observations   in   the   laboratory.  We   also   tested  whether   the  expression   of   temperament   traits   was   different   between   tagged   and   untagged  bullhead;   this  was  done   to   test  whether  observed  behaviours  were   independent  of   the   used   (tagging)   method.   There   were   no   behavioural   differences   between  tagged  and  untagged  bullhead.  Repeated   temperament   traits   (activity   and  novel  environment   activity)   indicated   behavioural   consistency.   The   comparison  between   individual   movement   range   and   temperament   traits   revealed   weak  positive  but  not   significant   correlations  between  movement   range  and  boldness  or  interest  in  novel  food.  This  might  suggest  that  bullhead  with  longer  movement  range   are   more   risk-­‐prone.   Other   temperament   traits   were   not   related   to  movement  range.    

Chapter  7:  Relating  movement  range  to  fitness  and  heterozygosity  

This   chapter   aimed   to   identify  which   other   individual   characteristics   that  were  not   yet   covered   in   chapter   5   and   6   are   related   to   the   movement   range  diversification  in  the  studied  bullhead  population.  It  was  examined  whether  body  condition,   growth   rate   or   genetic   diversity   (individual   microsatellite  heterozygosity)   would   help   to   understand   intra-­‐population   heterogeneity   in  movement  range.  The  individual  movement  range  varied  from  1  to  1096  meters.  These   differences   were   not   related   to   body   condition,   growth   rate   or  heterozygosity   (single-­‐   or   multilocus).   Thus,   there   was   no   indication   of   fitness  differences  that  were  associated  with  individual  movement  range.  There  was  also  no   indication   that   genetic   diversity   was   associated   to   fitness   because   body  condition  and  growth  rate  were  not  related  to  heterozygosity.    

Chapter  8:  General  conclusions  and  future  research  

In  the  last  section,  the  results  of  all  chapters  are  integrated,  conclusions  are  made  and  future  research  possibilities  are  being  proposed.  

 

 

 

 

 

 

 

CHAPTER  2  

 

COMPARISON  OF  LABORATORY  AND  FIELD  BEHAVIOUR    

 

 

   

Comparison  of  laboratory  and  field  behaviour

      29

 

Temperament  in  bullheads:  do  laboratory  and  field                explorative  behaviour  variables  correlate?  

 

Alexander  Kobler,  Brecht  Engelen,  Guy  Knaepkens,  Marcel  Eens  

Naturwissenschaften  (2010)  96:  1229-­‐1233  

 

 

Abstract  

The   relevance   of   temperament   traits   for   life   history   strategy   or   productivity   is  increasingly   acknowledged.   Temperament   traits   are   often   either   observed   in  captivity   or   in   the  wild,   but   studies   combining   both   observations   are   very   rare.  We  examine  whether  exploratory  behaviour   in   the  bullhead   (Cottus  perifretum),  assayed   under   laboratory   conditions,   predicts   this   behaviour   under   field  conditions.  Forty-­‐three  PIT-­‐tagged   individuals  were   first  assayed  for  exploration  of   a   novel   environment   in   the   aquarium   and   then   released   into   an   unfamiliar  stream   stretch,   where   they   were   later   relocated   using   a   mobile   antenna.  Explorative   behaviour   assayed   in   the   laboratory   was   significantly   positively  related  to  the  exploration  in  the  field,  thus  predicting  distance  moved  in  the  field  release.   Both   in   the   laboratory   and   in   the   field,   explorative   behaviour   was   not  related  to  individual  body  length.  When  bullheads  that  did  not  leave  the  refuge  in  the   aquarium   (laboratory   assay)   and,   therefore,   did   not   explore   the   new  environment  were  excluded  from  the  analysis,  the  correlation  between  laboratory  and   field   explorative  behaviour  variables  became  weaker.  However,   overall,   our  results   illustrate   that   exploration   rate   of   bullheads   in   isolated   single-­‐individual  experiments  can  be  used  to  predict  this  behaviour  in  the  natural  ecosystem.    

   

Chapter  2  

30

Introduction  

Behavioural   differences  within   a   species   have   long  been   treated   as   insignificant  variation  within  the  average  behaviour  of  the  species  as  a  whole.  However,  due  to  its  ecological  and  evolutionary  relevance,   inter-­‐individual  variation   in  behaviour  and,   more   specifically,   in   temperament   traits   like   exploration,   aggressiveness,  activity,  boldness  or   sociability  are  of   increasing   interest.  To  date,   temperament  traits   have  mostly   been  measured   in   single,   isolated   individuals   in   a   laboratory  environment.  Only  a  small  number  of  studies  have  measured  temperament  traits  in  the  field  and  studies  combining  both  laboratory  and  field  observations  are  rare  (but  see  Wilson  et  al.  1993;  Fraser  et  al.  2001;  Dingemanse  et  al.  2003;  Wilson  &  McLaughlin  2007).  

Undoubtedly,  the  increased  complexity  of  a  natural  ecosystem  with  greater  habitat   variety   and   social   or   other   behavioural   interactions   can   result   in   a  different  reaction  of  an   individual   towards  a  challenging  situation  as  opposed  to  being   in   a   laboratory   environment.   For   instance,   individual   differences   in   the  temperament  of  pumpkinseed  sunfish  (Lepomis  gibbosus)  are  relatively  stable   in  nature   but   seem   to   disappear   when   the   fish   are   held   in   social   and   ecological  isolation   in   the   laboratory   (Wilson   et   al.   1993).   Furthermore,   pumpkinseed  sunfish   show  markedly   increased   aggression   to   conspecifics   and  heterospecifics  under   isolated   laboratory   conditions   compared   to   under   field   conditions  (Coleman   &   Wilson   1998).   In   birds,   slow   exploring   great   tits   (Parus   major)  explore   a   new   environment   significantly   faster   when   observed   together   with   a  companion   (van   Oers   et   al.   2005).   Thus,   studies   comparing   individual  temperament  measured  in  single-­‐individual  experiments  in  the  laboratory  with  a  non-­‐isolated   situation   in   the   field   are   necessary   (Verbeek   et   al.   1994)   and   will  enable   evaluation   of   the   transferability   of   laboratory   results   to   “real   world”  circumstances.  

One  of  the  main  categories  of  temperament  research  and,  from  an  ecological  point   of   view,   possibly   the   main   target   of   selection   is   exploration   (Smith   &  Blumstein   2008),   an   individual’s   reaction   to   a   new   situation   including   the  behavioural  response  towards  a  new  habitat,  new  food  or  novel  object  (Réale  et  al.  2007).  A  species  which  is  particularly  suitable  to  study  individual  differences  in  exploration   is   the  bullhead   (Cottus  perifretum),   a   small   (up   to  100  mm)  bottom-­‐dwelling   freshwater   fish   species   that   exhibits   considerable   variability   in  movement  behaviour  (Knaepkens  et  al.  2004,  2005).  Due  to  the  hidden  nature  of  bullhead,  which  seeks  shelter   for  most  of   the   time   in  structured  habitats   (Smyly  1957),  swimming  activity  is  restricted.  Movement  in  an  unfamiliar  environment  is  

Comparison  of  laboratory  and  field  behaviour

      31

therefore  a  good  indication  of  the  exploration  rate  in  bullhead  (compare  Verbeek  et  al.  1994).  

The  objective  of  the  present  study  is  to  measure  inter-­‐individual  differences  in  the  exploration  of  C.  perifretum  in  the  laboratory  and  the  field  and  to  correlate  these  measures  to  value  the  predictability  of  natural  ecosystem  exploration  by  a  laboratory  assay.  

Materials  and  methods  

On   2   April   2007,   43   adult   bullhead   individuals   ≥   50   mm   [total   length   (TL),  minimum  size  to  PIT  tag,  see   further]  were  collected   in   the  Laarse  Beek,  a  small  lowland   stream   of   the   Scheldt   basin   (Flanders,   Belgium),   using   electric   fishing  gear   (WFC7,   150   V   DC,   Electracatch   Int.   Ltd,   UK).   Fish  were   transported   to   the  laboratory  and  a  PIT  tag  (12  ×  2.1  mm,  94  mg,  ID100,  EID  Aalten,  NL)  was  inserted  into   the   abdominal   cavity   of   the   anaesthetised   (using   0.25   ml   L−1   2-­‐phenoxy-­‐ethanol)  individual  through  a  2-­‐  to  3-­‐mm  incision,  a  method  which  was  shown  to  have  negligible  effects  on  bullhead  survival,  growth  and  swimming  performances  (Knaepkens   et   al.   2007).   Tagging   enabled   individual   recognition   during   the  laboratory  and  field  release  experiment  (see  further).  Fish  were  held  in  two  400-­‐L  tanks  in  oxygenated  (using  air  stones)  and  filtered  (bio-­‐filter)   tap   water   with  PVC  tubes  (10  ×  5  cm)   and   roof   tiles   as   refuges   to   allow   bullheads   some   cover.  Fish  were  fed  daily  to  saturation  with  frozen  bloodworms.  

In   the   laboratory,   exploration   tests   were   recorded   in   the   absence   of   an  observer  by  a  video  camera   (DCR-­‐PC6E,  Sony,   Japan)   in  very   low   lighting,  using  the   “nightshot”   function,   because   the   bullhead   is   known   to   be   crepuscular   and  night  active  (Smyly  1957).  Tests  lasted  40  min  and  started  1  week  after  the  initial  capture.   Individuals   were   placed   in   a   familiar   refuge   [PVC   tube,   section   1   (S1);  Figure  1]  in  a  novel  environment  (aquarium,   120   ×   40   ×   40   cm).   Similar   to  Fraser  et  al.  (2001),  two  indices  of  activity  in  a  novel  environment  were  used,  the  Exploration   Index   (EI)   and   the   Exploration   Rank   Index   (ERI)   (indices   were  renamed   due   to   recent   definitions   of   Réale   et   al.   2007).   The   EI   is   based   on   the  time  spent  out  of   the   refuge  and  calculated   for   the   ith   individual  as  EIi  =   (ti  /  T),  where  ti  =  time  spent  out  of  the  refuge  by  the  ith  individual  and  T  =  total  time  in  test  (2,400  s).  

   

Chapter  2  

32

 

The  ERI  is  based  on  the  rank  order  of  reaching  the  different  sections  of  the  aquarium  (Figure  1).  Rank  1  is  assigned  to  the  individual  reaching  S4  in  the  least  amount  of  time,  rank  2  to  the  next  shortest  time,  until  all  individuals  reaching  S4  are  ranked.  The  next  ranks  are  assigned  similarly  first  for  individuals  reaching  S3  fastest  (but  never  S4)   followed  by  the   fastest  S2  reaching   individuals  (but  never  S3).   Then,   the   individuals   which   never   reached   S2   are   ranked   by   the   shortest  latency  to  leave  the  refuge.  Finally,  the  last  rank  (R)  is  assigned  to  the  remaining  individuals   that   never   left   the   refuge.   The   ERI   for   the   ith   individual   is   then  calculated  as  ERIi  =  1  -­‐  (ri  /  R),  where  ri    =  rank  of  the  ith  individual  and  R  =  the  last  assigned  rank   in   the  sample.  Bullheads  with  an  ERI  or  EI  value  of  0  (individuals  which  never  left  the  refuge)  are  from  now  on  called  non-­‐exploring  individuals.  

After  the  laboratory  observations  and  an  additional  week  of  holding  in  400-­‐L  tanks,  a  release  experiment  in  a  novel  stream  section,  as  field  counterpart  to  the  aquarium  observations,  was  conducted.  The  abundance  of  structured  habitats   in  this   stretch  was   low   and   previous   electro-­‐fishing   confirmed   that   in   this   section  ecosystem   suitability   for   bullhead   might   be   low   because   bullheads   were  extremely   rare.   We,   therefore,   expected   long   distance   instead   of   fine-­‐scale  exploration  in  the  released  individuals.  Furthermore,  potential  aquatic  predators  were  not  found  there.  The  fish  were  released  on  18  April  2007  at  9  A.M.  together  with   a   roof   tile   as   refuge   in   a   20  m   part   of   a   novel   stream   section,   which   was  situated   750   m   upstream   from   the   initial   capture   point.   Release   density   was  comparable   to   population   density   where   they   were   originally   caught   (personal  observation).   Bullheads  were   tracked   24   h   after   release   using   a  mobile   PIT   tag  antenna   (details   in   Cucherousset   et   al.   2005).   This   time   interval  was   chosen   to  

Figure   1   The   experimental   aquarium  was   visually   subdivided   into   four   equal   sections   by  putting  tape  on   the  observer   side   [section  1   (S1)   to   section  4   (S4)]  with  a  familiar   refuge  (PVC   tube)   at   both   ends   of   the   aquarium   (S1   and   S4).   The   intervening   gap   was  unstructured.  

Comparison  of  laboratory  and  field  behaviour

      33

ascertain  possible  movement  because  bullheads  are  known  to  be  active  mostly  in  the  dark  (Smyly  1957).  Comparably  to  the  aquarium  observations,  positions  were  used   to   calculate  a  minimum  straight-­‐line  movement  over   time  which  served  as  the  variable  of  the  exploration  for  the  field  release  experiment  (here,  m  per  24  h).  

In   exploration   studies,   individuals   who   do   not   explore   the   experimental  setup  at  all  are  sometimes  excluded  from  analysis  (e.g.  Bell  2005).  Correlations  of  the  exploration  variables  (laboratory  and  field)  were,  therefore,  run  including  (N  =  40)  as  well  as  excluding  (N  =  34)  the  non-­‐exploring  (for  definition,  see  previous)  individuals.   Additionally,   we   tested   all   three   exploration   variables   on   possible  effects   of   body   length   (TL,   mm).   All   variables   but   ERI   without   non-­‐exploring  individuals  were  non-­‐normally  distributed  (Shapiro–Wilk,  all  p  <  0.05).  Spearman  rank  correlations  were  therefore  used  in  all  calculations.  Statistical  analyses  were  conducted  with   SPSS   15.0   (SPSS   Inc.,   Chicago,   IL,   USA).   Significance   levels  were  adjusted  (from  originally  α  =  0.05)  for  the  group  of  the  exploration  correlations  (N  =  4  correlations)  as  well  as  for  the  group  of  the  correlations  with  body  length  (N  =  3  correlations)  using  the  false  discovery  rate  (Benjamini  &  Hochberg  1995).    

Results  

As   a   general   rule,   bullheads   remained   motionless   for   a   few   minutes   in   the  aquarium   and   explored   the   new   environment   in   straightforward   swimming.  Exploration  was   inter-­‐individually   heterogeneous,   ranging   from   individuals   that  did   not   leave   the   refuge   (N   =   6;   non-­‐exploring),   swam   half   distance   (N   =   8),   to  individuals  reaching  the  opposite  side  of  the  aquarium  (N  =  29)  in  time  periods  of  between  73  and  2,323  s  (mean  ±  SD,  618.1  ±  555.7  s).  

We  were  able  to  relocate  40  of  the  43  laboratory-­‐assayed  individuals  24  h  after   release   in   the   novel   area   of   their   home   stream.   Straight-­‐line   minimum  moved   distance   (indicating   the   exploration)   varied   considerably   amongst  individuals,  ranging  from  0  to  165  m  (50.6  ±  47.9  m).  

   

Chapter  2  

34

  a)                        

      b)                        

   

Figure   2   Correlation   of   the   exploration   of   Cottus   perifretum   in   a   stream   (Laarse   Beek)  indicated   by   the   minimum   movement   in   an   unfamiliar   stream   section   (m)   with   the  exploration  in  the  aquarium  indicated  by  the  Exploration  Index  (EI,  a)  and  the  Exploration  Rank   Index   (ERI,   b).   Presented   are   dots   showing   each   individual’s   (N   =   40)   pair   of  explorative  behaviour  and  the  regression  line.  

Comparison  of  laboratory  and  field  behaviour

      35

Exploration   in   the   aquarium   (EI   and   ERI)   was   significantly   positively  correlated  to  the  exploration  in  the  stream  (N  =  40;  αadjusted  =  0.025;  EI:  rs  =  0.358,  p  =  0.023;  ERI:  rs  =  0.407,  p  =  0.009;  Figure  2a,  b).  However,  when  non-­‐exploring  individuals   were   removed   from   the   analysis,   correlation   coefficients   became  lower  and  significance  vanished  (N  =  34;  αadj  =  0.025;  EI:  rs  =  0.242,  p  =  0.168;  ERI:  rs  =  0.298,  p  =  0.087).  

There   was   no   significant   correlation   of   both   exploration   indices   in   the  aquarium  (N  =  40;  EI:  rs  =  −0.171,  p  =  0.291;  ERI:  rs  =  −0.124,  p  =  0.444)  as  well  as  the  minimum  movement   in   the   novel   stream   section   (N   =   40;   rs   =   −0.091,  p   =  0.575)  to  individual  body  size  (63.9  ±  12.8  mm  TL;  range  50  to  98  mm).    

Discussion  

Studies  which  directly  compare  one  particular  temperament  trait  measured  in  the  laboratory   with   observations   in   the   field   are   rare   although   they   show   the  transferability   of   isolated   behaviour   in   a   non-­‐natural   environment   to   the  more  complex   natural   ecosystem.   Our   study   showed   that   explorative   behaviour  variables   in   bullhead   are   repeatable   from   an   experimental   situation   in   the  aquarium  to  the  circumstances  in  a  natural  environment.  Comparable  aquarium–stream  repeatability  with  similar  methods  and  variables  was  also  observed  in  the  freshwater  killifish  (Rivulus  hartii,  r  =  0.41  to  0.48;  Fraser  et  al.  2001).  However,  Wilson   et   al.   (1993)   observed   that,   although   individual   responses   to   novel  situations   of   pumpkinseed   sunfish   (L.   gibbosus)   are   inter-­‐individually   different  and   stable   in   nature,   these   inter-­‐   individual   differences   vanished   after   pond-­‐observed   sunfish   were   caught   and   held   in   social   and   ecological   isolation   in  aquaria  over  a   longer   time  period.  The  social   surrounding  may,   therefore,  be  an  important   determinant   of   individual   fish’s   exploratory   behaviour   (Magnhagen  2007)   and   holding   time   and   group   composition   in   captivity   could   be   important  variables  on  the  original  behaviour.  

Although   correlations   of   laboratory   and   field   release   of   this   study   were  significant,   it   is   crucial   to   bear   in  mind   that   correlations  were   not   high   (EI,   rs   =  0.36;  ERI,  rs  =  0.41).  Particularly   the   individuals  who  did  not   leave   the  refuge   in  the  aquarium  (non-­‐exploring)  repeated  their  passive  behaviour  and  showed  only  little  variance  in  movement  in  the  stream-­‐release  experiment  (Figure  2a,  b).  Fish  with  higher  levels  of  EI  and  ERI  were  more  heterogenic  and  relative  repeatability  was   lower.   In   this   study,   it   seemed   that   individuals  with   the   lowest   exploration  were  more  predict-­‐  able  than  other  phenotypes  (compare  with  Sinn  et  al.  2008),  

Chapter  2  

36

although  this  should  be  examined  in  more  detail.  

Overall,   our   results   imply   slightly   weaker   short-­‐term   repeatability   in  comparison   to   other   studies   which   examined   explorative   behaviour   in   one  environmental  setting  only  in  fish  (r  =  0.68,  Neolamprologus  pulcher;  Bergmüller  &   Taborsky   2007),   insects   (r   =   0.51,   Dolomedes   triton;   Johnson   &   Sih   2007),  cephalopods   (r   =   0.39   to   0.54,   Euprymna   tasmanica;   Sinn   &   Moltschaniwskyj  2005)  and  birds   (r   =   0.38   to   0.49,   Fringilla   coelebs;   Quinn   &   Cresswell   2005).  However,   as  we   did   not   repeat   our   aquarium   observations,   it   is   not   possible   to  distinguish   between   relative   repeatability   from   laboratory   to   field   and   the  repeatability   per   se.  We   are   also  well   aware   that   the   behavioural  measures  we  used   are   only   approximate   values   for   the   exploration   avoidance.   For   instance,  although  the  novel  stream  section  of  this  study  was  of  comparably  lower  quality  than   the   original   habitat   and   we   therefore   expected   the   fishes   to   move   long  distances  during  exploration,  individuals  who  would  have  explored  in  finer  scale  but  with  similar  intensity  would  have  received  a  relatively  lower  field  score.  

The  individual  variation  in  exploration  rate  for  the  bullhead  was  not  related  to   the   total   length   of   the   fish.   Other   studies   have   speculated   that   a   higher  metabolic   rate   is   responsible   for   faster   exploration   by   smaller   fishes  (Brachyraphis  episcopi;  Brown  et  al.  2005).  However,  we  did  not  find  any  evidence  for   this   hypothesis   despite   the   size   range   of   the   tested   individuals   being   broad  ranging  from  50  to  98  mm.  Although  most  previous  studies  have  shown  that  the  sex  does  not  have  an  influence  on  the  explorative  behaviour  of  fish  (Wilson  et  al.  1993;   Fraser   et   al.   2001;   Moretz   et   al.   2007;   but   see   Brown   et   al.   2005),  unfortunately   we   could   not   examine   this   here   because,   outside   the   spawning  period,   the   bullhead   cannot   reliably   be   sexed   based   on   external  morphology   (J.  Freyhof,   personal   communication)   and   to   date   no   genetic   sex   markers   are  available.  

We   assume   that   the   exploration   behaviour   of   bullhead,   with   correlating  observations   in   the   aquarium   and   in   a   stream,   corresponds   to   further  temperament   traits   and   may   be   linked   to   the   individual’s   metabolism.   Future  studies   should   examine   both   the   repeatability   within   a   context   and   across  contexts.  A   control   for   the   social   and  ecological   environment  would  elucidate   to  what   degree   the   exploration   of   an   individual   is   intrinsic   (e.g.   linked   to   the  metabolism)   and   whether   the   individual   rank   in   the   group   for   the   explorative  behaviour  remains  the  same  despite  environmental  changes.  

Comparison  of  laboratory  and  field  behaviour

      37

Acknowledgments  

We  wish  to  thank  N.  Adam,  I.  Boost,  T.  de  Groote,  S.  Delen,  J.  Demeulemeester,  D.  Geelhand,   K.   Geudens,   J.   Hoefnagels,   Y.   Humblet,   C.   van   de   Sande   and   A.  Vankerkhove,  G.  Eens,  P.  Scheys   for   technical  assistance  and   J.  Meaney-­‐Ward   for  English   proofreading.   We   also   wish   to   thank   four   anonymous   referees   and   T.  Czeschlik   for   helpful   comments   and   the   FWO   Flanders   for   funding   (FWO  postdoctoral   grant   to   GK   and   FWO   project   to   ME).   This   study   was   conducted  under   licenses   of   the   relevant   authorities   that   permitted   us   to   capture   and  manipulate  the  bullheads.  

 

   

 

 

CHAPTER  3    

TEMPERAMENT  TRAITS  AND  HABITAT  USE    

 

 

 

   

Temperament  traits  and  habitat  use

      41

 Temperament  traits  and  microhabitat  use  in  bullhead,                      

Cottus  perifretum:  fish  associated  with  complex                                        habitats  are  less  aggressive  

 

Alexander  Kobler,  Gregory  E.  Maes,  Yves  Humblet,  Filip  A.M.  Volckaert,  Marcel  Eens  

Behaviour  (2011)  148:  603-­‐625  

 

 

Abstract  

Temperament   traits  have  been   linked   to   fitness-­‐related   functional   contexts  such  as  dispersal  or  mating  attractiveness,  but  few  studies  have  linked  inter-­‐individual  differences  in  habitat  use  to  temperament  traits.  Therefore,  we  conducted  a  three-­‐month  field  study  with  weekly  tracking  to  define  the  individual  microhabitat  use  of   bullhead   (Cottus   perifretum).   The   species   is   known   for   its   dependence   on  structured  habitats.  At  the  end  of  the  field  survey,  bullhead  were  recaptured  and  tested   in   the   laboratory   for   five   temperament   traits:   boldness,   interest   in   novel  food,  novel  environment  activity,  aggressiveness  and  activity.  Repeated  trait  tests  (activity,  r  =  0.439;  novel  environment  activity,  r  =  0.422)  and  habitat  complexity  use   (r  =  0.568)   indicated  behavioural  consistency.  Overall,  bullhead  significantly  preferred   complex   habitats,   such   as   branch   jams,   while   avoiding   open   water.  Individual  frequency  in  the  use  of  complex  habitats  could  not  be  attributed  to  size  or   sex   differences,   but   was   significantly   negatively   correlated   to   the   level   of  aggressiveness.   We   hypothesize   that   this   relationship   was   caused   by   a   higher  level  of  aggressive  defence  of  less  structured  territories.  Other  temperament  traits  were   not   significantly   linked   to   individual   habitat   use.   To   our   knowledge,   this  study  is  the  first  to  show  a  relationship  between  aggressiveness  measured  under  laboratory  conditions  and  the  use  of  complex  habitats  in  situ.  

   

Chapter  3  

42

Introduction  

One   of   the   most   important   methods   of   reducing   competition   between  species   is  niche  partitioning  by  habitat  use   (Schoener  1974).  This  has  also  been  shown  to  exist  within  single  populations  of  one  species  (Bolnick  et  al.  2003).  Some  individuals   of   a   population   expand   to   unused   or   underused   habitats   when  competition  passes  a   threshold  (Mayr  1926;  Svanbäck  et  al.  2008).  For   instance,  many   lentic   fish   species   prefer   the   near-­‐shore   littoral   habitat;   when   faced  with  tighter  competition,  some  individuals  of  a  population  use  the  less  preferred  open  water  habitat  (e.g.  Svanbäck  et  al.  2008).  Such  diversity  in  microhabitat  use  may  occur  in  the  absence  of  differences  in  sex,  size  or  age,  but  could  be  related  to  other  behavioural   characteristics   (Bolnick  et  al.  2003).  However,   little   is  known  about  the   relation   between   the   diversity   in   habitat   use   and   other   behavioural   traits.  Animal   temperament  (Réale  et  al.  2007)  comprises  a  range  of  behavioural   traits  that  might  help  to  increase  understanding  of  heterogeneous  microhabitat  use.  

Temperament   traits   are   increasingly   used   to   highlight   consistent  differences  in  individual  behaviour  between  and  within  animal  populations  (Réale  et   al.   2007).   Populations  have  been   subdivided   into   temperament   types   such   as  either  bold  and  shy   (Wilson  et  al.  1994;  Réale  et  al.  2000;  Sinn  et  al.  2008),   fast  and   slow  explorative   (Verbeek  et   al.   1994)   and   responsive   versus  unresponsive  (Wolf   et   al.   2008).   Between-­‐individual   differences   in   temperament   traits   have  been   linked   to   fitness-­‐related   functional   contexts   (reviewed   by   Schuett   et   al.  2010)   such   as   behaviour   of   bird   singing   (Garamszegi   et   al.   2008),   brood   care  helping  (Bergmüller  &  Taborsky  2007),  mating  attractiveness  (Godin  &  Dugatkin  1996)   and   mating   success   (Reaney   &   Backwell   2007),   dispersal   or   movement  range   (reviewed   by   Clobert   et   al.   2009)   and   growth   (Millot   et   al.   2009).  Surprisingly,   relationships   between   individual   microhabitat   use   in   nature   and  temperament  traits  have  hardly  been  studied  (but  see  Boon  et  al.  2008).  

An   important   question   that   arises   is   whether   there   is   relation   between  temperament   traits   and   individual   use   of   structured   habitats.   The   individual  difference   in   environmental   choice  may   cause   a   diversification   of   temperament  traits.  For  example,  individuals  in  the  less  structured  habitat  may  be  exposed  to  a  higher   predation   risk   and   show   riskier   and   bolder   behaviour   (Magnhagen   &  Borcherding  2008).  The  level  of  boldness  is  then  positively  adapted  to  the  level  of  predation   risk   (Brown   et   al.   2007).   The   other   causal   pathway   implicates   the  possibility   that   individuals   with   stronger   expressed   boldness,   which   can   be  heritable  (Brown  et  al.  2007),  are  more  risk  prone  and,  therefore,  ‘freer’  in  habitat  choice.  As  a   consequence   they  might  exploit  more  open  habitats.   Irrespective  of  

Temperament  traits  and  habitat  use

      43

the  causal  pathway,  it  seems  plausible  that  temperament  traits  may  be  related  to  the  individual  use  of  differently  structured  microhabitats.  

Structurally   complex   habitats   provide   more   niches,   facilitate   the  exploitation   of   the   environment   and   may   increase   the   species   richness   of   an  environment  (Tews  et  al.  2004).   In  aquatic  ecosystems,   the  presence  of  complex  habitats   like   reed,   submerged  macrophytes,   tree   roots,   stones   or   woody   debris  can  be  directly  linked  to  the  reproductive  success  and  abundance  of  individuals  in  a  fish  population  (e.g.  Grimm  1981).  

Many   fishes   that   are   known   for   their   strong   dependence   on   complex  habitats   belong   to   the   family   of   common   sculpins   (Cottidae,   approximately   275  spp).  Common  sculpins   consist  mainly  of   small   (<  15  cm)   fishes,  which  are  well  camouflaged,  have  a  reduced  swim  bladder  and  live  in  the  demersal  zones  of  lakes  and  streams.  Similar  to  the  Salmonidae,  some  species  of  Cottidae  can  exhibit  non-­‐breeding   territoriality   (Petty  &  Grossman  2007).  They  have   a   strong  affinity   for  complex  habitats   (Greenberg  &  Holtzman  1987;  Davey  et   al.   2005;  Legalle   et   al.  2005),  which  they  use  for  spawning  (Fujimoto  et  al.  2008),  parental  care  (Morris  1954),   foraging  or  as  refuge  (Smyly  1957).   It   is  only  at  night  that  adult  common  sculpins  wander  into  open  water  (Natsumeda  1998;  Kobler  et  al.  in  preparation).  Where   common   sculpins   occur   at   high  population  density,   sometimes  being   the  dominant  fish  species  in  the  ecosystem  (McCleave  1964;  Prenda  et  al.  1997),  not  all  individuals  may  have  access  to  complex  habitats  (Natsumeda  2001).  

A   member   of   the   Cottidae   family,   the   bullhead   (Cottus   perifretum),   was  chosen   to   study   possible   relations   between  microhabitat   use   and   temperament  traits.  Due  to  the  importance  of  structured  habitats  as  refuge  shelter  (Davey  et  al.  2005)  and  foraging  habitat  (Smyly  1957),   it  can  be  assumed  that   less  aggressive  individuals   may   be   displaced   to   less   structured   and   less   favourable   habitats  (Fausch   1984;   Weber   &   Fausch   2003).   We   further   hypothesized   that   bullhead  activity   is  negatively  correlated  to   the   inhabited   level  of  habitat  structure.  Other  studies   found   that   fish   inhabiting   less   structured   habitats   are   more   active  (Sundbaum   &   Näslund   1998;   Salvanes   &   Braithwaite   2005),   which   might   be  related   to   differences   in   foraging   tactics   (Kobler   et   al.   2009b).   As   mentioned  earlier  on,  boldness  can  be  negatively  related  to  habitat  complexity  because  of  a  higher   predation   risk   in   open   habitats   (Magnhagen   &   Borcherding   2008).  However,  we  did  not  expect  a  strong  relation  between  boldness  and  the  individual  use  of  complex  habitats  as  predator  abundance  was  low  in  the  study  system  and  predation  risk  presumably  low.  

Chapter  3  

44

Materials  and  methods  

Study  area  and  habitat  determination  

The   study   was   conducted   in   the   Laarse   Beek   (51°16′28.40′′N,   4°29′4.63′′E),   a  lowland   stream   in   northern   Flanders,   Belgium.   The   focal   section   of   the   stream  was   324  m   long,   had   a  mean  width   of   2.87  m   (range   2.09–3.53  m)   and   a  mean  depth  of  0.3  m  (range  0.1–0.5  m).   It  crossed  a  beech-­‐oak   forest  with  black  alder  (Alnus  glutinosa)  rooting  partly  in  the  stream.  The  stream  bed  was  characterized  by  a  sandy  soil  with  woody  debris  patches.  Bullhead  were  the  most  abundant  fish  species   in   the   stream   with   a   density   of   approximately   2.1   adults   per   m2   (see  below).  Aquatic  predators,   such  as  pike   (Esox  lucius),   eel   (Anguilla  anguilla)  and  perch   (Perca   fluviatilis),   were   rare   (personal   observation).   Similarly,   the  predation   risk   through   avian   predators   such   as   grey   heron   (Ardea  cinerea)   and  kingfisher  (Alcedo  atthis)  was  probably  low,  as  they  appeared  only  a  few  times.  

We  characterized  the  habitat  types  and  the  structure  of  the  habitat  types  in  two   days   (26   and   27   June   2008).   The   stream   section   was   divided   into   972  quadrats   of   approximately   1   m2   (mean   0.96   m2),   three   quadrats   covered   the  stream  width   and  324   the   stream   length.  The  quadrats  were   assigned   to  one  of  the   six   main   habitat   types   according   to   the   dominant   habitat   type   (>   50%  abundance):  open  water  which  consisted  either  of  a  bare  sand  bottom  or  a  limited  abundance   of   twigs   (approximately   553   m2),   tree   branches   (woody   debris,  approximately  279  m2),   tree  roots   (approximately  48  m2),  naturally   formed  tree  branch   jams   (approximately   34   m2),   a   stone   pile   at   the   foot   of   a   bridge  (approximately  34  m2)  and  submerged  water  plants  (approximately  24  m2).  The  quadrats  were  categorized  according  to  the  degree  of  habitat  complexity,  because  bullhead   have   a   strong   affinity   for   complex   habitats   (see   introduction).   Habitat  complexity  was  defined  at  three  levels  based  on  its  occurrence  in  the  field.  It  was  done  to  have  a  methodological  way  to  clearly  distinguish  habitat  complexity  per  quadrat.   Quadrats   with   <   33%   structure   and   mainly   consisting   of   open   water,  received   a   habitat   complexity   value   of   0   (approximately   616   m2).   A   habitat  complexity  value  of  1  was  given  when  ≥  33%  and  ≤  66%  structure  was  provided  by   intermediate   abundances   of   branches,   tree   roots,   naturally   formed   branch  jams,  stones  and/or  water  plants  (approximately  252  m2).   If   the  stream  quadrat  was  highly   structured  with  >  66%  of   complex  habitats,   it   received   a   complexity  value  of  2  (approximately  104  m2).  

A   second   habitat   characterization   was   conducted   on   17   October   2008   to  evaluate   the   temporal   consistency  of   the   spatial   occurrence  of   the  habitat   types  

Temperament  traits  and  habitat  use

      45

and   the   habitat   complexity   levels.   The   second   characterization   was   carried   out  every   10   m   by   defining   three   quadrats   in   stream   width   resulting   in   96   re-­‐evaluated  quadrats.  

Capture  and  tagging  

The   focal   section  of   the  stream  was  marked  every  other  2  m  with  consecutively  numbered  wooden   poles   along   the   right   stream   bank.   Bullhead  were   caught   in  two  sessions,  on  4,  5  and  7  February  and  on  13  and  14  February  2008  by  electro-­‐fishing   (WFC7-­‐10,   Electracatch,  Wolverhampton,  UK)   using   a   40   cm   ring   anode.  During  the  two  electro-­‐fishing  sessions  348  bullhead  >  50  mm  [minimum  size  to  tag   with   passive   integrated   transponders   (PIT),   Knaepkens   et   al.   2007]   were  caught  including  14  recaptures  during  the  second  session.  Bullhead  (N  =  334)  had  a  mean   total   length   (TL)   of   62.1   ±   6.3  mm   (mean   ±   SD;   range   51–88  mm)   and  mean  wet  weight  of  3.3  ±  1.2  g.  Fish  were  anaesthetized  (0.25  ml  L-­‐1  2-­‐phenoxy-­‐ethanol)   and   individually   coded   12  mm  PIT-­‐tags   (12   ×   2.1  mm,   0.094   g;   ID100,  EID,  Aalten,  The  Netherlands)  were  inserted  horizontally  through  a  2-­‐mm  incision  into   the  body  captivity  (by  using  a  scalpel).  Due  to   the  small  size  of   the   fish  and  the   opening,   the   incision   was   not   stitched   (Bruyndoncx   et   al.   2002).   After  implantation,   bullhead   were   allowed   to   recover   in   buckets   with   fresh   stream  water   and   released   at   their   capture   position.   Due   to   tagging   shortly   before  spawning,  the  most  bullhead  could  be  reliably  sexed  (138  females  and  139  males).  Gonadal  development  did  not  allow  to  use  weight  as  a  variable  as  it  was  strongly  gender-­‐dependent   (females  were  proportionally  much  heavier)   and  also   related  to  the  stage  of  gonadal  development.  Using  the  capture-­‐  recapture  data  of  the  two  electro-­‐fishing   sessions,   an   abundance   estimate   of   2006   bullhead   >   50   mm  (confidence  interval  1228–3459)  for  the  324  m  section  was  calculated  (Petersen  single  census  method,  Chapman  modified;  Ricker  1975).  

Tracking  and  recapture  

Tracking   took   place   between   12   June   and   19   September   2008.   This   period  was  chosen   as   spawning   at   the   Laarse   Beek   generally   ends   in   May   (Knaepkens,  personal   communication).   Male   egg   guarding   (nesting)   behaviour   should   have  ended  also  (see  Morris  1954)  and  males  are  no  longer  restricted  to  the  nest  site  and   hence   less   constrained   in   habitat   choice.   The   324  m   electro-­‐fishing   section  was  scanned  by  a  mobile  PIT-­‐tag  antenna  with  a  detection  precision  of  <  30  cm  (Cucherousset   et   al.   2005).   Tracking   was   conducted   during   the   day,   which   is   a  time   when   bullhead   prefer   structured   habitats   (see   Introduction),   by   carefully  walking  through  the  stream  and  moving  the  antenna   like  a  vacuum  cleaner.  The  

Chapter  3  

46

magnetic  field  of  the  antenna  was  always  moved  with  a  distance  of  <  30  cm  to  the  ground  (bullhead  are  bottom-­‐dwelling).  To  increase  the  probability  of  detection  in  stream-­‐bank  habitats,   such  as   tree  roots,   the  antenna  was   turned  by  90  degrees  and  moved  directly  along  the  shoreline.  Once  a  bullhead  was  located,  the  square  in  which   it  was   found  was  noted.  After   its  detection  and  during  recording  of   the  stream  position   (e.g.   1400   stream  m,   left   side),   the   antenna  was  kept   above   the  detected   bullhead.   An   escape   response   was   never   observed   and   the   tagged  individuals   relied   on   their   camouflage,   a   typical   behaviour   for   Cottus   ssp.   The  immobile   behaviour   was   a   prerequisite   of   the   methodological   independence   of  temperament   traits   and   habitat   use.   It   excludes   for   example   that   bolder  individuals  were  more   likely  detected   in  open  water  while  more  shy   individuals  preferred  the  more  structured  habitats  following  a  flee  attempt.  

Tracking   sessions   took  place   three   times  per  month   (with  at   least  1-­‐week  intervals).   During   each   session   the   stream   section   was   scanned   once   on   two  consecutive   days   (two   scans   per   session),   to   increase   the   probability   that   each  individual   was   located   once.   To   equalize   the   disequilibrium   of   the   individual  localizations   (not   all   individuals   were   found   twice)   we   only   used   the   first  localization  of  each  tracking.  This  led  to  a  total  maximum  of  15  individual  tracking  locations  during  the  tracking  period  (12  June  to  19  September  2008).  

From   22   September   to   19   November   2008   we   attempted   to   recapture  tagged  bullhead   in   the  324  m  section.  The   fish  were   localized   in   two  screenings  with  the  mobile  PIT-­‐tag  antenna.  The  spotted  individuals  were  then  caught  with  a  big   landing   net   (one   person)   and   two   small   aquarium   nets   (another   person),  which  was  more  efficient  than  electro-­‐fishing.  In  total  20  tagged  individuals  were  caught  with  a  TL  (mean  ±  SD)  of  64.8  ±  6.31  mm  (range  55–77  mm)  and  a  mean  wet  weight  of  3.72  ±  0.99  g  (range  2.2–6.7  g).  The  small  number  of  recaptures  was  probably  due  to  the   large  dispersal  ranges  of   the  bullhead  (up  to  1284  m  range;  Kobler   et   al.,   data   not   shown)   but   also   due   to   natural  mortalities;   bullhead   are  short-­‐lived.  Every  week  slightly  smaller,  untagged  bullhead  (TL  48.41  ±  5.14  mm;  range   40–62   mm)   were   caught;   they   served   as   stimuli   for   the   subsequent  aggressiveness  test  in  the  laboratory  (see  below).  Sex  could  not  be  determined  of  the  stimulus   fish,  as   they  were  not   in  breeding  condition.  On  the  day  of  capture,  the   fish   were   transferred   to   a   400-­‐L   tank  with   oxygenated   and   bio-­‐filtered   tap  water   at   the   university   wet   lab.   The   tank   contained   PVC   tubes   (10   ×   5   cm)   as  structuring  refuges;  the  mean  ±  SD  water  temperature  of  9.8  ±  2.7  °C  (range  5.3–14.1   °C)  and   the  mean  oxygen  concentration  of  9.1  ±  1.2  mg  L-­‐1   (range  7.7–11.1  mg   L-­‐1)   were   constantly   monitored.   Bullhead   were   fed   daily   to   satiation   with  frozen  bloodworms.  

Temperament  traits  and  habitat  use

      47

Statistical  analysis  of  the  field  data  

The   temporal   stability   of   habitat   types   was   calculated   by   McNemar   tests  (binominal   data:   presence/absence   of   habitat)   based   on   the   comparison   of   re-­‐evaluated   stream   patches   and   the   identically   positioned   squares   of   the   first  habitat   determination.   We   compared   the   two   evaluations   with   the   presence  (value  1)  or  absence  (value  0)  of  each  habitat  type  and  habitat  complexity  value.  This   resulted   in   nine   McNemar   tests   (one   test   for   each   habitat   type   and  complexity  value)  and  each  test  included  96  comparisons  (Table  1).  

 

 

 

 

Habitat                                                                        p  

Open  water   0.096  

Branches   0.118  

Tree  roots   1.000  

Branch  jam   1.000  

Stones   1.000  

Water  plants   1.000  

Complexity  0   0.791  

Complexity  1   1.000  

Complexity  2   0.625  

     

Table   1  McNemar   tests   (N   =  96  pairs   per   test)  on   the   temporal   stability   of   the   habitat   types  and  the  habitat   complexity   values   from  26  and  27  June  to  17  October  2008   in  the  Laarse  Beek  in  a  stream  section  of  324  m.  

Chapter  3  

48

To   examine  whether   selection   is   occurring   for   individual   habitat   types   or  habitat   complexity   levels   by   some   of   the   PIT   tagged   individuals,   we   used   an  individual-­‐based  chi  square  test  for  repeated  measures  by  Manly  et  al.  (1993)  (see  Rogers   &  White   2007).   Following   the   notation   by  Manly   et   al.   (1993),  uij   is   the  amount  of  habitat  type  i  used  by  fish  j;  ui+  is  the  amount  of  habitat  type  i  used  by  all  fish;  u+i  is  the  total  amount  of  habitat  units  used  by  the  fish  j;  and  u++  is  the  total  number  of  habitat  units  used  by  all  fish.  

X 2 = 2 uij loge uij / E uij( )!" #$i=1

I

%j=1

n

% ,  

where   E(uij ) = ! iu+ j ,   and   πi   is   the   proportion   of   available   resource   units   in  category  i  (Rogers  &  White  2007).    

Which  habitat  types  or  complexities  the  bullhead  selected  was  calculated  by  selection   ratios   and   their   associated   Bonferroni-­‐adjusted   95%   confidence  intervals  (individual-­‐based  log-­‐likelihood  test  for  repeated  measures;  Manly  et  al.  1993;  Rogers  &  White  2007).  Following   the  notation  by  Manly  et  al.   (1993),   the  selection  by  the  population  for  the  i-­‐th  habitat  type  is  estimated  by  

wij = uij / (! i +u+ j ) .  

The  selection  ratio  estimates  are  generated  by  pooling  observations  from  all  tagged  fish,  but  the  equation  takes  variation  in  selection  from  individual  fish  into  account   (Manly   et   al.   1993).   Habitat   selection   was   considered   significant   if   the  lower   confidence   interval   (CI)  of   the   selection   ratio  was  greater   (preference)  or  the  upper  CI  was  smaller  (avoidance)   than  1.  For  CI  generating   for   the  selection  ratios  see  Rogers  &  White  (2007).  

The  consistency   (repeatability,  r)  of   individual  habitat   complexity  use  was  calculated  by  using  mean  squares  of  among-­‐groups  and  within-­‐groups  variance  of  a   one-­‐way   ANOVA   with   ‘individual’   as   a   factor   on   the   dependent   variables  (Lessells  &  Boag  1987).  

r = s2^ / s2 + s2^( ) ,  

where   s2^   is   the   among-­‐groups   variance   component   and   s2   is   the   within-­‐group  variance  component.  

Temperament  traits  and  habitat  use

      49

Due   to   the   unbalanced   number   of   individual   habitat   localizations,   the   co-­‐  efficient   (n0)   related   to   the   sample   size   had   to   be   calculated   (here  n0   =   10.439;  Lessells   &   Boag   1987).   Individual   habitat   complexity   use   was   calculated   by  averaging   the  habitat   complexity   values   of   each   individual’s   localizations.   These  individual   values   were   related   to   TL   (mm)   and   sex   by   an   ANCOVA   (variance  homogeneity  of  sex,  Levene-­‐test,  p  >  0.05).  

Significance  of  all  calculations  was  assessed  at  α  <  0.05.  Statistical  analyses  were   conducted  with   SPSS   15.0   (SPSS,   Chicago,   IL,   USA).  Habitat   selection   ratio  was  calculated  by  the  software  package  Fishtel  1.4  (Rogers  2002).  

Laboratory  analyses  of  temperament  traits  

We  used   for   the  experiments  eleven  plastic   tanks   (79  ×  42  ×  57  cm),   lined  with  blue  plastic   foil.  The   tanks  were  half-­‐filled  and  contained  approximately  80  L  of  oxygenated  tap  water  with  a  mean  temperature  of  14.9  ±  1.5  °C  (range  12.7–17.2  °C)  and  a  mean  oxygen  concentration  of  7.8  ±  0.8  mg  L-­‐1  (range  6.5–  9.6  mg  L-­‐1).  We  adjusted  the  light/dark  cycle  weekly  to  the  seasonal  natural  conditions.  Light  intensity  was  dimmed  to  mimic  the  stream  conditions  in  the  forest.  

The  tanks  were  set  up  such  that  all   tests   for  each   individual  could  be  con-­‐  ducted   in   just   one   tank   (Figure   1),   although   two   transfers   into   novel  environments  and  the  introduction  of  a  predator  were  done  (see  later).  Therefore,  the  tanks  were  temporally  visually  (white  plastic  plate)  and  constantly  physically  (metal  mesh)  divided  into  two  parts.  Ten  percent  of  the  bottom  of  both  tank  sides  (A   and   B)  was   structured;   different   objects   created   two   different   environments  (Figure  1).  Under  the  transparent  bottom  of  the  tank  a  grid  of  7.5  ×  7.5  cm  squares  was  drawn;   it  was  chosen   in  view  of   the  maximum  size  of   the  bullhead  (70  mm  TL).   Above   the   tanks   we   positioned   a   digital   camcorder   (DCR-­‐PC6E   or   DCR-­‐DVD310E,  Sony,  Tokyo,  Japan).  

Under  the  artificial  tank  conditions  bullhead  were  mostly  hidden  in  a  refuge  and  showed  no  activity  at  all  during  the  simulated  daylight.  To  record  behavioural  activity,  the  tests  were  recorded  at  the  beginning  of  the  night  period  by  using  the  night-­‐shot   function   of   the   camcorders.   Therefore,   our   study   compares   bullhead  daytime   shelter   use   in   the   field   with   temperament   traits   measured   in   the  laboratory  at  the  beginning  of  the  night  period.  An  observer  was  only  present  to  turn  the  camcorders  on  in  complete  darkness.  

   

Chapter  3  

50

 

 

The  tests  lasted  for  10  min  starting  from  2  min  after  the  recordings  started  (2  min  acclimatization  after   turning  on  the  camcorders).  After   the   first  six   tanks  were   filmed,   the   positions   of   the   cameras   were   switched   to   the   last   five   tanks.  After  this  disturbance  a  30  min  acclimatization  period  before  the  succeeding  test  was   provided.   Four   temperament   categories   were   examined:   (1)   boldness-­‐shyness,   an   individual’s   reaction   to   any   risky   situation,   but   not   a   new   situation,  (2)  exploration-­‐avoidance,  an   individual’s   reaction   towards  a  new  situation;   this  includes   behaviour   towards   a   new   habitat,   new   food   or   novel   objects   (in   this  paper:  activity  in  a  novel  environment,  interest  in  a  novel  food  item),  (3)  activity,  the   general   level   of   activity   of   an   individual   in   a   non-­‐risky   and   non-­‐novel  environment   and   (4)   aggressiveness,   an   individual’s   antagonistic   reaction  towards  conspecifics  (for  more  details  on  these  definitions  see  Réale  et  al.  2007).  

Figure  1  Laboratory  set-­‐up  of  the  80-­‐L  experimental  tanks  for  the  temperament  trait  tests.  Both  tank  sections  were  similar  in  the  amount  of  structure  they  provided.  A  vertical  white  plastic  plate  was  fixed  0.5  cm  below  the  surface,  water  was  allowed  to  flow  between  the  sides  and  the  same  water  was  used  for  each  test.  The  white  plastic  plate  guaranteed  that  the  fish,   that  was   introduced   into   tank   section  A,  did  not  experience   the  environment   in  tank   section   B.   Removal   of   the   plastic   plate   before   the   boldness   test   enabled   the  perception  of  visual  and  chemical  cues  of  the  predator  on  the  opposite  tank  section.  

Temperament  traits  and  habitat  use

      51

 

The  general  procedure  of  the  behavioural  laboratory  tests  was  based  on  the  study   of   Dingemanse   et   al.   (2007)   and   is   summarized   in   Table   2.   The  temperament   trait   tests   (3   October   to   28   November   2008)   started   with   the  introduction  of   the  bullhead   into  the  unfamiliar  80-­‐L   laboratory  tanks  through  a  vertically  positioned  plastic  tube  (30  ×  10  cm)  that  was  removed  directly  before  the   test.   Novel   environment   activity   (exploration-­‐avoidance   category)   was  quantified   by   the   number   of   squares   crossed   per   minute   (squares   min-­‐1)  regardless  of  the  direction  or  position  in  the  tank  and  was  measured  twice  (Table  2).   The   transfer   from   outdoors   to   the  wet   laboratory   tanks   included   the   slowly  acclimation  of  the  bullhead  by  adding  water  to  the  bucket.  

Interest   in   a   novel   food   item   (exploration-­‐avoidance   category)   was  measured  in  a  familiar  environment  (Table  2)  by  the  bullhead’s  reaction  towards  a  small  maggot  of  terrestrial  Diptera,  which  we  anticipated  to  be  an  unknown  food  item.   The   reaction   was   measured   in   terms   of   (1)   the   approach   to   the   maggot  

Day                                                      Action  and  temperament  test  

0  -­‐  2                    -­‐(Re)-­‐capture  of  tagged  and  untagged  bullhead                      -­‐Transport  to  a  400-­‐L  outdoors  tank  at  the  university    

3  

                 -­‐Renewal  of  water  of  the  80-­‐L  laboratory  tank  (9  am)                    -­‐Translocation  from  outside  tank  to  laboratory  tanks                    -­‐Novel  environment  activity  (NEA)  1  in  tank  section  A    

4  -­‐  5                    -­‐Familiarization  to  tank  section  A  

6                    -­‐Activity-­‐test  (ACT)  1  in  tank  section  A                    -­‐Aggressiveness-­‐test:  introduction  of  stimulus  fish  

7                    -­‐NEA  2  in  tank  section  B    

8                    -­‐Removal  of  visual  barrier  between  tank  sides  (9  am)                      -­‐ACT  2  in  tank  section  B                    -­‐Interest  in  novel  food  test  in  tank  section  B    

9  

                 -­‐ACT  3  in  tank  section  B                    -­‐Boldness-­‐test:  predator  (pike)  into  tank  section  A                      -­‐End  of  tests;  remove  fishes  to  second  outdoors  tank  

Table   2   Schedule  of   the  temperament   trait   analysis  of  bullhead   in   the   laboratory   from  3  October   to  28  November  2008   (N   =  53   tagged,  N   =  21   untagged   individuals).  When   two  tests  were  conducted  on  a  day,  they  followed  each  other  immediately.      

Chapter  3  

52

(bullhead  was   situated   in   the   square   next   to   the   square   of   the  maggot),   (2)   the  interest   in   the   maggot   (both   in   the   same   square)   and   (3)   the   ingestion   of   the  maggot.  

Activity   was   measured   three   times   after   allowing   familiarization   to   the  environment   for   at   least   12   h   (Table   2)   by   quantifying   the   distance   moved  (regardless  of  direction)  with  squares  min-­‐1  as  variable.    

Aggressiveness   was   tested   in   a   familiar   environment   (Table   2)   with   the  introduction  of  a  smaller  conspecific  into  the  tank.  Stimulus  fish  were  distributed  across   the   tanks   by   size   (mean   ±   SD   46.8   ±   4.4   mm;   range   35–62   mm)   to  guarantee  a  similar  size  ratio  between  the  individuals  assayed.  Stimulus  fish  were  introduced  into  the  tanks  through  a  vertically  positioned  plastic  tube  (30  ×  10  cm)  that   was   removed   directly   before   the   test.   The   10   min   test   started   with   the  removal  of  the  tube  (without  2  min  acclimatization  as  the  reaction  to  the  stimulus  was  often  very  sudden).  The  number  of  bites  was  counted  and  the  distance  moved  was   recorded   (regardless   of   direction;   squares  min-­‐1).   The   individual’s   distance  moved  was   later   compared   to   the   distance  moved   directly   before   the   test   (see  statistics).  

Boldness-­‐shyness  was  tested  in  a  tank  section  B  with  the  introduction  of  a  pike   (approximately  30   cm  TL)   into   tank   section  A   (Figure  1).  Because   the   tank  sections  were  only  separated  by  a  metal  mesh  (Table  2),  visibility  was  provided  and  the  odour  of  the  predator  diffused  between  the  sections.  We  measured  (1)  the  mean   time   (s),   as   well   as   the   proportion   of   time   (%)   spent   in   the   proximity  (distance  <  1  square)  to  structuring  tank  objects  (Figure  1),  (2)  the  proportion  of  time   spent   in   the   tank   section   half   close   to   the   pike   (%)   and   (3)   the   distance  moved   in   the   presence   of   the   predator   (squares   min-­‐1).   These   variables   were  quantified  directly  before  the  test  (control),  as  well  as  during  the  presence  of  the  predator,   and   statistically   compared   to   measure   the   reaction   towards   the  predator  (see  statistics).  

After  the  test  series  bullhead  were  brought  to  a  second  400-­‐L  outdoor  tank,  where  they  were  stored  until  their  release  into  the  stream  (Table  2).  The  water  of  the  laboratory  tanks  was  renewed  before  the  next  test  series.  

Statistics  of  laboratory  analyses  and  correlation  to  field  data  

Two  temperament   traits  (aggressiveness  and  boldness)  measured  the  difference  between   the   distance  moved   from   just   before   to   during   a   stimulation   test   (see  

Temperament  traits  and  habitat  use

      53

laboratory  analyses).  Each  individual  tested  represented  its  own  control  and  only  the   change   from   ‘normal’   to   stimulated   behaviour   was   used   as   behavioural  variable.  The  change  in  movement  was  defined  by  the  individual  residual  value  of  the  regression  of  all  tested  individuals’  stimulus  activity  [LN  (squares  min-­‐1  +  1),  y-­‐axis]  on  the  control  activity  [LN  (squares  min-­‐1  +  1),  x-­‐axis;  see  also  Garamszegi  et   al.   2009].   Negative   values   meant   that   the   individual   decreased   movement  during   the   stimulus   test   more   than   expected   based   on   the   reaction   of   all  individuals   tested.   Similar   calculations   of   the   behavioural   difference   of   control  and   stimulus   were   also   made   for   the   boldness   variables   refuge   use   (%),   mean  refuge   use   (s)   and   tank   side   positioning   (%;   see   laboratory   analyses   of  temperament  traits).  

For   temperament   traits   that   had   more   than   one   behavioural   measure   by  definition   (interest   in   novel   food,   aggressiveness   and   boldness),   we   merged  several  measures   to  one  variable.  By  principal  component  analysis   (PCA)  values  were   z-­‐transformed,   Eigenvalues   above   1   were   extracted,   multiple   components  rotated   by   varimax  method   and   the   new   variables   of   the   principal   components  were  saved  by  regression  method  (Dingemanse  et  al.  2007).  Due  to  the  use  of  only  two  variables  for  aggressiveness,  the  variables  were  tested  for  correlation  before  running  the  PCA  (Spearman,  N  =  18,  rs  =  0.379,  p  =  0.120).  

Temperament   traits,   which   had   only   one   behavioural   measure   but   were  replicated   (activity   and   novel   environment   activity),   were   represented   by   the  mean   value   of   the   multiple   measurements   (squares   min-­‐1).   Repeatability   (r)   of  activity   (three   replicates)   and   novel   environment   activity   (two   replicates)  were  calculated   by   using   the   mean   squares   of   among-­‐groups   and   within-­‐   groups  variance   of   a   one-­‐way   ANOVA   with   ‘individual’   as   a   factor   on   the   dependent  variables  (Lessells  &  Boag  1987;  see  field  statistics).  

Temperament  traits  were  correlated  to  habitat  complexity  by  Pearson  correlations  (every  trait  instead  of  ‘interest  in  novel  food’)  and  Spearman  rank  correlation  (only  interest  in  novel  food;  Kolmogorov–Smirnov,  p  <  0.05).  Whether  the  temperament  traits  were  correlated  to  body  size  (TL)  and  sex  was  tested  by  ANCOVAs  (sex  factor:  variance  homogeneity,  Levene  test,  p  >  0.05).  

Significance  of  all  calculations  was  assessed  at  α  <  0.05.  Significance  of  sets  of  multiple   pair-­‐wise   comparisons  was   assessed   at   a   false   discovery   rate   (FDR)  adjusted   α   (Benjamini   &   Hochberg   1995).   Statistical   analyses   were   conducted  with  SPSS  15.0.  

Chapter  3  

54

Results  

Habitat  use  

The   temporal   occurrence   of   habitat   types   and   their   degree   of   complexity   was  relatively   stable.   We   did   not   find   any   significant   difference   between   stream  quadrats  (approximately  1  m2,  N  =  972)   from  June  2008  and  October  2008  (N  =  96)   for   any   of   the   parameters   considered   (Table   1).   From   the   originally   tagged  bullhead,  we  were  able  to  recapture  20  individuals,  which  stayed  over  the  whole  study  period  in  the  habitat-­‐determined  stretch.  These  20  individuals  had  a  mean  ±  SD   TL   of   58.9   ±   6.0   mm;   the   gender   of   19   individuals   could   be   determined   (7  males   and   12   females).   The   tracking   sessions   and   the   individual   recapture  resulted   in  a  mean  ±SD  of  10.45  ±  1.50  habitat   localizations  per   individual   (N   =  20).  

Bullhead   (N   =   20)   showed   a   non-­‐random   selection   between   habitat   types  (likelihood  2  χ2  =  529.02,  df  =  100,  p  <  0.0001)  and  habitat  complexity  (likelihood  2   χ2   =   451.92,   df   =   40,  p   <   0.0001).   Fish   significantly   preferred   stream   patches  with  natural  branch  jams  (Figure  2a);  open  water  was  significantly  avoided.  The  result   is   accompanied   by   a   significant   preference   for   stream   patches   with   high  habitat   complexity   and   the   significant   avoidance   of   patches,   which   provided   <  33%   structure   (Figure   2b).   Bullhead   showed   no   significant   habitat   choice   for  patches   with   intermediate   complexity   (≥   33%   ≤   66%   structure).   Individual  habitat  complexity  use  was  consistent,  indicated  by  a  high  repeatability  value  of  r  =  0.568  (ANOVA,  mean  square,  between  groups  =  4.264,  within  group  =  0.289;  see  also   Figure   3).   The   individual   preferences   of   habitat   complexity   could   not   be  explained  (ANCOVA,  N  =  20,  corrected  model,  sum  of  squares  =  0.494,  df  =  2,  F    =  0.624,  p  =  0.549)  by  body  size  (TL,  ss  =  0.194,  df  =  1,  F  =  0.490,  p  =  0.494)  or  sex  (ss  =  0.163,  df  =  1,  F  =  0.413,  p  =  0.530).  

   

Temperament  traits  and  habitat  use

      55

a)    

 

 

 

 

 

 

 

b)    

 

 

 

 

 

 

   

Figure  2  Habitat  selection  ratios  and  their  associated  Bonferroni  adjusted  95%  confidence  intervals  to  show  selection  for  (interval  >  1)  or  against  (interval  <  1)  a  given  habitat  type  (a)  or   habitat   complexity   value   (b)   of   individual   bullhead   (N   =   20);   an   asterisk   indicates  significant  selection.  

Chapter  3  

56

Temperament  traits  and  the  relation  to  habitat  use  

Of  the  20  field-­‐observed  and  recaptured   individuals,  18  were  successfully   tested  in   the   laboratory   for   five   temperament   traits.   The   tests   were   behaviourally  consistent   (N  =  18   individuals)  during   the   laboratory   test  period  with  r   =  0.439  for  activity  (ANOVA,  ms,  between  groups  =  35.645,  within  group  =  10.649)  and  r  =  0.422   for   novel   environment   activity   (ANOVA,   ms,   between   groups   =   63.741,  within   group   =   25.937).   Interest   in   novel   food   was   represented   by   a   principal  component   (PC1)   in   which   the   approach,   the   interest   and   the   ingestion   of   the  maggot   were   positively   correlated   (Table   3).   In   the   aggressiveness   PC1   the  individual’s   activity   change   and   the   number   of   bites  were   positively   correlated,  suggesting   that   fish,   which   bite   more   often   became   also   more   active   when   the  stimulus   fish  was   introduced.  A  positive   value  of   boldness  PC1  meant   that   after  the  introduction  of  a  predator  (pike)  individuals  spent  relatively  more  time  close  to  a  refuge  (%),  had  on  average   longer  stays  at  a  refuge  (s),  spent  relatively   less  time  in  the  tank  half  close  to  the  predator  (%)  and  were  less  active  (squares  min-­‐1)  compared  to  the  control  test  (Table  3).  Boldness  PC2  was  mainly  dominated  by  the  activity  change  from  control  to  predator  test.  

Of  the  five  temperament  traits  tested  only  aggressiveness  was  significantly  related   to   habitat   use   (Table   4).   Aggressiveness   was   strongly   negatively  correlated  to  habitat  complexity  (Pearson,  N  =  18,  rp  =  −0.527,  p  =  0.025;  Figure  3):   individuals   who   were   less   aggressive   towards   the   stimulus   fish   under  laboratory   conditions  were  more   often   found   in   complex   habitat   patches   under  field  conditions.  This  correlation  was,  however,  not  significant  after  α  adjustment  for   multiple   comparisons   (FDR   αadjusted   =   0.0083).   After   exclusion   of   two  exceptional  individuals  who  were  almost  exclusively  found  in  open  water  (Figure  3),   the   negative   correlation   between   aggressiveness   and   habitat   complexity  became   even   stronger   and   also   significant   (Pearson,   N   =   16,   rp   =   −0.921,   p   <  0.001).  Aggressiveness  was  not  significantly  related  (ANCOVA,  N  =  18;  corrected  model,  ss  =  1.255,  df  =  2,  F  =  0.598,  p  =  0.563)  to  body  size  (TL,  ss  =  0.892,  df  =  1,  F  =  0.850,  p  =  0.371)  or  sex  (ss  =  0.835,  df  =  1,  F  =  0.795,  p  =  0.387).  

   

Temperament  traits  and  habitat  use

      57

 

 

 

 

 

 

 

 

 

   

Figure  3  Relationship  between  the   individual  use  of  habitat  complexity  and  the  individual  level  of  aggressiveness  of  bullhead.  Presented  are  the   individual  mean  values  ±  SD  of  the  habitat  complexity  use  from  a  mean  of  10.45  ±  1.50  localizations  linked  with  the  individual  value  of  the  principal  component  1  (PC1)  of  the  laboratory  tested  aggressiveness.  Indicated  are   the   regression   lines   for   all   individual   variable   pairs,   with   (N   =   18,   straight   line)   and  without  outliers  (N  =  16,  dashed  line).  

Chapter  3  

58

 

 

Temperament  trait   Eigenvalue   Explained      variance  (%)  

Factor  loading  

(a)  Interest  in  novel  food  PC1  Approach  (N)  Interest  (N)  Ingest  (N)  

1.378        

45.95        

 0.694  0.739  0.593  

b)  Aggressiveness  PC1  Activity  change    Number  of  bites  (N)  

1.347      

67.33      

 0.821  0.821  

c)  Boldness  PC1  [PC2]  Refuge  use  (%)  Mean  duration  refuge  use  (s)  Positioning  (tank  side,  %)    Activity  change    

2.408  [1.087]          

60.19  [27.18]          

 0.930  [0.289]  0.811  [0.525]  -­‐0.783  [0.379]  -­‐0.521  [0.764]  

   

AGG  PC1  

BOLD  PC1  

BOLD  PC2  

ACT    

NEA    

  INF    PC1  

Habitat   rp   -­‐0.527   0.024   0.031   0.069   0.125   rs   0.099  

complexity   p   0.025   0.924   0.904   0.786   0.620   p   0.715  

Table   3   Principal   component  analysis  on   interest   in   novel   food   item,   aggressiveness   and  boldness  variables  of  bullhead.    

Factor   loadings,   Eigenvalue   and   explained   variance   are   presented   for   the   principal  components  (PC).  N  =  these  variables  were  defined  by  individual  counts;  each  test  consists  of  one  observation  for  each  individual  (N  =  18).  

Table   4  Cottus   perifretum:   Pearson   (rp)   and   Spearman   (rs)   correlations   of   aggressiveness  (AGG)   principal   component   1   (PC1),   boldness   (BOLD)   PC1   and   PC2,   activity   (ACT),   novel  environment  activity  (NEA)  and  interest  in  novel  food  (INF)  PC1  on  individual  use  of  habitat  complexity  (N  =  18  bullhead).      

Temperament  traits  and  habitat  use

      59

Discussion  

This  is,  to  the  best  of  our  knowledge,  the  first  study  demonstrating  a  link  between  field-­‐observed   habitat   use   of   various   complexity   levels   and   individual  aggressiveness   measured   under   standardized   laboratory   conditions.   Bullhead  that   were   found   more   often   in   highly   structured   habitats   were   less   aggressive  towards   a   smaller   conspecific.   Such   a   pattern   has   previously   been   shown   in  laboratory-­‐based   no-­‐choice   habitat   structure   studies   for   finfish   (Danio   rerio,  Basquill  &  Grant  1998;  Carfagnini  et  al.  2009;  Salmo  trutta,  Sundbaum  &  Näslund,  1998)   and   crayfish   (Orconectes   propinquus,   Corkum   &   Cronin   2004;   Cherax  destructor,  Baird  et  al.  2006).  Here  the  habitat  structure–aggressiveness  relation  at   the   individual   level   was   confirmed   in   a   habitat   choice   survey   under   natural  conditions.    

We   speculate   that   the   defense   of   a   territory   was   more   difficult   in   less  structured  habitats.  This  hypothesis  is  supported  by  a  study  in  house  mouse  (Mus  domesticus)   where   aggressiveness   per   encounter   of   a   conspecific   tended   to   be  higher   in  a   territory   located   in  an  open  habitat   than   in  a  habitat  with  a  complex  structure   (Jensen   et   al.   2005).   Furthermore,   Baird   et   al.   (2006)   showed   for   a  crayfish  that  the  number  of  and  the  time  spent  in  agonistic  interactions  is  higher  in   less   complex   habitats.   Therefore,   bullhead   occupying   less   structured   habitats  should  be  more  aggressive.  Our  study  design  can,  however,  not  resolve  the  causal  pathway   of   the   negative   relation   between   habitat   structure   and   aggressiveness.  Do   bullhead   become   more   aggressive   when   defending   their   territory   in   less  structured   habitats   or   do   more   aggressive   individuals   choose   to   live   in   less  structured  habitats  to  benefit  from  underused  resources  (compare  Svanbäck  et  al.  2008;  Kobler  et  al.  2009a)?  

Regardless   of   the   causal   pathway,   we   assume   that   the   level   of  aggressiveness   in   the   laboratory  may   still   have  been   related   to  previous  habitat  use   on   site.   This   indicates   that   the   habitat   structure-­‐aggressiveness   relation   of  this   study  may   not   be   phenotypically   plastic   in   the   short-­‐term.   Each   individual  was   held   for   a   period   of   approximately   one   week   under   habitat-­‐standardized  conditions  in  the  laboratory  tanks.  

The   negative   relation   between   habitat   complexity   use   and   aggressiveness  contrasts   with   the   hypothesis   that   more   aggressive   stream   fish   have   higher  competitive   abilities   and,   therefore,   the   ability   to   exclude   less   aggressive  individuals   from   preferred   habitats   (cf.,   Fausch   1984;   Weber   &   Fausch   2003).  Because   bullhead   prefer   highly   complex   habitats   (Greenberg  &  Holtzman   1987;  

Chapter  3  

60

Davey   et   al.   2005;   Legalle   et   al.   2005),   similar   to   this   study,   complex   habitats  should   be   occupied   by   more   aggressive   individuals.   We   speculate   that  competition  had  a  minor  effect  on  the  choice  of  habitat  structure.  The  focal  stretch  of   the   Laarse   Beek   is   situated   in   a   EU-­‐habitat   zone,   has   not   been   artificially  manipulated,  has  meandering  parts  and  contains  plenty  of  woody  debris   from  a  dense  beech-­‐oak  forest  surrounding  the  study  area.  It  is  plausible  that  structured  habitats   were   not   limiting   and,   hence,   the   influence   of   competition   on  microhabitat   use   was   relatively   low.   This   would   explain   why   more   aggressive  individuals   were   found   in   less   structured   habitats,   similarly   to   the   laboratory  studies  mentioned  earlier  on  that  were  conducted   in  the  absence  of  competition  for  structure.  

When   two   outlier   fish  were   excluded   from   the   aggressiveness-­‐habitat   use  calculation,   the   correlation   became   almost   100%.   The   constant   daytime   open  water  use  of  these  two  individuals  is  rather  uncommon,  which  was  shown  by  the  significant  avoidance  found  in  this  study  (see  also  references  in  the  introduction).  Further,   it   is   surprising   that   these   two   individuals   had   rather   low   levels   of  aggressiveness,   based   on   what   should   be   expected   from   the   behaviour   of   the  population   (Figure   3).   In   line  with   the   previous   discussion   of   higher   aggression  for  the  defense  of  less  structured  territories  (see  before)  it  can  be  speculated  that  these   two   individuals   were   less   territorial   and   expressed   a   spatial   behaviour  similar   to   juveniles   that  use   less  stable,  depositional  habitats   (see  Cottus  bairdii;  Petty  &  Grossman  2007).  

Against   our   hypothesis,   we   did   not   find   a   negative   link   between   habitat  complexity  use  in  the  field  and  the  laboratory  tested  activity.  The  significant  and  repeatable   between-­‐individual   differences   of   bullhead   activity   in   the   laboratory  (Kobler  et  al.,  data  not  shown)  are,   thus,  not  related  to   the  observed  habitat  use  differences  in  the  field.  It  may  be  that  the  habitat-­‐uniform  holding  of  bullhead  in  the  outside  tank  and  in  the  aquaria  during  approximately  a  one-­‐week  period  may  have  led  to  a  uniformity  of  activity.  This  is,  however,  rather  surprising  as  Salvanes  &   Braithwaite   (2005)   observed   that   juvenile   cod   (Gadus   morhua)   reared   in  different  habitat   structures   showed  activity  differences  even  after  keeping   them  together  for  eight  days  under  similar  conditions.  The  latter  study  was  conducted  with  cod  reared  from  the  larval  to  juvenile  stage  under  either  structured  or  non-­‐structured   tank   conditions   (Salvanes   &   Braithwaite   2005).   Large   variance   in  habitat  use  of  early  juvenile  phases  of  bullhead  has  not  been  reported  previously  (Van  Liefferinge  et  al.  2005).  It  seems  that  a  possible  habitat-­‐activity  adaption  of  bullhead   is   either   only   of   short   term   and,   thus,   could   not   be   detected  with   our  experimental   protocol,   or   did   not   exist   in   the   studied   population   due   to  

Temperament  traits  and  habitat  use

      61

homogeneous   habitat   use   in   the   juvenile   phase.   However,   our   dataset   only  includes  daytime  shelter  habitat  use  and  does  not  cover  possible  habitat  switches  during   the   night   when   sculpins   tend   to   be   more   variable   in   habitat   choice  (Greenberg  &  Holtzman   1987;  Natsumeda   2007).   Future   studies   should   include  diel   changes   in   habitat   use   and   examine   how   this   affects   inter-­‐   individual  differences  in  activity  levels  (see  Kobler  et  al.  2009a).  

We  assume  behavioural  consistency  during  the  aggressiveness  test  since  we  repeated   only   two   of   the   five   temperament   tests.   There   was,   however,   a  repeatability   of   r   =   0.439   for   activity   and   of   r   =   0.422   for   novel   environment  activity.   These   values   indicate   an   average  degree   of   individual   consistency   (Bell  2009;   Kobler   et   al.   2009b).   By   comparing   repeatability   between   temperament  traits,  Bell   et   al.   (2009)   showed,   in   a  meta-­‐analysis,   that   aggressiveness   is  more  repeatable  than  activity.  We  speculate  that  the  individual  responses  of  bullhead  to  the   stimulus   fish   are   repeatable   in   time.   Moreover,   Kobler   et   al.   (2009b)   have  shown  that  a  temperament  trait,  the  exploration  rate,  observed  in  the  laboratory  reflects   this   behaviour   in   the   field.   The   probable   repeatability   and   the  transferability   of   laboratory   observation   to   field   behaviour   confirm   the  significance  of  the  aggressiveness-­‐habitat  correlation  of  this  study.  

The  present  study  used  20  out  of  334  originally  PIT-­‐tagged  individuals  that  were  recaptured  in  the  stream  section  in  which  they  were  initially  captured.  In  an  accompanying   study,   Kobler   et   al.   (data   not   shown)   detected   large   movement  ranges   in   the   same  bullhead  population   (up   to  1284  m).  As   a   result,   the   stream  stretch   of   the   present   study   contained   only   a   subset   of   the   originally   tagged  individuals   and   a   biased   sample   towards  more   sedentary   individuals.   However,  aggressiveness,   boldness,   interest   in   novel   food   and   basic   activity   were   not  related   to   the   movement   range   values   (N   =   53   field-­‐   and   laboratory-­‐observed  individuals;   Kobler   et   al.,   data   not   shown).   Thus,   we   do   not   expect   any   bias   of  these  temperament  traits  in  the  current  bullhead  sample.  

Acknowledgments  

We   thank  G.   Eens,   P.   Scheys,  K.  Geudens,  D.  Geelhand   and   S.   Vanwetswinkel   for  technical  assistance  and  G.  Knaepkens  for  advice.  Research  was  funded  by  FWO-­‐Flanders   and   the   University   of   Antwerp.   G.E.M.   is   a   post-­‐doctoral   researcher  funded   by   the   FWO-­‐Flanders.   This   study   was   conducted   under   permits   for  capture,  manipulation  and  telemetry  issued  by  Flemish  authorities.  

 

 

 

 

CHAPTER  4  

 

DIEL  MOVEMENT  OF  BULLHEAD    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Diel  movement  of  bullhead

      65

 

Diel  movement  of  bullhead  (Cottus  perifretum)                                                                  in  a  lowland  stream    

 

Alexander  Kobler,  Yves  Humblet,  Guy  Knaepkens,  Brecht  Engelen,  Marcel  Eens    

Ecology  of  Freshwater  Fish  (2012)  21:  453-­‐460  

 

 

Abstract  

Passive  integrated  transponder  tags  have  been  successfully  applied  in  Cottus  spp.  and   have   enabled   researchers   to   gather  more   information   about   the  movement  patterns  of  individual  fish  in  the  wild.  In  two  succeeding  years  during  springtime,  a   portable   antenna   was   used   to   determine   diel   movements   of   bullhead   (Cottus  perifretum).   In   2007,   bullhead   (N   =   26)  moved   significantly   farther   distances   at  night  (mean,  0.42  m  h-­‐1)  and  dawn  (mean,  0.35  m  h-­‐1)  than  during  daytime  (mean,  0.11  m  h-­‐1;  mixed  model,  p  <  0.001,  respectively;  p  =  0.001),  which  may  be  due  to  foraging   activities   for   Gammarus   spp.   Irrespective   of   diel   period,   smaller   fish  covered  significantly  longer  distances  (p  =  0.001).  In  2008,  similar  diel  movement  patterns  were  observed,  but  the  differentiation  between  daytime  (mean,  0.12  m  h-­‐1)   and   night   periods   (mean,   0.18   m   h-­‐1)   was   not   significant   (mixed   model,   p   =  0.087;  N  =  49  bullhead).  It  is  discussed  that  longer  tracking  intervals  used  in  2008  (three  times  per  24-­‐h  instead  of  every  two  hours)  were  not  suitable  to  detect  the  sheer  magnitude  of  distances   covered  during  a  diel  period.   It   is   shown   that   this  may  be  due  to  ‘site  fidelity’  of  some  individuals:  after  swimming  several  metres  at  night,   they   returned   to   the   exact   location   they   previously   occupied   during  daytime.   In   2008,   sex   and   body   size   were   not   related   to   diel   movement.   The  present   study   is   the   first   to   present   a   quantitative   differentiation   between   diel  distances  covered  in  a  Cottus  spp.      

Chapter  4  

66

Introduction  

Knowledge   about   the   behaviour   of   small   stream   fish   species,   particularly   small  benthic  species,  is  limited  (Lucas  &  Baras  2001;  Petty  &  Grossman  2004).  This  is  not  only  due  to  the  lack  of  commercial  interest  (Lucas  &  Baras  2001),  but  also  due  to   the   difficulties   in   tracking   individual   fish   of   small   body   size   in   lotic  environments.   Whereas   several   recent   studies   focused   on   the   long-­‐term  movement  of  small  stream  fishes  (e.g.  ide,  Leuciscus  idus,  Winter  &  Fredrich  2003;  gilt   darters,   Percina   evides:   Skyfield   &   Grossman   2008;   creek   chubs,   Semotilus  atromaculatus:  Belica  &  Rahel  2008),  there  are  only  few  studies  that  investigated  diel  differences  in  distances  covered  (e.g.  brown  trout,  Salmo  trutta:  Bunnell  et  al.  1998;   Young   1999;   cutthroat   trout,  Oncoryhnchus  clarki  pleuriticus:   Young   et   al.  1997).    

Diel   movements   are   characteristic   for   many   freshwater   stream   fishes,  particularly   for   juveniles   or   small-­‐bodied   species   (Lucas  &  Baras   2001).   In   lotic  environments,   diel   movements   can   be   longitudinal   and   occur   between   distinct  daytime   and   night-­‐time   sites   (Lucas   &   Baras   2001).   For   instance,   it   has   been  observed  that  common  dace  (Leuciscus  leuciscus,  Clough  &  Ladle  1997)  and  brown  trout  (Clapp  et  al.  1990;  Young  1999)  have  specific  diurnal  home  sites,  which  they  leave  during  dusk  and  to  which  they  return  during  dawn.  Possible  behaviours  that  influence  these  movement  patterns  include  anti-­‐predator  behaviour  and  foraging  activity   (Clough   &   Ladle   1997).   Neither   stream   site,   on   its   own,   meets   all  requirements   (shelter,   temperature,   oxygen   and   food   availability)   for   a   fish  species   during   an   entire   diel   cycle   (Clough  &   Ladle   1997).   Therefore,   fish   often  move  between  different  sites  during  their  active  and  inactive  phases  (Helfman  et  al.  1997).    

The   stream   fish   species   of   the   present   study,   the   bullhead   (Cottus  perifretum),  is  a  small  benthic  fish  species  living  in  the  demersal  zones  of  streams  and   rivers  where   they  express   a   strong  preference   for  highly   structured  habitat  types   (Kobler   et   al.   2011).   Bullhead   belong   to   the   freshwater   sculpins   [genus  Cottus,  species  rarely  exceeding  15  cm  in  total  length  (TL)]  that  are  found  in  small  streams,   large   rivers   or   lakes   of   the   northern   hemisphere   (Nelsen   1994).   The  extremely   reduced   swim-­‐bladder   (Freyhof   et   al.   2005)   and   the   dorso-­‐ventrally  flattened  tapering  body  (Tomlinson  &  Perrow  2003)  of  bullhead  is  an  adaptation  to  lotic  environments  in  which  they  swim  with  a  hopping  motion  over  substrates  by   using   their   large   pectoral   fins.   While   several   recent   long-­‐term   studies   have  focused  on  dispersal  distances  of  freshwater  sculpins  (Breen  et  al.  2009;  Hudy  &  Shiflet  2009;  Ovidio  et  al.   2009),   the  diel  movement  behaviour  has  not  yet  been  

Diel  movement  of  bullhead

      67

quantified.   It   is   well-­‐known   that   freshwater   sculpins   are  mainly   active   at   night  (e.g.   Smyly   1957;   Andreasson   1969,   1973;   Brandt   1986;   Natsumeda   1998)   and  can  forage  in  total  darkness  (Hoekstra  &  Janssen  1985)  but  relevant  quantitative  information  is  only  available  from  aquarium  observations  (Andreasson  1969;  but  see   Greenberg   &   Holtzman   1987;   Natsumeda   2007   for   quantified   home   range  field  data).    

Because  of   the   larger  nocturnal  home  range  of   the  banded  sculpin   (Cottus  carolinae,   Greenberg  &  Holtzman  1987)   and   the   Japanese   fluvial   sculpin   (Cottus  pollux,  Natsumeda  2007)  and  the  nocturnal  activity  of  bullhead  (e.g.  Smyly  1957;  Andreasson  1969)  we  hypothesized  that  bullhead  cover  longer  distances  at  night.  Further,   foraging  success  may  also  be  higher  during  night  as  one  of  the  common  food  resources,  freshwater  shrimps  (amphipods,  Gammarus  spp.)  are  nocturnally  active   (e.g.   Holomuzki   &  Hoyle   1990).  We   further   expected   that   bullhead   swim  only   very   short  distances  during  daytime  as  bullhead   seek   shelter   in   structured  habitats  during  daylight  (Davey  et  al.  2005).  Similar  to  diurnal  home  site  fidelity  of  common  dace  and  brown  trout  (Clapp  et  al.  1990;  Young  1999;  Clough  &  Ladle  1997),  it  is  possible  that  bullhead  show  site-­‐fidelity  to  a  daytime  shelter  to  which  they  return  after  nocturnal  movements.  

The  present   study  examined   the  distances   that  bullhead   cover  during  diel  periods   in   a   small   lowland   stream   in   Flanders   (Belgium)   by   using   passive  integrated   transponder   (PIT)   tag   telemetry.   PIT   tags   have   been   successfully  applied   in   freshwater  sculpins   [e.g.  C.  perifretum  (formerly  determined  as  Cottus  gobio),   Knaepkens  et   al.   2007;  Cottus  bairdii,   Ruetz  et   al.   2006;  Cottus  cognatus,  Keeler   2006,   Keeler   et   al.   2007]   enabling   researchers   to   locate   them   with   less  than  30  cm  precision  (Cucherousset  et  al.  2005)  in  even  very  turbid  water  and/or  at  night.   It  has  been  shown  that  PIT  tag   insertion  has  no  significant   influence  on  survival,  growth  and  swimming  capacity  (Ruetz  et  al  2006;  Knaepkens  et  al  2007).  The  tracking  was  conducted  in  two  succeeding  years  with  two  different  tracking  protocols:   tracking  every   two  hours  and   the  assignment  of  movement   to  all  diel  periods  (twelve  times  tracking  during  24-­‐h,  2007)  and  only  three  times  tracking  during  24-­‐h  (synchronized  with  sunrise  and  sunset)  and  assignment  of  movement  to  daytime  and  night-­‐time   (twilights  and  night)  period   (2008).   It  was  compared  whether   the   two   protocols   (with   different   labour-­‐intensity)   would   result   in   a  similar  difference  between  diurnal  and  nocturnal  movements.   In  addition   to   the  comparison   of   the   protocols,   the   potential   relations   between   sex,   body   size   and  movement  distances  were  also  assessed.  

 

Chapter  4  

68

Materials  and  Methods  

Study  area  and  habitat  determination  

The   study   was   conducted   in   the   Laarse   Beek   (51°16'28.40"N;   4°29'4.63"E),   a  lowland  stream  in  northern  Flanders,  Belgium.  The   focal  stretches  of   the  stream  have  an  average  width  of  ∼3  m  and  a  depth  of  ∼0.3  m.  The  stream  crosses  a  beech-­‐oak   forest   with   black   alder   (Alnus   glutinosa)   rooting   partly   in   the   stream.   The  stream  bed  is  characterized  by  a  sandy  soil  with  woody  debris  patches.  Bullhead  is   the  most  abundant   fish  species   in   the  stream  with  a  density  of  approximately  2.1   adults   per  m2   (Kobler   et   al.   2011).   Aquatic   predators   such   as   northern  pike  (Esox   lucius),   European   eel   (Anguilla   anguilla)   and   European   perch   (Perca  fluviatilis)   were   rare   (Kobler   et   al.   2011).   Similarly,   the   predation   risk   through  avian  predators  such  as  grey  heron  (Ardea  cinerea)  and  kingfisher  (Alcedo  atthis)  was  probably  low,  as  they  were  rarely  observed.    

Capture  and  tagging  

The   focal   stretch   of   the   stream   was   marked   every   2   m   with   consecutively  numbered  wooden  poles  along   the   right   stream  bank.  Adult  bullhead   (>  50  mm  total   length,   TL)   were   caught   by   electro-­‐fishing   (WFC7-­‐10,   Electracatch   Int.,  Wolverhampton,   UK).   Bullhead   were   then   anaesthetized   (0.25  ml  L-­‐1   2-­‐phenoxyethanol)   and   individually   coded   PIT   tags   (12   x   2.1  mm,   0.094  g;   ID100,  EID   Aalten,   NL)  were   inserted   horizontally   into   the   body   captivity,   through   a   2  mm  incision,  close  to  the  genital  papillae  (by  using  a  scalpel).  Due  to  the  small  size  of  the  fish  and  the  opening,  the  incision  was  not  stitched  (Bruyndoncx  et  al.  2002).  After   implantation,   bullheads   were   allowed   to   recover   in   buckets   with   fresh  stream  water  and  released  at  their  capture  position.  

The  electro-­‐fishing  and  tagging  for  the  2007  tracking  took  place  in  a  250  m  stream   stretch   of   the   Laarse   Beek   on   13   November   2006.   The   66   PIT-­‐tagged  individuals  had  a  mean  TL  (±  SD)  of  63.8    ±  7.0  mm  and  mean  wet  weight  of  3.3  ±  1.4  g.   In  2008,  we  electro-­‐fished   from  4  to  14  February.  This  period  was  chosen  because   of   the   possibility   of   sex-­‐determination   due   to   the   start   of   the   annual  gonadal  maturation   (see   also   further).   A   324  m   stream   stretch   that   overlapped  large   parts   of   the   electro-­‐fishing   stretch   from   2006  was   fished   twice   and  more  intensively  than  in  2006  (to  receive  a  good  abundance  estimate  for  another  study,  Kobler  et  al.  2011).  334  PIT-­‐tagged   individuals  had  a  mean  TL  of  62.1  ±  6.3  mm  and   mean   weight   of   3.3   ±   1.2   g.   In   2008,   every   tagged   individual   was  photographed.  

Diel  movement  of  bullhead

      69

 Sex  determination  in  2008  

Because   an   external   sex   determination   of   bullhead   is   not   reliable   outside   the  reproductive   period   (J.   Freyhof,   personal   communication),   bullhead   caught   in  November   2006   were   not   sexed.   For   2008,   the   gender   of   bullhead   was  determined   retrospectively   by   evaluating   the   pictures   of   the   individuals.   The  gender  could  be  determined  by  morphological  characteristics.   Individuals  with  a  very   round   belly   (looking   tadpole-­‐alike),   that   clearly   suggested   the   content   of  eggs,  were  determined  as   females.  Males   could  be  determined  by   the   triangular  shape   of   the   head   (Freyhof   et   al.   2005)   and   the   proportionally   smaller   body  cavity.  The  sex  of  every  individual  was  determined  three  times  on  three  different  days,  with  the  researcher  being  blind  to  the  identity  of  the  individual.  Ambiguity  about  the  sex  of  an   individual   led  to  a  non-­‐defined  gender  of   the   individual.  The  majority  of  individuals  (83%)  were  sexed  including  138  females  and  139  males.  

 Tracking  

Tracking  was   conducted  manually   by   carefully  walking   upstream   in   the   stream  centre  (Kobler  et  al.  2011)  using  a  portable  PIT  antenna  (Trovan  components,  EID  Aalten,   NL,   custom   made   see   Cucherousset   et   al.   2005).   Once   a   bullhead   was  located,   the   time   and   stream   position   were   recorded.   While   recording,   the  antenna   was   kept   above   the   bullhead   and   an   escape   response   following  localization  was  never  observed  (Kobler  et  al.  2011).    

In   2007,   24-­‐h   tracking   sessions   were   conducted   on   13   March   and   on   14  May.  This  period  was  chosen  as  bullhead  activity   is  highest  during   reproductive  period  (Kobler  A.,  Humblet  Y.,  Geudens  K.,  Eens  M.,  in  preparation)  and  the  night  is   long   enough   (in   May   in   Antwerp   approx.   5.5   h)   for   a   good   assignment   of  movements  to  the  night  period.  The  stream  stretch  was  scanned  every  two  hours  (10   a.m.   to   10   a.m.)   to   estimate   real   distances   covered   (Natsumeda   2007)   and  good   assignment   to   diel   periods   (Kobler   et   al.   2008).   The   2-­‐h   interval   allowed  precise   screening   of   a   stream   stretch   of   165  m,   centrally   located   in   the   electro-­‐fishing  stretch.  Therefore,  the  observed  individuals  were  only  a  subsample  of  the  originally   tagged   bullhead.   One   researcher   scanned   the   stream   while   another  researcher   recorded  notes  at   the   streamside.  The   locations  of  detected  bullhead  were   recorded   using   stream   length   (e.g.   125   m)   and   stream   width   (left,   left-­‐middle,  middle,  right-­‐middle  and  right)  information.  Each  tracking  day  resulted  in  a  maximum  of  twelve  localizations  per  individual.  

Chapter  4  

70

In  2008,   the  24-­‐h  tracking  sessions  were  conducted  on  14  March,  11  April  and  9  May  (one  tracking  session  more  than  in  2007  due  to  a  less  labour-­‐intensive  tracking  protocol;  see  further).  The  tracking  stretch  was  110  m  long  and  centrally  located   in   the  electro-­‐fishing   stretch.  This   stretch   length  and  screening  duration  (∼80   minutes   for   this   stretch)   was   a   prerequisite   as   the   twilight   lasted   only  between  72  and  93  minutes  and  we  aimed   to   locate  every   individual  during   the  dawn  period.  The  start  of  each  tracking  interval  was  adapted  to  the  time  of  sunset  and   sunrise.  The   first   interval   started  1.5  h  before   sunset   (daytime),   the   second  1.5  h  before  sunrise  (dawn),  and  the  third  interval  again  1.5  h  before  sunset.  This  tracking   protocol   enabled   the   assignment   of   the  movement   to   night   (night   and  both   twilights:   after   sunset   to  before   sunrise;   from   first   to   second   tracking)  and  daytime  period  (sunrise  to  sunset;  from  second  to  third  tracking).  This  was  done  to   test   whether   this   protocol   (only   three   times   tracking   per   24-­‐h:   less   labour  intensive   and   less   disturbance   in   the   stream)  would   reveal   a   similar   difference  between  diel  periods  than  in  2007  (twelve  times  tracking  per  24-­‐h).  As  a  further  change   compared   to   2007,   the   stream   width   information   was   reduced   to   “left,  middle   and   right”   as   this   differentiation   allowed   a   more   distinct   and   faster  assignment  to  a  location  than  in  the  previous  year.  

Statistics  

Movement  was  represented  by  the  variable  “minimum  displacement”  (m  h-­‐1),  the  distance  that  an  individual  at  the  minimum  moved  between  consecutive  tracking  locations   divided   through   the   time   (minutes)   between   the   locations   (Rogers   &  White   2007).   This   standardized   measure   accounted   for   the   different   time  intervals  between  consecutive  tracking  locations.    

In  2007,  minimum  displacements  were  assigned  to  daytime,  dusk,  night  and  dawn.   The   beginning   and   end   of   each   diel   period  were   calculated  with   nautical  definition   by   using   http://www.cgi.stadtklima-­‐stuttgart.de/mirror/sonne.exe  (with   Düsseldorf,   Germany   as   reference   city;   Kobler   et   al.   2008).   Movement  values  were  excluded  when  a  missing  individual   location  resulted  in  a  minimum  displacement   that   could   not   be   assigned   to   a   single   diel   period.   For   instance,   a  missing   dawn   location   would   result   in   a   minimum   displacement   from   night  location   to   daytime   location   and   it   would   be   unclear   when   the   distance   was  covered,   during   dawn   or   daytime.  However,   if   a   fish  was   not   localized   during   a  twilight  period  (twilight  was  shorter  than  the  tracking  interval)  but  shortly  after  that   period   (e.g.   some   minutes   afterwards)   the   delayed   location   was   used   to  estimate  twilight  movement  (Kobler  et  al.  2008).  In  general,  individuals  with  less  than   nine   out   of   twelve   tracking   localizations   per   24-­‐h  were   excluded   from   the  

Diel  movement  of  bullhead

      71

tracking   session.   In   total   394   movements   from   26   bullhead   were   analysed.   In  2008,   individuals   were   excluded   from   a   tracking   session   if   one   out   of   three  possible   locations   was   missing.   This   resulted   in   1   daytime   and   1   night   period  (night   and   twilight)  movement  per   individual   per   tracking   session   (see  before);  148  movements  from  49  individuals.    

The   relationship   between   minimum   displacement   (dependent   variable),  diel  period,  body  size  (TL),  sex  (only  available  for  2008)  and  diel  period  ×  sex  was  calculated  by  a   linear  mixed  model   (one   for  each  year).  The  “diagonal”  repeated  covariance  type  was  used.  Diel  period  and  sex  (the  factors)  were  treated  as  fixed  effects.  Because  the  tagged  individuals  were  a  defined  selection  of  the  population  (only  individuals  >  50  mm  TL  were  studied)  body  size  was  also  treated  as  a  fixed  effect.   The   individuals  were   treated   as   random   subjects.   The   significance   of   the  differences  between  factors  with  more  than  two  levels  (diel  period  in  2007)  was  compared  by   the  mixed  model  using  Bonferroni   confidence   interval   adjustment.  Variances   of  minimum   displacement   between   the   factor   levels   (diel   period   and  sex)  were  heterogeneous  (Levene-­‐test,  p  >  0.05)  and  minimum  displacement  was,  therefore,   transformed   [Ln   (x   +   1)].   Insignificant   variables   were   step-­‐wise  excluded  from  the  mixed  models.  Significance  of  all  calculations  was  assessed  at  α  <  0.05  and  conducted  with  SPSS  15.0  (SPSS  Inc.,  Chicago,  IL,  USA).  

Results  

In   2007,   the   distances   covered   (minimum   displacements,   m   h-­‐1)   differed  significantly  between  diel  periods  (Table  1).  The  minimum  displacements  during  night  (Figure  1,  range  0  to  5.4  m  h-­‐1)  were  significantly  higher  than  those  during  daytime  (p  <  0.001,  daytime:  0  to  5.6  m  h-­‐1)  and  dusk  (p  =  0.005,  dusk:  0  to  6.5  m  h-­‐1;).  Minimum  displacements  during  dawn  (0  to  3.8  m  h-­‐1)  were  also  significantly  higher  than  those  during  daytime  (p  =  0.001;  Figure  1).  Irrespective  of  diel  period,  smaller  fish  covered  significantly  longer  distances  (Table  1).    

   

Chapter  4  

72

 

 

 

 

 

 

 

 

Figure  1  Minimum  displacement  (m  h-­‐1)  of  bullhead  (N  =  26)  in  the  Laarse  Beek  on  13  March  and   14   May   2007.   Presented   values   are   retransformations   [exp   (x)   -­‐   1]   of   the   estimated  marginal  means   and   their   standard   errors   of   the   linear  mixed  model.   Number   of   individual  movements  for  the  calculation:  daytime    =  197,  dusk  =  40,  night  =  113,  dawn  =  44;  significant  differences  between  diel  periods  are  indicated  by  different  letters  (a  to  c)  above  error  bars.  

 

 

Estim.  SE  =  standard  error  of  estimate;  (a)  this  parameter  is  set  to  zero  because  it  is  redundant  

   

Source   Fdf   Estimate   Estim.  SE   p  

Intercept   38.7931   0.552   0.090   <  0.001  Diel  period   18.6363   Day  =  -­‐0.198  

Dusk  =  -­‐0.134  Night  =  0.046  Dawn  =  0  (a)  

0.049  0.060  0.061  0  

<  0.001  

TL  (mm)   11.1411   -­‐0.004   0.001   0.001  

Table   1   Linear   mixed   model   of   diel   period   and   body   size   (total   length,   TL)   on   minimum  displacement  [LN  (m  h-­‐1  +  1)]  of  bullhead  (N  =  26)  on  13  March  and  14  May  2007.  

Diel  movement  of  bullhead

      73

Forty-­‐one  24-­‐h  cycles  from  26  individuals  were  recorded  during  13  March  and  14  May  2007.  Twelve  24-­‐h  cycles  from  eleven  individuals  (29.3%  of  all  24-­‐h  cycles   in   2007)   were   characterized   by   activity   during   twilight   and   night   while  being   stationary   during   daytime.   These   individuals   left   their   diurnal   location  during  dusk,   swam  some  meters  during  night   and  dawn  and  were  back   at   their  previous   diurnal   location   on   the   following   daytime   localization   (Figure   2).   Of  these   eleven   “homing”   individuals,   eight   were   recorded   twice   but   only   one  individual   showed   a   similar   diel   habitat   shift   pattern   with   fidelity   to   a   diurnal  location   during   the   second   tracking   session.   Further,   only   three   of   the   eleven  homing  individuals  were  found  at  the  same  diurnal  location  (within  1  m2)  during  the   second   tracking   session.   Other   24-­‐h   cycles   were   either   characterized   by   a  completely   stationary   behaviour   (recorded   within   1   m2;   13   cycles,   31.7%),  upstream  movement  (1  cycle,  2.4%),  downstream  movement  (7  cycles,  17.1%)  or  a  more  random  direction  of  diel  movements  (8  cycles,  19.5%).  

Similarly   to   the   previous   year,   in   2008   the  mean  minimum   displacement  was  higher  during  night  period  (night  and  twilight  combined;  mean  of  individual  means  ±  SD,  N  =  49;  0.18  ±  0.19  m  h-­‐1;  range  0  to  0.9  m  h-­‐1)  than  during  daytime  (0.12  ±  0.10  m  h-­‐1;  range  0  to  0.6  m  h-­‐1).  However,  even  after  stepwise  exclusion  of  the   insignificant   variables   the   difference   between   diel   periods   did   not   reach  significance  (p  =  0.087,  Table  2).  The  result  of  the  linear  mixed  model  (intercept,  p  =  0.931)  that  included  all  independent  variables  was:  diel  period  (p  =  0.137),  body  size  (p  =  0.348,  estimate  0.002),  sex  (p  =  0.635)  and  sex  ×  diel  period  (p  =  0.445).    

Of   76   24-­‐h   cycles   from   49   individuals   observed   from   14  March   to   9  May  2008,  13  24-­‐h  cycles  from  13  individuals  (17.1%  of  all  24-­‐h  cycles  in  2008)  were  characterized  by  a  diel  location  shift  with  fidelity  to  a  diurnal  location,  similar  to  what   was   observed   in   2007   (Figure   3).   None   of   the   13   homing   individuals  repeated   this   behaviour   during   a   second   tracking   session   (ten   of   these   13  individuals  were   recorded   twice,   one  was   recorded   three   times)   nor  were   they  found  at  exactly  the  same  diurnal  location  at  the  second  tracking  session  (in  most  cases  they  shifted  the  diurnal  location  by  one  or  two  metres).  The  other  63  24-­‐h  cycles  were   characterized  by   stationary  behaviour   (14  cycles,  18.4%),  upstream  movement   (13   cycles,   17.1%),   downstream   movement   (17   cycles,   22.4%)   or   a  more  random  movement  direction  (19  cycles,  25%).      

   

Chapter  4  

74

 

 

 

 

 

 

 

 

Figure  2 Position  changes  during  24-­‐h  of  four  bullhead  (not  sex-­‐determined)  from  14th  to  15th  May  2007.  The  2-­‐h  tracking  intervals  were  assigned  to  diel  periods.  Each  quadrant  contains  the  tracking  locations  of  one  individual.  Note  that  not  all   individuals  were  found  all  the  time.  For  instance,   the   individual   in   the   upper   right   quadrant   was   not   found   during   dawn;   day   2   =  location  during  the  second  daytime  of  the  tracking  session  (last  screening  of  a  24-­‐h  cycle).  

 

 

 

 

 

 

 

 

Figure  3  Position  at  daytime  (before  sunset,  day  1),  dawn  and  the  following  daytime  (before  sunset,  day  2)  during  24-­‐h  of  four  bullhead  from  13th  to  14th  March  (the  two  upper  quadrants)  and  from  10  to  11  April  2008  (the  two  lower  quadrants).  Each  quadrant  contains  the  tracking  locations   of   one   individual;   in   order   to   improve   visual   presentation,   the   second   daytime  locations  were  put  0.1  m  upstream  but  were  recorded  on  the  same  position  than  during  the  first  daytime.    

Diel  movement  of  bullhead

      75

Table  2   Linear  mixed  model  of  diel  period,  body  size,  sex  and  diel  period  ×  sex  on  minimum  displacement  [LN  (m  h-­‐1  +  1)]  of  bullhead  (N  =  49)  on  14  March,  11  April  and  9  May  2008.    

Source            Fdf      Estimate   Estim.  SE            p  

Intercept   129.2281   0.096   0.010   <  0.001  Diel  period   2.9921   Day  =  0.035  

Night  =  0  (a)  0.020  0  

0.087  

Most   insignificant  variables  were  step-­‐wise  excluded;  Estim.  SE  =  standard  error  of  estimate;  Day   =   daytime,   Night   =   night   and   twilights;   (a)   this   parameter   is   set   to   zero   because   it   is  redundant.  

Discussion    

This  is  the  first  study  to  present  a  diel  differentiation  of  movement  distances  for  a  species  of  the  genus  Cottus  (but  see  Natsumeda  1998,  2007  for  diel  home  range).  Our   results   confirmed   the  common  observation   that  Cottus   spp.   are  night-­‐active  (e.g.   Natsumeda   1998,   2007).   Similar   to   other   studies  which   compared   capture  rates  between  diel  periods  (Broadway  &  Moyle  1978;  Hoekstra  &   Janssen  1985;  Brandt   1986),   which  made   visual   observations   during   diel   periods   (Natsumeda  1998,  2007)  or  observed  movement  in  different  light  intensities  in  the  laboratory  (Andreasson  1969),   the  swimming  distances  of  bullhead  during   the  2-­‐h   tracking  intervals   were   shortest   during   daytime   (but   see   Andreasson   1973   for   seasonal  fluctuation).   This   may   be   explained   by   a   reduced   predation   risk   by   avian   or  aquatic   predators   at   night.   Here,   the   predation   pressure   on   the   focal   stream  stretch   was   low   (Kobler   et   al.   2011).   It   is   unlikely   that   the   reduced   daytime  activity   of   bullhead   was   solely   due   to   predator   avoidance   but   may   have   been  associated   to   intrinsic   anti-­‐predator   behaviour   (see   e.g.   in   Gammarus   roeseli,  Bollache  et  al.  2006).    

It  is  plausible  that  the  longest  movement  distances  of  bullhead  during  night  are  associated  with  foraging  activities.   In  the  studied  stream,  the  most  abundant  prey  of  bullhead  were  freshwater  shrimps  (amphipods,  Gammarus  spp.;  personal  observation).   Freshwater   shrimps,   particularly   the   preferred   large   individuals  (Newman   &   Waters   1984),   are   nocturnally   active   (e.g.   Wallace   et   al.   1975;  Anderssen   et   al.   1986;   Holomuzki   &   Hoyle   1990).   Moreover,   in   the   night   adult  Gammarus   pulex   are   farther   from   the   shore   and   have   a   lower   association   with  large   particles   such   as   bryophytes   or   leaf   material   (Elliott   2005).   Due   to   these  nocturnal   behaviours   of  Gammarus   spp.   and   the   longer  movement   distances   of  bullhead   by   night   it   can   be   speculated   that   encounter   frequencies   between  

Chapter  4  

76

bullhead   and   Gammarus   spp.   as   well   as   prey   susceptibility   are   highest   during  night.   Because   of   higher   encounter   frequencies   with   prey   and   the   ability   of  freshwater  sculpins  to  forage  non-­‐visually  (e.g.  Cottus  bairdii,  Hoekstra  &  Janssen  1985)  nocturnal   foraging  success  of  bullhead  might  be  high.   It  can,   therefore,  be  assumed  that   the   longer  movement  distances  of  bullhead  at  night   (and   twilight)  are  associated  with  foraging  activities.    

Some   individuals  were   stationary  during  daytime  and   showed   site-­‐fidelity  to   a   diurnal   location   to   which   they   returned   after   movement   during   night   and  twilight.  It  can  be  assumed  that  the  diurnal  location  was  used  as  a  daytime  refuge  shelter,  similar  to  what  has  been  observed  in  Cottus  gobio  (Davey  et  al.  2005).  The  benefit   of   returning   to   the   same   diurnal   location   after   movement   during   night  might   include   spatial   segregation   from   conspecifics   to   avoid   competition,  aggressive   attacks   and  predation   (Nilsson  2006).  However,   bullhead   individuals  did  not  consistently  use  the  same  location  as  daytime  shelter.  Further,  none  of  the  bullhead  with  diel  habitat  shift  and  site-­‐fidelity  to  a  diurnal  location  showed  this  behaviour   during   a   preceding   or   a   following   24-­‐h   cycle.   During   late  winter   and  spring,   the   studied   stream   commonly   has   the   highest   annual   water   levels   with  increased  stream  current  (personal  observations).  Because  the  shelter  structures  largely   consist   of   woody   debris   (twigs,   branches   and   naturally   formed   branch  jams,  Kobler  et  al.  2011),  we  assume  that  the  spatial  occurrence  of  shelter  habitats  in  spring  is  not  stable  over  time  (in  contrast  to  conditions  in  summer,  Kobler  et  al.  2011).  This  may  have  forced  bullhead  to  be  flexible  in  choosing  a  shelter  habitat  as   the   previously   occupied   diurnal   shelter   might   have   vanished   or   shifted   its  location  by  the  return  after  nocturnal  activity.  More  consistent  diel  habitat  shifts  between  more  stable  habitats  had  been  observed  in  common  dace.  Common  dace  repeatedly   returned   to   a   small   location   in   a   tributary   during   daytime   after  nocturnal   movement   to   a   pool   in   the   main   river   (consistent   diel   habitat   shift  during  34  days,  Clough  &  Ladle  1997).    

The  2-­‐h  tracking  intervals  used  in  2007  (as  suggested  by  Natsumeda  2007  for  Cottus  pollux)  were  crucial  to  detect  minimum  displacements  that  were  close  to  the  real  distances  that  were  covered  during  a  diel  cycle.  Clearly,  if  an  individual  with   “site-­‐fidelity”   to   a   diurnal   location   would   have   been   tracked   only   during  daytime,  the  distances  that  it  covered  during  the  entire  diel  cycle  could  not  have  been   detected.   Based   on   2007   findings,   we   tried   to   cover   such   diel   movement  patterns   with   a   less   labour-­‐intensive   tracking   protocol   in   2008.   Three   times  tracking,   shortly   before   sunset,   during   dawn   and   again   shortly   before   sunset,  should   enable   the   separation   of   nocturnal   and   crepuscular   from   diurnal  movement   distances.   Although   we   found   in   2008   a   clear   trend   towards   longer  

Diel  movement  of  bullhead

      77

distances  covered  during   the  night  period,   the  difference   to  daytime  period  was  not  significant.   It   is  possible   that  an   individual  was  close   to  or  even  had  already  returned  to  its  diurnal  location  at  the  end  of  the  night  or  at  the  beginning  of  dawn.  Consequently,   the   dawn   screening   might   have   detected   the   fish   at   its   diurnal  location  and  the  distances  covered  during  night  would  have  been  underestimated;  this   might   be   indicated   by   the   clearly   shorter   nocturnal   movement   distances  recorded   in   the   second   tracking   year.   Although   Horton   et   al.   (2004)   even  proposed   shorter   tracking   intervals   and   reported   that   2-­‐h   tracking   intervals  poorly  estimate  the  diel  movement  in  spotted  bass  (Micropterus  punctulatus),  we  believe  that  the  2-­‐h  interval   is  sufficient  to  detect  diel  movement  patterns  in  the  less  active  freshwater  sculpins.  Furthermore,  by  using  a  portable  PIT  tag  antenna  and   2-­‐h   tracking   intervals   it   is   still   feasible   to   track   a   sufficient   number   of  individuals  in  a  representative  length  of  the  studied  stream.  We,  therefore,  agree  with  Natsumeda  (2007)  and  recommend  using  2-­‐h  tracking  intervals.    

Sex  as  well  as  the  interaction  between  sex  and  diel  period  had  no  significant  influence  on  the  minimum  displacements  in  2008.  Bullhead  usually  spawn  in  the  Laarse   Beek   between   March   and   April   and   the   last   young-­‐of-­‐the-­‐year   bullhead  commonly   hatch   during   May   (G.   Knaepkens,   unpublished   data).   Therefore,   the  tracking  period  fell  in  both  years  into  the  reproductive  period.  The  parental  care  of  males,  which   construct   nests   and   rear   the   larvae   (Morris   1954),  may   restrict  their  movements   (day   and  night)   as   the   risk  of   egg  predation  by   conspecifics   is  very  high  once  a  nest  is  left  alone  (Marconato  &  Bisazza  1988).  And  indeed,  in  an  accompanying   study,   we   found   that   the  mating   system   of   bullhead   can   cause   a  temporal   sex-­‐bias   in   the   movement   distances   during   the   reproductive   period  (Kobler   A.,   Humblet   Y.,   Geudens   K.,   Eens   M.,   in   preparation).   These   sex-­‐biased  movement  distance  peaks  occured  at  the  beginning  (February,  female-­‐biased)  and  the  end  of  the  reproductive  period  (end  of  May,  male-­‐biased;  same  study  year  and  site  than  in  2008,  Kobler  A.,  Humblet  Y.,  Geudens  K.,  Eens  M.,  in  preparation).  The  present   study   was   conducted   exactly   between   these   phases   of   sex-­‐biased  movement   (Kobler   A.,   Humblet   Y.,   Geudens   K.,   Eens   M.,   in   preparation)   which  explains  a  lack  of  sex-­‐bias  and  potentially  the  short  movement  distances  recorded  in  the  present  study.  Therefore,  it  would  be  important  that  future  studies  examine  whether   there   is   a   sex-­‐bias   in  diel  movement  distances  during   the   reproductive  period.  

Irrespective  of  diel  period,  smaller  fish  covered  longer  distances.  This  may  be  explained  by  the  body-­‐length  related  refuge  use  under  predation  risk.  Smaller  fish  (three-­‐spined  stickleback,  Gasterosteus  aculeatus)  spend  under  predation  risk  

Chapter  4  

78

less  time  in  a  refuge  then  larger  fish,  which  can  be  explained  by  higher  metabolic  requirements  of  smaller  individuals  (Krause  et  al.  1998).  

Acknowledgments  

We  thank  G.  Eens,  P.  Scheys  and  L.  Damen  for  technical  assistance.  We  also  thank  two   anonymous   referees   and   the   associated   editor,   Bernard   Hugueny,   for   very  helpful  reviews,  Alain  van  Hout  for  comments  and  the  University  of  Antwerp  and  the  FWO-­‐Flanders  for  funding  (FWO-­‐project  to  ME).  The  experimental  work  was  performed  in  agreement  with  the  Belgian  and  Flemish  laws  and  was  approved  by  the  ethical  committee  of  the  University  of  Antwerp  (ID  number  2007/42).  

 

 

 

CHAPTER  5  

 

PERIOD-­‐DEPENDENT  SEX-­‐BIASED  MOVEMENT    

 

   

Period-­‐dependent  sex-­‐biased  movement

      81

 

Period-­‐dependent  sex-­‐biased  movement  in  a  polygamous  stream  fish  (Cottus  perifretum  Freyhof,  Kottelat  &  Nolte,  2005  -­‐  

Actinopterygii,  Cottidae)  with  male  parental  care    

 

Alexander  Kobler,  Yves  Humblet,  Katia  Geudens,  Marcel  Eens    

Hydrobiologia  (2012)  693:  195-­‐204  

 

 

Abstract  

Inter-­‐sexual   differences   in   reproductive   behaviours   such   as   mate   choice   or  parental  care  may  cause  sex-­‐bias  in  movement  distances.  While  this  relationship  has   been   extensively   studied   in   birds   and   mammals,   little   is   known   regarding  fishes.  Fifty-­‐four  bullhead  (Cottus  perifretum),  polygamous  stream  fish  with  male  nest  holding,  were   tracked  by  means  of   a  portable   antenna   in   a  2500  m  stream  reach.  Movement  was  measured  at  two  time  scales:  monthly  movement  distance  and  long-­‐term  movement  range.  Bullhead  moved  furthest  in  February  and  May.  In  these  months,  movement  distances  diversified  between  the  sexes.  Females  moved  significantly   furthest   in   February.   This  may   be   related   to   female  mate-­‐choice   at  the  beginning  of   the  reproductive  period.   In  May,  at   the  end  of   the  reproductive  period,   males  moved   significantly   longest   distances.   It   is   speculated   that   males  shift   to   resource-­‐richer   habitats   after   the   starvation   during   parental   care.   In  general,   smaller   individuals   moved   longer   distances   per   month.   Long-­‐term  movement   range   did   not   differ   between   the   sexes   but   varied   considerably  between   individuals   ranging   from   1   to   1111  m.   It   is   concluded   that  movement  studies  should  encompass  an  annual  time  scale  as  well  as  a  more  precise  monthly  time  scale  to  present  an  accurate  description  of  sex-­‐biased  movement  in  (annual  spawning)  fish.  

   

Chapter  5  

82

Introduction  

Intraspecific  variation  in  movement  patterns  is  a  common  phenomenon  in  animal  ecology  and  has  been  found  in  many  taxa  ranging  from  crustaceans  (e.g.  Hays  et  al.  2001)  to  fishes  (e.g.  McLaughlin  et  al.  1992;  Kobler  et  al.  2009a),  reptiles  (e.g.  McLaughlin  1989),  birds   (e.g.  McLaughlin  1989)  and  mammals   (e.g.  Austin  et  al.  2004).  The   identification  of  ecological   factors   that   trigger   individuals   to  move   is  necessary  to  understand  why  movement  patterns  can  be  heterogeneous  within  a  species  or  a  population  of  a  species.  For  instance,  resource  competition  can  force  less   competitive   mottled   sculpin   (Pisces:   Cottus   bairdii)   individuals,   such   as  juveniles,  to  move  to  areas  where  intra-­‐population  competition  is  lower  (Petty  &  Grossman   2004).   The   individual’s   decision   to   move   is   then   dependent   on  competitive  abilities  and/or  its  ontogenetic  stage.  Depending  on  the  reproductive  behaviour  of   the   species,   the   triggers   to  move  can  also  differ  between   the   sexes  (Greenwood  1980;   Croft   et   al.   2003).   In  mammals,  males   typically  move   among  female-­‐defended   breeding   sites   to   maximize   their   reproductive   success  (Greenwood  1980).  On   the  contrary,   female-­‐biased  movement   is  expected  when  females  can  benefit  by  selecting  the  best  males  while  philopatric  males  benefit  by  defending   territories   (Greenwood  1980;  Croft  et  al.  2003).  This   is   true   for  many  bird  species,   in  which   females  search   for  males   that  occupy  a  breeding   territory  (Greenwood  1980;  Clarke  et   al.   1997).  Much   less   is  known  regarding   fishes  and  the  number  of  studies  that  have  examined  sex-­‐biased  movement  (here  defined  as  the  stream  distance  covered  per  time  unit)  in  fish  are  still  very  limited  (Hutchings  &  Gerber  2002;  Croft  et  al.  2003;  Marentette  et  al.  2011).    

Similar  to  mammals  and  birds,  the  reproductive  behaviour  of  fish  can  have  influence  on  movement  or  dispersal  (attempt  to  move  from  a  natal/breeding  site  to  another  breeding  site,  Clobert  et  al.  2009).  For   instance,   in   the  non-­‐territorial  viviparous  guppy  (Poecilia  reticulata),  male   individuals  do  not   invest   in  parental  care  and  move  extensively  while  searching   for  mating  opportunities   (Croft  et  al.  2003).   Reproductive   success   of   female   guppies   is   strongly   dependent   on   their  investment   in   offspring   while   the   success   of   male   guppies   is   closely   related   to  increased   movement   (Croft   et   al.   2003).   These   inter-­‐sexual   differences   cause  male-­‐biased   movement   during   the   reproductive   period   (Croft   et   al.   2003).  Female-­‐biased  movement  during  the  reproductive  period,  on  the  other  hand,  can  be   expected   in   fish   with   philopatric   males   that   invest   in   the   offspring.   These  characteristics  are  applicable  to  fish  in  which  males  construct  nests  and  rear  their  offspring.   Prominent   examples   of   this   reproductive   behaviour   are   three-­‐spined  and   ten-­‐spined   stickleback   (Gasterosteus  aculateus   and  Pungitius  pungitius).  And  

Period-­‐dependent  sex-­‐biased  movement

      83

indeed,   in  both  species  males  are  less   likely  to  move  between  reproduction  sites  than  females  (Whoriskey  et  al.  1986).  Thus,  the  reproductive  behaviour  of  fishes  may   have   direct   influence   on   sex-­‐biased   movement,   particularly   during  reproductive  period.    

After   the   reproductive  period  and   the  behavioural  diversification  between  the  genders,  a  sex-­‐bias  in  movement  may  be  less  probable.  However,  most  studies  that   examined   sex-­‐biased   movement   in   fishes   have   only   encompassed   the  reproductive   period   (e.g.   Gasterosteidae,   Whoriskey   et   al.   1986;   Apogon   niger,  Okuda   1999;   P.   reticulata,   Croft   et   al.   2003).   Other   studies   have   examined  dispersal   by   using   genetic   markers   (Pseudotropheus   spp.,   Knight   et   al.   1999;  Carcharodon   carcharias,   Pardini   et   al.   2001;   Salvelinus   fontinalis,   Hutchings   &  Gerber  2002)  without  the  possibility  of  being  able  to  differentiate  periodical  sex-­‐bias   in  movement.   Studies   that   cover   both   short-­‐   and   long-­‐term  movement   of   a  fish  species  and  differentiate  between  the  sexes  are  rare  (but  see  e.g.  Natsumeda  1999;  Marentette  et  al.  2011),  but  may  help   to  detect  periodical   changes   in   sex-­‐biased  movement.    

The   present   paper   aims   to   contribute   to   the   paucity   of   studies   examining  sex-­‐biased  movement  in  fishes  under  consideration  of  the  reproductive  behaviour  (Hutchings   &   Gerber   2002;   Croft   et   al.   2003;   Marentette   et   al.   2011)   and   also  takes   plausible   periodical   variations   into   account.   A   fish   species   that   is  particularly   suitable   to   study   sex-­‐biased   movement   is   the   bullhead   (Cottus  perifretum),   a   small   fish   that   belongs   to   the   genus   Cottus   (freshwater   sculpins)  and  is  found  in  streams  and  rivers  in  Middle  Europe.  The  reproductive  behaviour  of   bullhead   has   been   extensively   studied   and   is   very   similar   to   that   of   the  Gasterosteidae   family;   polygamous   males   construct   nests   and   rear   their   young  (Morris  1954;  for  other  Cottus  spp.  see  also  Goto  1990).  Due  to  female  mate  choice  in   bullhead   (Bisazza   &   Marconato   1988;   Marconato   &   Bisazza   1988)   and   the  bonding  of  a  large  fraction  of  males  to  a  nest,  we  hypothesized  that  the  movement  during  the  reproductive  period  should  be  female-­‐biased.  Male  courtship  and  nest  holding   behaviour   (e.g.   Marconato   &   Bisazza   1988)   should   result   in   only   short  distance  movements  in  males.  After  the  reproductive  period,  movement  may  not  differ  between  the  sexes.  The  results  of  the  present  study  provide  important  data  on   sex-­‐biased  movement   of   a   polygamous   stream   fish  with   female  mate   choice  and  nest  holding  males.  

   

Chapter  5  

84

Materials  and  methods  

Study  species  

The  popular  name  of  C.  perifretum,  the  bullhead,  is  identical  to  that  of  Cottus  gobio  and   it   was   only   recently   that   these   two   very   closely   related   species   were  differentiated  (Freyhof  et  al.  2005).  The  distribution  of  C.  perifretum  encompasses  Atlantic  drainages   from  Garonne   in  France   to  Scheldt   in  Belgium  but  also  major  Rhine  tributaries  in  France  and  Germany.  Bullhead  belong  to  the  genus  Cottus  that  consists  of  small  bottom-­‐dwelling  fishes  (<  20  cm)  with  territorial  behaviour  (e.g.  Japanese   fluvial   sculpin,   Cottus   pollux,   Natsumeda   2001;   C.   bairdii,   Petty   &  Grossman  2004;  Rhine  sculpin,  Cottus  rhenanus,  Ovidio  et  al.  2009).  They  have  an  extremely   reduced   swim-­‐bladder   and   are   known   for   their   benthic   and   cryptic  behaviour   (e.g.   C.   gobio,   Smyly   1957;   C.   pollux   and   river   sculpin,   Cottus  hangiongensis,   Fujimoto   et   al.   2008).   The   reproductive   behaviour   of   bullhead   is  characterized   by   female   mate   choice   (Bisazza   &   Marconato   1988)   and   male  parental   care   (Morris  1954).   Females  prefer   larger  males   (Bisazza  &  Marconato  1988;   C.   pollux,   Natsumeda   2001)   and  males   whose   nests   already   contain   eggs  (Marconato  &  Bisazza   1986).   The   nest   is   situated   in   a   cavity   that   the  male   digs  under  solid  habitat  types  such  as  rocks  (Morris  1954)  but  can  also  be  in  tree  root  systems  or  woody  debris  (as  in  the  present  study).  Males  remain  at  the  nest  site  for  approximately  three  weeks  as  they  find  a  mate,  fan  eggs  (∼2  weeks)  and  guard  young-­‐of-­‐the-­‐year  (∼1  week,  Morris  1954).    

Several   studies   have   found   remarkable   intra-­‐population   heterogeneity   in  Cottus   movement   behaviour   (C.   perifretum,   Knaepkens   et   al.   2004,   2005;   other  Cottus  spp.,  Breen  et  al.  2009;  Hudy  &  Shiflet  2009;  Ovidio  et  al.  2009).  Between-­‐individual   differences   in   the   range   of   movements   can   be   extreme.   Some  individuals  stay  during  an  annual  period  in  a  restricted  area  often  not  larger  than  a  few  square  meters;  other  individuals  move  in  the  same  period  over  distances  of  more   than  one  kilometre   (Hudy  &  Shiflet  2009;   see   also  Knaepkens   et   al.   2004;  Breen  et  al.  2009).    

Study  site  

The   study   was   conducted   in   the   Laarse   Beek   (51°16'28.40"N;   4°29'4.63"E),   a  lowland  stream  in  the  north  of  Belgium  with  a  mean  width  of  3  m  (range  2  -­‐  4  m)  and  a  mean  depth  of  0.3  m  (0.1  -­‐  0.5  m).  The  focal  stream  reach  was  2500  m  long  and  marked  every  2  m  with  consecutively  numbered  wooden  poles  along  one  side  of   the   stream.  Bullhead  were   the  most   abundant   fish   species   in   the   stream,   and  

Period-­‐dependent  sex-­‐biased  movement

      85

aquatic   as   well   as   avian   predators   were   rare   (more   detailed   description   of   the  study   area   in   Kobler   et   al.   2011).   Bullhead   usually   spawn   in   the   Laarse   Beek  between   March   and   April   and   the   last   young-­‐of-­‐the-­‐year   bullhead   commonly  hatch   during   May   (G.   Knaepkens,   unpublished   data).   During   the   reproductive  period,   late   winter   and   spring,   the   studied   stream   commonly   has   the   highest  annual  water  levels  (personal  observations).      

Capture,  tagging  and  sexing  

In   the   centre   of   the   2500   m   observation   reach,   bullhead   were   initially   caught  within  324  m  in  two  sessions,  on  4,  5  and  7  February  and  on  13  and  14  February  2008  by  electro-­‐fishing  (WFC7-­‐10,  Electracatch  Int.,  Wolverhampton,  UK)  using  a  power  generator,  a  100  m  cable  and  a  40  cm  ring  anode.  During  the  two  electro-­‐fishing   sessions   334   bullhead   >   50   mm   total   length   (TL)   were   caught   (14  recaptures   during   the   second   session,   for   abundance   estimate   see   Kobler   et   al.  2011).  Bullhead  (N  =  334)  had  a  mean  (±  SD)  TL  of  62.1  ±  6.3  mm  (range  50  to  88  mm)   and   a   mean   wet   weight   of   3.3   ±   1.2   g   (range   1.7   to   9.9   g).   Shortly   after  capture   (less   than   1   h)   bullhead   were   anaesthetized   (0.25   ml   L-­‐1   2-­‐phenoxy-­‐ethanol)  and  individually  coded  12  mm  PIT-­‐tags  (12  x  2.1  mm,  0.094  g;  ID100,  EID  Aalten,   NL)   were   inserted   horizontally   through   a   2   mm   incision   into   the   body  cavity  close  to  the  genital  papillae  (by  using  a  scalpel).  Due  to  the  small  size  of  the  fish  and  the  opening,  the  incision  was  not  stitched  (Bruyndoncx  et  al.  2002).  Every  tagged   individual  was   photographed   (from   above   lying   on   a   board   coated  with  scale   paper).   After   implantation   and   recovery   in   buckets   (∼1   h)   with   stream  water,  bullhead  were  released  at  their  capture  position.    

The   gender   of   bullhead  was   determined   retrospectively   by   evaluating   the  photographs  of  the   individuals.  At  the  time  of   first  capture  (and  photographing),  the   annual   gonadal   maturation   had   already   started   and   the   gender   could   be  determined  by  morphological  characteristics.  Individuals  with  a  very  round  belly  (looking   tadpole-­‐like),   that   clearly   suggested   the   content   of   eggs,   were  determined   as   females.   The   prickles   on   the   skin   of   these   individuals   were   also  stronger   expressed.   Males   could   be   determined   by   the   triangular   shape   of   the  head  (Freyhof  et  al.  2005)  and  the  proportionally  smaller  body  cavity.  Ambiguity  about  the  sex   led  to  a  non-­‐defined  gender  of   the   individual.  This  was  mainly  the  case   for   larger   individuals   with   intermediately   thick   belly   that   could   be   either  from   few   eggs   (e.g.   older   females)   or   extensive   foraging   before   capture   (e.g.  males).  The  sex  of  every  individual  was  determined  by  evaluating  the  photograph  of  an   individual   three   times  on  three  different  days;   the  researcher  was  blind  to  the   identity   of   the   individual.   Only   when   a   consensus   between   three   sex  

Chapter  5  

86

determinations  was  reached  was  the  gender  used  in  this  study.  With  this  method,  the  majority  of  bullhead  (83%)  was  sexed  including  138  females  and  139  males.    

Tracking  and  recapture  

The  study  reach  was  scanned  monthly  over  a  distance  of  2500  m:  1250  m  up-­‐  and  downstream   of   the   middle   of   the   electro-­‐fishing   reach.   This   tracking   distance  enabled   us   to   cover   the   longest   movements   of   bullhead   (observed   maximum  distance  of  a  Cottus  spp.:  Potomac  sculpin,  Cottus  girardi,  1711  m  in  75  d,  Hudy  &  Shiflet  2009).  Tracking  started  two  weeks  after  the  second  electro-­‐fishing  session  and  was  conducted  on  28  February,  27  March,  24  April,  21  May,  25  June,  16  July,  13   August   and   9   September   2008.   Further   tracking   was   conducted   during   the  individual   recapture   (see   further).  The  duration  of  a  2500  m  tracking  was   three  days  with  ∼8  h  d-­‐1.  A  portable  PIT-­‐tag  antenna  with  a  detection  precision  of  <  30  cm   was   used   (Cucherousset   et   al.   2005).   While   carefully   walking   through   the  stream  the  antenna  was  moved  like  a  vacuum  cleaner.  The  detection  probability  is  high  with  this  method.  Keeler  et  al.  (2007)  measured  a  mean  detection  probability  of   PIT   tagged   slimy   sculpins   (Cottus   cognatus)   in   five   river   tributaries   of   80%.  Once  a  bullhead  was  located,  the  individual  PIT-­‐tag  code,  the  stream  position  (e.g.  stream  metre   1400;  marked  with   poles,   see   before)   and   the   tracking   date  were  noted  (for  more  details  see  Kobler  et  al.  2011).  This  positioning  led  to  an  overall  detection   precision   of   less   than   one  metre   (Kobler   et   al.   2011).   During  making  notes,  the  antenna  was  kept  above  the  detected  bullhead.  An  escape  response  was  never   observed   and   the   tagged   individuals   relied   on   their   camouflage,   a   typical  behaviour  for  Cottus  spp.  (for  more  details  see  Kobler  et  al.  2011).    

From  22  September   to  19  November  2008  we  attempted   to   recapture   the  PIT-­‐tagged  bullhead  within   the   tracking   reach   (334   initially   tagged   individuals).  This  period  was  chosen  as  the  annual  gonadal  maturation  had  not  started  yet  and  bullhead   were   in   the   following   tested   for   animal   personality   differences   for   an  accompanying  study  (without  influence  of  reproductive  behaviours;  Kobler  et  al.,  in  preparation).  The  fish  were  detected  in  two  complete  screenings  of  the  2500  m  reach   (in   total   8   d)   by   using   the   portable   PIT-­‐tag   antenna.   Fifty-­‐nine   bullhead  were  caught  with  a   large   landing  net  (one  person)  and  two  small  aquarium  nets  (another   person).   The   relatively   low   recapture   rate   (18%)  was  most   likely   not  due   to   emigration   of   tagged   bullhead.   During   two   additional   screenings   some  hundred   meters   outside   the   study   reach   we   did   not   find   a   tagged   bullhead.  However,  we  detected   loose  PIT   tags  on   top  of   the  bottom  or  within   the  stream  sediment  during  the  recapture  session.  PIT  tag  loss  shortly  after  the  tagging  event  is  negligible  (Keeler  et  al.  2007;  Knaepkens  et  al.  2007),  survival  after  PIT-­‐tagging  

Period-­‐dependent  sex-­‐biased  movement

      87

is   high   (>   90%,   Knaepkens   et   al.   2007)   and   predation   in   the   stream   reach  was  relatively  low  (see  Study  site).  However,  bullhead  are  short-­‐lived  often  not  getting  older   than   four   years   (Marconato   et   al.   1993;  Kottelat  &  Freyhof  2007)   and   the  youngest   tagged   individuals  were   almost   two   years   old   (in   the   Laarse   Beek,   0+  aged   bullhead   have  maximum  45  mm  TL,   personal   observations).   Furthermore,  while  bullhead  were  initially  tagged  with  up  to  88  mm  TL,  the  largest  individuals  that  were   recaptured   had   initially   only   up   to   70  mm  TL.  We,   therefore,   assume  that   natural  mortality  was   the  main   cause   for   the   relatively   low   recapture   rate  (besides   the   probability   to   have   missed   some   individuals   during   the   recapture  screening,  see  before).  

Definitions  and  data  selection  

Movement   was   measured   by   a   shorter-­‐   (monthly   movement   distance)   and   a  longer-­‐term   variable   (movement   range).   Monthly   movement   distance   was  represented   by   the   variable   “minimum   displacement”   (m   d-­‐1),   the   distance  (measured   along   one   stream-­‐side)   that   an   individual   at   the   minimum   moved  between   consecutive   tracking   locations  divided  by   the  number  of  days  between  the   locations   (Rogers  &  White,   2007).  This   standardized  measure   accounted   for  the   slightly   varying   time   intervals   between   consecutive   tracking   locations   (a  tracking   session   lasted   three  days).  The  movement   range   (m)  was  calculated  by  the  absolute  distance  of   the  most  up-­‐   and  downstream   location  of   an   individual  during   the   entire   study   period.   This   variable   should   indicate   bullhead   dispersal  distance  (for  definition  see  Introduction).    

Minimum  displacements   (m  d-­‐1)  were  assigned   to  months.  A  month   lasted  from   one   tracking   session   to   the   following   tracking   session,   a   period   of   four  weeks.   The   last   monthly   period   started   at   the   September   tracking   session   and  lasted   until   the   individual   recapture   date;   the   length   of   this   period   was   very  variable  between  individuals  ranging  from  12  to  82  days  (mean  ±  SD:  35.2  ±  19.4  d).  In  cases  where  an  individual  was  not  found  during  a  tracking  session  and  the  monthly   location  was  missing,   the  minimum   displacement   (m   d-­‐1)   could   not   be  assigned  to  a  specific  month;  this  individual  value  was  then  excluded.    

Only   individuals   that  were   recaptured   (N   =   59)  were   used   in   the   present  study.  Due  to  this  procedure,  the  survival  throughout  the  study  was  guaranteed.  A  further  prerequisite  was  the  successful  sex-­‐determination  of  the  individual.  With  this  procedure,  in  total  54  individuals  were  included  in  the  calculations.  

Chapter  5  

88

Statistical  analysis  

The   distances   between   tracking   locations   (absolute   values,   only   >   1   m)   were  tested   for   stream   direction   bias   (one-­‐way   ANOVA,   factor:   stream   direction,  Levene-­‐test,   p   >   0.05   after   Ln   transformation).   This   was   done   for   males   and  females.  

The   effects   of   month,   sex,   body   size   (TL)   and   month   ×   sex   on   minimum  displacements   were   calculated   by   a   linear   mixed   model   (due   to   repeated  measures   of   individuals).   After   transformation   [due   to   0   values:   Ln   (x   +   1)]   the  variance   of   sex   was   homogeneous   (Levene-­‐test,   p   >   0.05).   All   independent  variables  were  treated  as  fixed  effects.  The  individual  fish  was  treated  as  random  subject   in   the   linear   mixed   model.   Due   to   the   repeated   measures   of   moving  subjects   (here:   fish),   the   “diagonal”   repeated   covariance   type   was   used   in   the  linear  mixed  model.   Pairwise   comparisons   between  multiple   factor   levels   were  Bonferroni   corrected.   In   case   the   interaction   between   month   and   sex   was  significant,   two   additional   linear  mixed  models  were   run   for   each   sex   including  month   and   body   size   and   the   dependent   variable   minimum   displacement  [transformation:  Ln  (x  +  1)].    

The  effects  of  sex,  body  size  and  sex  ×  body  size  on  the  individual  movement  range   were   calculated   with   an   ANCOVA   (variance   homogeneity   of   sex,   Levene-­‐test,  p  >  0.05).  The  plausible  influence  of  the  individually  different  duration  of  the  observation   (mean  ±   SD  248.6   ±   18.5   d,   range   221   to   289  d)   on   the  movement  range  was  tested  by  a  Spearman  correlation  (movement  range  was  non-­‐normally  distributed,   Kolmogorov-­‐Smirnov,   p   <   0.05).   Significance   of   all   calculations  was  assessed   at   α   <   0.05.   Statistical   analyses  were   conducted  with   SPSS   15.0   (SPSS  Inc.,  Chicago,  IL,  USA).  

Results  

Fifty-­‐four   individuals   were   sexed   (including   32   females   and   22  males),   tracked  and  recaptured  at   the  end  of   the  study  period.  Their  mean  (±  SD)  body  size  was  65.2  ±  5.9  mm  TL,  (range  53  to  77  mm  TL)  and  mean  wet  weight  was  3.1  ±  0.9  g  (range   1.7   to   5.4   g).   During   the   observation   period   from   4   February   to   19  November  2008,  bullhead  (N  =  54)  were  on  average  9.2  ±  1.1  located  (range  6  to  10).   464  monthly  movements   consisted   of   39.7%   upstream  movements,   33.4%  downstream  movements   and   26.9%   stationary   records   (<   1   m).   There   was   no  indication  of  up-­‐  or  downstream  bias  of   the  movement  distances  of   female   (N  =  

Period-­‐dependent  sex-­‐biased  movement

      89

32,  ANOVA,  df  =  1,  ss  =  0.798,  F  =  0.184,  p  =  0.668)  or  male  bullhead  (N  =  22,  df  =  1,  ss  =  1.335,  F  =  0.298,  p  =  0.586).  The  furthest  upstream  movement  (1096  m  in  ≤  99  d;   female   individual)  was  also  similar   in  distance  to  the  furthest  downstream  movement  (1000  m  in  ≤  21  d;  male  individual).  

Bullhead   movement   distances   (minimum   displacement,   m   d-­‐1)   differed  significantly   between   the   months   (Table   1).   Longer   distances   were   covered   in  February   and   May   (Figure   1).   On   average,   bullhead  moved   5.3   ±   11.8   m   d-­‐1   in  February   and   5.8   ±   11.6   m   d-­‐1   in   May   while   for   instance   in   August   movement  distances  averaged  only  0.3  ±  1.0  m  d-­‐1.  Movement   in  February  was  significantly  further   than   in   all   other   months   except   March   and  May   (all   p   <   0.05,   pairwise  comparisons  from  the  linear  mixed  model  of  Table  1).  The  movement  in  May  was  significantly  further  than  in  all  months  from  June  until  recapture  (all  months  p  <  0.05).  Irrespective  of  the  differentiation  between  months,  smaller  individuals  had  significantly   higher  minimum  displacement   values   (m   d-­‐1;   Table   1  mixed  model  estimate  ±  SE,  0.018  ±  0.005).  

Monthly   movement   distances   did   not   differ   between   males   and   females  (Table   1).   The   significant   interaction   between   sex   and   month   on   minimum  displacements   (p   =  0.023),  however,   indicated   temporal  differences   in  male  and  female   movement.   Females   moved   longest   distances   in   February   (Table   2  estimate  of   fixed   effect,  p   =   0.003).  Movement  distances  by   females   in   February  (7.8   ±   15.1  m   d-­‐1)  were   significantly   longer   than   in   April   (p   =   0.009),   June   (p   =  0.001),   July   (p   =   0.01),   August   (p   =   0.006)   and   September   (p   =   0.007,   pairwise  comparisons   from   the   linear   mixed   model   of   Table   2;   Figure   1).   Shortest  movement  distances  by  females  were  recorded  in  June  with  only  0.1  ±  0.2  m  d-­‐1.  During  the  month  of  their  movement  peak,  February,  females  moved  around  four  times   longer   distances   per   day   than   males   (males,   1.8   ±   3.3   m   d-­‐1;   Figure   1).  Monthly  movement  of  males  was  furthest  in  May  (Table  2  estimate  of  fixed  effect,  p  =  0.001).  During  May,  males  moved  around  four  times  longer  distances  per  day  (8.3  ±  12.2  m  d-­‐1)  than  females  (females:  2.2  ±  6.8  m  d-­‐1).  The  movement  by  males  in  May  was  significantly  longer  than  in  August  (p  =  0.033)  when  male  movement  averaged  only  0.1  ±  0.1  m  d-­‐1.    

   

Chapter  5  

90

 

 

 

 

 

 

 

 

 Figure  1  Monthly  movement  distances  (minimum  displacements,  m  d-­‐1)  of  male  (N  =  22)  and  female  (N  =  32)  bullhead  (Cottus  perifretum)  from  individual  tagging  date  (Feb  =  February)  to  the   individual   recapture   (recap)   between   September   and   November   2008.   Boxplots   show  median,  75th  (box),  90th  (whiskers)  and  95th  percentiles  (dots).  

 

 

Variable   Num  df   Denom  df          F        p  

Intercept          1   266.504   5.237   0.023  Sex          1   280.182   2.484   0.116  Month          8   90.336   7.378   <  0.001  Sex  ×  Month  Body  size  

       8          1  

90.349  262.085  

2.379  13.364  

0.023  <  0.001  

 

   

Table  1  Linear  mixed  model  of  the  independent  variables  sex,  month,  the  interaction  of  sex  ×  month  and  body  size  (total  length,  mm)  on  minimum  displacement  [Ln  (m  d-­‐1  +  1)]  of  bullhead  (Cottus  perifretum,  N  =  54);  Num  df  =  numerator  degree  of  freedom,  Denom  df  =  denominator  df.  

Period-­‐dependent  sex-­‐biased  movement

      91

Table   2   Two   linear   mixed   models   of   month   on   minimum   displacement   [Ln   (m   d-­‐1   +   1)]   of  female  (N  =  32)  and  male  (N  =  22)  bullhead  (Cottus  perifretum);  the  intercept  of  both  models  was  not  significant  when  body  size  (TL)  was  included;  Num  df  =  numerator  degree  of  freedom,  Denom  df  =  denominator  df.  

Gender   Variable   Num  df   Denom  df          F   p  

Female   Intercept            1    123.900   86.712   <  0.001     Month            8    46.986   6.727   <  0.001  

Male   Intercept  Month  

         1            8  

 81.110    30.732  

50.747  5.570  

<  0.001  <  0.001  

 

 

The  movement  range  (m)  over  the  entire  study  period  differed  considerably  among   individuals   (N   =  54)   ranging   from  1   to  1111  m.   For   instance,   during   the  ten-­‐month  period  18  individuals  were  recorded  in  stream  ranges  of  ≤  33  m  while  13   individuals   had   a   movement   range   ≥   665   m.   These   between-­‐individual  differences  in  movement  range  were  neither  significantly  related  to  body  size  nor  sex   (Table   3).   On   average   (±   SD),   the  movement   range   of   females  was   287.2   ±  332.6  m  (N  =  32,  range  5  to  1096  m)  while  males  had  a  movement  range  of  348.4  ±   381.6   m   (N   =   22,   range   1   to   1111   m).   The   differences   between   individual  observation   duration   from   initial   capture   until   recapture  were   not   significantly  correlated  to  the  movement  range  (Spearman,  N  =  54,  rs  =  -­‐0.123,  p  =  0.375).    

 

Source    Type  III  ss      Fdf   p  

Corrected  model   638500.00a   1.8043   0.158  Intercept   98632.176   0.8361   0.365  Sex  Body  size  

403460.695  235174.768  

3.4201  1.9941  

0.070  0.164  

Sex  ×  body  size   407630.042   3.4561   0.069  

R2  =  0.098  (adjusted  R2  =  0.044)      

Table   3   ANCOVA   of   sex   and   body   size   (total   length,   mm)   on   movement   range   of   bullhead  (Cottus  perifretum,  N  =  54).  No  other  variable  combination  gave  a   lower  model  p-­‐value  of  the  model.  

Chapter  5  

92

Discussion    

At   the   beginning   of   the   reproductive   period   (between   February   and   March),  females  moved  markedly  further  than  males.  In  May,  during  the  time  period  when  spawning  generally  ends  (last  egg  clutches  in  previous  years  were  observed  in  the  middle  of  May,  G.  Knaepkens,  unpublished  data),  movement  distances  of  females  were   clearly   reduced   and   males   moved   further.   The   seasonal   difference   in  movement   distances   of   males   and   females   indicates   synchronized   movement  patterns   within   each   sex.   The   distances   covered   by   males   and   females   were  significantly  shorter  after  May  and  bullhead  were  restricted  to  small  stream  areas  between   June   and   November   confirming   the   sedentary   nature   of   bullhead   (e.g.  Smyly  1957).    

  The   longest   movements   distances   of   female   bullhead   were   observed  during  the  reproductive  period,  while  afterwards  they  were  relatively  sedentary.  An  association  with  reproductive  activities  seems  probable;  spawning-­‐associated  movements   are   a   common   phenomenon   in   stream   fishes   (Lucas  &  Baras   2001)  and   are   also   reported   for   Cottus   spp.   (e.g.   C.   pollux,   Natsumeda   1999).   For  instance,  Japanese  fluvial  sculpins  move  long  distances  while  shifting  from  marsh  habitats   to   stream   areas   with   abundance   of   stones   that   are   more   suitable   for  spawning  (Fujimoto  et  al.  2008).  In  the  present  study,  however,  spawning  habitat  types  (here:  tree  roots  and  woody  debris)  occurred  in  high  abundance  and  were  homogeneously   distributed   in   the   stream   (Kobler   et   al.   2011).   Extreme   habitat  type  differences  that  were  separated  by  long  stream  distances  did  also  not  occur  (Kobler   et   al.   2011).   Therefore,   it   seems   unlikely   that   the   long   distance  movements  of   females  were  associated  to  habitat  shifts.  Another  explanation  for  those   movements   may   be   mate-­‐choice   processes.   It   is   well   known   that   female  bullhead  actively  search  for  a  mate  to  guard  the  eggs  (Bisazza  &  Marconato  1988).  Larger   males   (Bisazza   &   Marconato   1988;   Natsumeda   2001)   and   males   whose  nests  already  contain  eggs   (Marconato  &  Bisazza  1986)  are  generally  preferred.  During  this  period  males  occupy  a  potential  nest  site  where  they  attract   females  for   spawning   (Morris   1954).   After   successful   spawning,   males   may   move   only  very   little  as  the  risk  of  egg  predation  by  conspecifics   is  very  high  once  a  nest   is  left   unattended   (Marconato  &  Bisazza   1988;   see   also   further   discussion).   These  sex-­‐typical   reproductive   behaviours   imply   that   bullhead   movement   should   be  female-­‐biased   during   the   reproductive   period,   movement   observations   in   the  present   study   are   in   accordance  with   this   hypothesis.   It  may   be   concluded   that  females  cover  longer  distances  during  mate-­‐search  and  that  this  behaviour  has  a  pronounced  influence  on  sex-­‐biased  movements  during  reproductive  period.    

Period-­‐dependent  sex-­‐biased  movement

      93

There   was   no   relation   between   female   movement   (monthly   movement  distance  and  movement  range)  and  body  size.  Similarly,  Natsumeda  (2001)  could  not   relate   the   individual   spawning   movement   differences   in   female   Japanese  fluvial  sculpins  to  their  ontogenetic  stage  or  body  size.  Approximately  half  of  the  observed   female   Japanese   fluvial   sculpins  moved   longer   distances   and   left   their  home  range  for  spawning  (Natsumeda  2001).  Natsumeda  (2001)  speculated  that  these   females   separated   spawning   from   feeding   areas,   a   phenomenon   also  common   in   other   fish   species   (for   references   see  Natsumeda  2001).  Natsumeda  (2001)   further   speculated   that   the   temporal   limitation   in  mate   availability  may  force   some   females   to   move   over   greater   distances   .In   this   case,   females   with  faster   gonadal   development   could   choose   for  mates   nearby   while   females   with  slower  gonadal  development  and  a   later   spawning   time  may  have   to   swim  over  greater   distances   during   mate   search.   The   between-­‐individual   differences   in  female   movement   may   thus   be   related   to   gonadal   development.   Based   on   this  speculation,   a   future   study   with   shorter   observation   intervals   and   the  determination  of  gonadal  development  may  find  a  negative  relation  between  the  distance  covered  by  females  and  the  stage  of  gonadal  development.    

  Movement   in  May  was  male-­‐biased.  At   the  beginning  of   the  reproductive  period,  males  stay  at  a  potential  nest-­‐site  where  they  attract  females  for  spawning  (Morris   1954).  Males   remain   at   the   nest   site   for   approximately   three  weeks   as  they   find  a  mate,   fan  eggs  and  guard  young-­‐of-­‐the-­‐year   (Morris  1954).   It   can  be  assumed   that   the   increased  movement  between   the   end  of  April   and   the   end  of  May   occurred   when   males   finished   with   parental   care.   Accordingly,   last   egg  clutches   were   observed   in   previous   years   in   May   (G.   Knaepkens,   unpublished  data).  During  the  entire  period  of  parental  care  the  food  intake  is  very  low  and  the  condition   of   the   male   bullhead   strongly   decreases   (Marconato   et   al.   1993;   C.  pollux,   Natsumeda   2001).   Starvation   can   even   trigger   males   to   cannibalise   the  eggs  in  their  own  nest  (Marconato  &  Bisazza  1988).  It  can  be  assumed  that  male  bullhead   forage   extensively   after   the   period   of   starvation.   Due   to   spatial   and  temporal   fluctuations   of   prey   abundance   in   lotic   bodies   of   water   (Schlosser   &  Angermeier   1995)   and   the   active   choice   of   Cottus   spp.   for   stream   patches  with  higher   abundance   of  macroinvertebrates   (C.  bairdii,   Petty  &  Grossman   1996),   it  seems   plausible   that   some   males   will   have   moved   from   their   breeding   site   to  stream   areas   with   higher   food   abundance.   Therefore,   the   longer   movement  distances  after  reproduction  might  be  related  to  resource-­‐associated  home  range  shifts   (see  Crook  2004).  After   recovery  of   the  energy  deficiency  of  nest  holding,  males   may   then   switch   again   to   their   typical   sedentary   behaviour   (e.g.   Smyly  1957)  as  observed  in  the  present  study.  

Chapter  5  

94

Inconsistent   with   the   hypothesis   and   results   of   the   present   study,  Natsumeda   (1999)   observed   male-­‐biased   movement   of   C.   pollux   during   the  reproductive  period;  males  moved  from  pools  or  riffles  to  raceways  while  females  stayed   in   their  occupied  channel-­‐unit  habitat.  This  contrary   finding   is  surprising  (based   on   the   hypothesis   of   the   present   paper)   and   may   be   related   to   the  distribution   of   suitable   spawning   habitats   (see   beginning   of   discussion).   Future  studies  need  to  take  the  distribution  of  suitable  spawning  habitats  into  account  as  this   may   affect   or   even   change   the   sex-­‐bias   of   spawning  movements   in   stream  fishes  with  female  mate-­‐choice  and  male  parental  care.  

In   conclusion,   the   movement   of   C.   perifretum,   a   stream   fish   species   with  male  nest  holding  and  parental  care,  is  periodically  sex-­‐biased.  As  predicted  based  on   the   reproductive  behaviour   of   bullhead,  movement  was   female-­‐biased   at   the  beginning   of   the   reproductive   period.   After   reproduction,  movement  was  male-­‐biased   resulting   in   equal   movement   ranges   between   the   sexes   during   the   ten-­‐month   observation   period.   The  male-­‐biased  movement  may   be   associated  with  home-­‐range  shifts   to  resource-­‐rich  stream  areas  after   the  starvation  during  nest  holding.  The  short  periods  in  which  the  movement  diversified  between  the  sexes  emphasize  the  importance  of  short  observation  intervals  (e.g.  weekly  or  monthly)  and   a   sufficiently   long   study   period   (preferably   one   year)   to  make   conclusions  about   sex-­‐biased  movement   patterns.   Sex-­‐biased  movement  may   play   a   role   in  many   stream   fishes   and   its   consideration   may   add   extra   complexity   to   the  conservation   of   a   species   (Croft   et   al.   2003).   Furthermore,   the   consideration   of  reproductive   behaviours   may   help   to   better   understand   intra-­‐population  heterogeneity  in  movement  distances,  for  instance  the  occurrence  of  resident  and  mobile  individuals  within  single  stream  fish  populations  (e.g.  Gowan  et  al.  1994).  

Acknowledgments  

Many   thanks   to   Geert   Eens,   Peter   Scheys,   Sofie   Vanwetswinkel,   Brecht   Engelen  and  Lennart  Damen  for  technical  assistance,  Guy  Knaepkens,  Gregory  E.  Maes  and  Filip  A.M.  Volckaert   for   support.  Many   thanks   also   to   the  University   of  Antwerp  and   the   Fonds   Wetenschappelijk   Onderzoek   -­‐   Vlaanderen   for   funding   (FWO-­‐project   to   Marcel   Eens).   The   experimental   work   was   performed   in   agreement  with  the  Belgian  and  Flemish  laws  and  was  approved  by  the  ethical  committee  of  the  University  of  Antwerp  (ID  number  2007/42).  

 

 

CHAPTER  6  

 

MOVEMENT  RANGE  AND  TEMPERAMENT  TRAITS    

 

   

Movement  range  and  temperament  traits

      97

 Dispersal  and  behaviour:  is  the  movement  range  of  the  bullhead  

Cottus  perifretum  related  to  temperament  traits?  

 

Alexander  Kobler,  Gregory  E.  Maes,  Sofie  Vanwetswinkel,                                                                          Dimitri  Geelhand  de  Merxem,  Marcel  Eens    

In  preparation  

 

 

Abstract  

Populations   of   non-­‐migratory   stream   fish   may   consist   of   resident   and   mobile  individuals.  The  propensity   to  disperse  may  be  related  to  body  size  or  age  but  a  behavioural   association   may   also   exist.   This   study   aims   to   explain   individual  differences   in  movement  range  (individual  distance  between   the  most  upstream  and  downstream  location)  by  testing  temperament  traits.  Tagged  bullhead  (Cottus  perifretum)  were  tracked  during  ten  months.  Movement  range,  which  ranged  from  1   to   1284   m,   was   independent   of   either   body   size   or   sex.   A   clear   distinction  between  resident  and  mobile  individuals  was  not  found.  Fifty-­‐three  tagged  and  21  untagged  bullhead  were  caught  and  tested  for  temperament  traits.  There  was  no  behavioural   difference   between   tagged   and   untagged   fish;   repeated  measurements   of   behavioural   traits   (activity   and   novel   environment   activity)  indicated  consistency.  Smaller  bullhead  were  significantly  more  active  in  a  novel  environment.   Boldness   (rs   =   0.227,   p   =   0.106)   and   interest   in   novel   food   (rs   =  0.222,   p   =   0.109)   correlated   weakly   with   movement   range.   These   results   may  indicate   that   bullhead   that   expanded   further   in   the   stream   may   be   more   risk-­‐prone.  It  was  concluded  that  bullhead  movement  range  is  only  weakly  related  to  some   temperament   traits   suggesting   no   different   “personality”   as   cause   or  consequence  of  movement  range  diversification.  

 

   

Chapter  6  

98

Introduction  

Although   the   majority   of   non-­‐migratory   stream   fish   prefer   to   stay   in   a   very  restricted   area,   there   are   also   fish   individuals   that  move   farther   away   (Gerking  1959).  Consequently,  numerous  studies  have  differentiated  non-­‐migratory  stream  fish   populations   into   resident   and  mobile   individuals   (e.g.   Smithson  &   Johnston  1999;   Nakamura   et   al.   2002;   Rodriguez   2002;   Knaepkens   et   al.   2004).   The  existence  of  this  more  mobile  fraction  is  not  surprising  due  to  its  importance  for  the  reduction  of  inbreeding,  the  spread  of  new  genes  (Howard  1960),  adaptation  to   changing   conditions   and   the   repopulation   of   depauperate   areas   (Gerking  1959).   Which   individual   traits   distinguish   resident   and   mobile   individuals   is,  however,   not   well   understood.   Gerking   (1959)   doubted   whether   resident   and  mobile  stream  fish  can  be  phenotypically  distinguished  and  grouped.  

Recently,  there  are  indications  that  some  individual  traits  are  associated  to  long-­‐term  movement  distances   (hereafter  called  movement  range)  such  as  body  size   (Gowan   &   Fausch   1996)   and   age   (Hughes   2000;   Petty   &   Grossman   2004).  Other  studies  could  not  find  a  relation  between  life-­‐history  traits  and  movement  range   of   stream   fish   although   intra-­‐population   heterogeneity   was   high   (e.g.  Knaepkens  et  al.  2005;  Breen  et  al.  2009;  Hudy  &  Shiflet  2009;  Ovidio  et  al.  2009).  In   the   absence   of   a   life-­‐history   trait   association,   a   behavioural   relation   to  movement   range   or   a   behavioural   grouping   of   resident   and  mobile   stream   fish  may  exist  and  remains  to  be  determined  (Howard  1960;  Rodriguez  2002).    

Animal   temperament   is   classified   in   five   main   temperament   categories    (boldness,  activity,  exploration,  aggressiveness  and  sociability  (Réale  et  al.  2007).  It   may   represent   a   key   for   an   improved   understanding   of   movement   range  diversification  in  stream  fish  (Fraser  et  al.  2001).  And  indeed,  temperament  traits  have   been   linked   to   behaviours   that   are   similar   or   closely   related   to   the  movement   range   of   stream   fish,   such   as   dispersal   (reviewed   by   Clobert   et   al.  2009)  and  movement  in  an  unfamiliar  environment  (Fraser  et  al.  2001;  Cote  et  al.  2010,   2011).  Why,   for   example,   temperament   traits  may  be   related   to   dispersal  can   be   explained   by   the   costs   that   are   involved   in   the   process   of   dispersal  especially   during   transience   and   at   settlement   (Clobert   et   al.   2009;   Bonte   et   al.  2012).  Such  costs  can  be  reduced  due  to  enhanced  expression  of  a  temperament  trait   (Duckworth   &   Badyaev   2007;   Clobert   et   al.   2009).   For   instance,   western  bluebirds   (Sialia  mexicana)   adaptively   express   a   higher   level   of   aggressiveness  after   dispersal   and   during   the   colonization   process   suggesting   that   behavioural  changes  may  play  an  important  role  in  range  expansion  processes  (Duckworth  &  Badyaev  2007).  Similar  adaptations  may  also  be  involved  after  stream  fish  moved  

Movement  range  and  temperament  traits

      99

over  long  distances.  Individual  movement  range  may  thus  be  related  to  a  different  expression  of  temperament  traits.    

To   test   whether   the   movement   range   of   a   non-­‐migratory   stream   fish   is  associated   with   individual   temperament   traits,   we   used   the   bullhead   (Cottus  perifretum)  as  model  species.  Its  vernacular  name  (bullhead)  is  identical  to  that  of  C.  gobio  and  it  was  only  recently  that  these  two  very  closely  related  species  were  differentiated  (Freyhof  et  al.  2005).  The  distribution  of  C.  perifretum  encompasses  Atlantic  drainages  from  the  Garonne  in  France  to  the  Scheldt  in  Belgium  but  also  major   Rhine   tributaries   in   France   and   Germany.   The   genus   Cottus   (freshwater  sculpins)   consists   of   small   bottom-­‐dwelling   fishes   (<   20   cm)   with   territorial  behaviour   (e.g.,   Japanese   fluvial   sculpin,   C.   pollux,   Natsumeda   2001;   mottled  sculpin,   C.   bairdii,   Petty   &   Grossman   2004,   2007;   Rhine   sculpin,   C.   rhenanus,  Ovidio   et   al.   2009).   They   have   an   extremely   reduced   swim-­‐bladder   (Kottelat   &  Freyhof   2007)   and   are   known   for   their   benthic   and   cryptic   behaviour   (e.g.   C.  gobio,   Smyly   1957;   C.   pollux  and   river   sculpin,   C.   hangiongensis,   Fujimoto   et   al.  2008).   Nevertheless,   numerous   studies   reported   remarkable   intra-­‐population  heterogeneity   in   movement   range   (C.   perifretum,   Knaepkens   et   al.   2004,   2005;  other   Cottus   ssp.,   Breen   et   al.   2009;   Hudy   &   Shiflet   2009;   Ovidio   et   al.   2009).  Whereas  some  individuals  stay  over  time  in  a  restricted  area  often  not  more  than  a  few  square  meters,  other  individuals  may  move  more  than  one  kilometre  (Hudy  &   Shiflet   2009;   see   also   Knaepkens   et   al.   2004;   Breen   et   al.   2009;   Ovidio   et   al.  2009).    

We   hypothesized   that   bullhead   with   longer   movement   range   (“mobile”  individuals)   are  more   explorative.   A   similar   relation   has   been   found   in   juvenile  great   tits   (Aves:   Parus   major)   in   which   dispersal   correlates   positively   with  exploratory  tendency  (Dingemanse  et  al.  2003).  Furthermore,  a  positive  relation  between  movement   range   and   aggressiveness   seemed  plausible   similar   to  what  has  been  observed  in  Western  bluebirds  (see  previous  introduction,  Duckworth  &  Badyaev   2007).   These   hypotheses   as   well   as   the   plausible   relations   between  movement   range   and   other   temperament   traits   were   tested   by   using   passive  integrated   transponder   (PIT)   telemetry   during   a   ten-­‐month   observation   period,  recapture   of   the   tagged   bullhead   and   subsequent   measurements   of   boldness,  novel  environment  activity,   interest   in  novel   food,  activity  and  aggressiveness   in  the   laboratory.   The   results   of   this   study   should   give   insight   into   between-­‐individual  differences  in  non-­‐migratory  stream  fish  movement  range  by  including  information   on   body   size,   sex   and   temperament   traits.   Furthermore,   the   study  should   also   give   insight   into   the   individual   repeatability   of   temperament   traits  

Chapter  6  

100

and   whether   PIT   tagged   and   untagged   bullhead   show   differences   in   the  expression  of  temperament  traits.      

Materials  and  methods  

Study  site    

The   study   was   conducted   in   the   Laarse   Beek   (51°16'28.40"N;   4°29'4.63"E),   a  lowland   stream   belonging   to   the   Scheldt   basin   (Flanders,   Belgium).   The   focal  stream  stretch  was  2500  m  long,  had  a  mean  width  of  3  m  (range  2  -­‐  4  m)  and  a  mean  depth  of  0.3  m  (0.1  -­‐  0.5  m).  The  focal  stream  reach  was  2500  m  long  and  marked  every  2  m  with  consecutively  numbered  wooden  poles  along  one  side  of  the   stream.   Bullhead   were   the   most   abundant   fish   species   in   the   stream,   and  aquatic  as  well  as  avian  predators  were  rare   (for  a  more  detailed  description  of  the  study  area  see  Kobler  et  al.  2011).    

Capture  and  tagging  

In  the  centre  of  the  2500  m  observation  reach,  bullhead  were  caught  within  324  m  in   two   sessions,   on   4,   5   and   7   February   and   on   13   and   14   February   2008   by  electro-­‐fishing   (WFC7-­‐10,   Electracatch   Int.,  Wolverhampton,   UK)   using   a   power  generator,  a  100  m  cable  and  a  40  cm  ring  anode.  During  the  two  electro-­‐fishing  sessions   334   bullhead   >   50   mm   total   length   [TL;   minimum   size   to   PIT-­‐tag,  Knaepkens  et  al.  2007]  were  caught  (14  recaptures  during  the  second  session,  for  abundance  estimate  see  Kobler  et  al.  2011).  Bullhead  (N  =  334)  had  a  mean  (±  SD)  TL  of  62.1  ±  6.3  mm  (range  50  to  88  mm)  and  a  mean  wet  weight  of  3.3  ±  1.2  g  (range  1.7  to  9.9  g).  Thanks  to  tagging  shortly  before  spawning,  the  most  bullhead  were   sexed   reliably   (138   females   and   139   males;   Kobler   et   al.   2011,   2012b).  Shortly  after  capture  (less  than  1  h)  bullhead  were  anaesthetized  (0.25  ml  L-­‐1  2-­‐phenoxy-­‐ethanol)  and  individually  coded  12  mm  PIT-­‐tags  (12  x  2.1  mm,  0.094  g;  ID100,  EID  Aalten,  NL)  were  introduced  horizontally  through  a  2  to  3  mm  incision  into   the  body  cavity  close   to   the  genital  papillae   (by  using  a  scalpel).  Due   to   the  small  size  of  the  fish  and  the  opening,  the  incision  was  not  stitched  (Bruyndoncx  et  al.  2002).  After  implantation  and  recovery  in  buckets  (∼1  h)  with  stream  water,  bullhead  were  released  at  their  capture  position.  

Movement  range  and  temperament  traits

      101

Tracking  and  recapture  

The  study  reach  was  scanned  monthly  over  a  distance  of  2500  m:  1250  m  up-­‐  and  downstream   of   the   middle   of   the   electro-­‐fishing   reach.   This   tracking   distance  enabled   us   to   cover   the   longest   known   movements   of   bullhead   (observed  maximum  distance  of  a  Cottus   spp.:  Potomac  sculpin,  C.  girardi,  1711  m   in  75  d,  Hudy  &  Shiflet  2009).  Tracking  started  two  weeks  after  the  second  electro-­‐fishing  session  and  was  conducted  monthly  on  28  February,  27  March,  24  April,  21  May,  25   June,   16   July,   13   August   and   9   September   2008.   Further   tracking   was  conducted   during   the   individual   recapture   (see   further).   A   portable   PIT-­‐tag  antenna   with   a   detection   precision   of   <   30   cm   was   used   (for   more   details   see  Kobler   et   al.   2011,   2012b).   The   detection   probability   of  Cottus   ssp.   is   high  with  this   method   (∼80%,   Keeler   et   al.   2007).   Once   a   bullhead   was   located,   the  individual  PIT-­‐tag  code,  the  stream  position  (e.g.  stream  meter  1400;  marked  with  poles,  see  before)  and  the  tracking  date  were  noted  (for  more  details  see  Kobler  et  al.   2011).  This  positioning   led   to   an  overall   detection  precision  of   less   than  one  meter  (Kobler  et  al.  2011).  During  making  notes,  which  took  approximately  half  a  minute,   the   antenna  was   kept   above   the  detected  bullhead.  An   escape   response  was   never   observed   and   the   tagged   individuals   relied   on   their   camouflage,   a  typical  behaviour  for  Cottus  spp.  (for  details  see  Kobler  et  al.  2011).  

From  22  September   to  19  November  2008  we  attempted   to   recapture   the  PIT-­‐tagged  bullhead  within  the  2500  m  tracking  stretch.  This  period  was  chosen  as   the   annual   gonadal   maturation   had   not   started   yet   and   reproductive  behaviours   would   not   influence   the   following   temperament   traits   tests   (see  further).  The  fish  were  detected  in  two  complete  screenings  of  the  2500  m  reach  (in   total   8   d)   by   using   the   portable   PIT-­‐tag   antenna.   Fifty-­‐nine   bullhead   were  caught   with   a   large   landing   net   (one   person)   and   two   small   aquarium   nets  (another   person).   The   relatively   low   recapture   rate   (18%)  was  most   likely   not  due   to   emigration   of   tagged   bullhead.   During   two   additional   screenings   some  hundred   meters   outside   the   study   reach   we   did   not   find   a   tagged   bullhead.  However,  we  detected   loose  PIT   tags  on   top  of   the  bottom  or  within   the  stream  sediment   during   the   recapture   session.   PIT   tag   loss   shortly   after   tagging   is  negligible,   the   survival   after   PIT-­‐tagging   is   high   (∼90%;   Keeler   et   al.   2007;  Knaepkens  et  al.  2007)  and  the  predation  in  the  stream  reach  was  relatively  low  (see  Study  site).  However,  bullhead  are   short-­‐lived  often  not   reaching   the  age  of  four  years  (Marconato  et  al.  1993;  Kottelat  &  Freyhof  2007);  the  youngest  tagged  individuals  were  almost  two  years  old  (in  the  Laarse  Beek,  0+  aged  bullhead  have  maximum  45  mm  TL,   personal   observation).   Furthermore,  while   bullhead  were  initially   tagged   up   to   a   size   of   88   mm   TL,   the   largest   individuals   that   were  

Chapter  6  

102

recaptured  had  initially  only  up  to  a  size  of  70  mm  TL.  We,  therefore,  assume  that  natural   mortality   was   the   main   cause   for   the   relatively   low   recapture   rate  (besides   the   probability   to   have   missed   some   individuals   during   the   recapture  screening).  

The   monthly   localisations   from   initial   tagging   to   recapture   were   used   to  calculate  the  individual  movement  range.  It   is  the  absolute  distance  between  the  most  up-­‐  and  downstream   location  of  an   individual  during   the  entire   ten-­‐month  study   period   (Kobler   et   al.   2012b).   The   study   period   included   the   reproductive  period   of   bullhead,   during   which   the   longest   distances   are   covered   and   an  association   to   reproductive   activities   is   likely   (Kobler   et   al.   2012b).   Therefore,  movement   range   served   as   an   indicator   for   the   individual   breeding   dispersal  distance,  which  is  the  attempt  to  move  from  a  breeding  site  to  another  breeding  site  (Clobert  et  al.  2009).  

Additionally,  untagged  individuals  (>  50  mm  TL,  N  =  21)  were  collected  and  marked   with   individually   coded   stripes   of   visible   implant   elastomer   (VIE;  Northwest   Marine   Technology   Inc.,   Salisbury,   UK)   along   the   anal   fin.   These  individuals  were   later   used   to   test   the   eventual   influence   of   the   PIT-­‐tag   on   the  temperament   traits   of   the   bullhead   and   therefore   defined   “untagged”   (see  further).  In  addition,  every  week  bullhead  of  all  size  classes  were  caught  to  serve  as   stimuli   for   the   aggressiveness   test   that   would   be   carried   out   later   in   the  laboratory   (see   further).  Due   to   the   capture   date   and   insufficient   body   size,   sex  could   not   be   determined   for   the   untagged   and   the   stimulus   fish   (Freyhof   et   al.  2005).  The  fish  were  measured  (TL)  and  weighed  (wet  weight)  and  transferred  on  the  day  of  capture   to  an  outdoor  400-­‐L   tank  with  oxygenated  and  (bio-­‐)   filtered  tap  water  at  the  animalium  of  the  university.  The  tank  contained  PVC  tubes  (10  x  5   cm)   as   structuring   refuges   (more   tubes   than   fish).   The   mean   (±   SD)   water  temperature   was   9.8   ±   2.7   °C   (range   5.3   –   14.1   °C)   and   mean   oxygen  concentration  was  9.1  ±  1.2  mg  L-­‐1   (range  7.7  –  11.1  mg  L-­‐1).  Bullhead  were   fed  daily  to  satiation  with  frozen  bloodworms.    

Temperament  traits  

We  used  eleven  plastic  tanks  (79  x  42  x  57  cm),  lined  with  blue  plastic  foil  for  the  experiments.   The   tanks   were   half-­‐filled   and   contained   approximately   80   L   of  oxygenated   tap  water  with  a  mean  of  14.9  ±  1.5   °C   (range  12.7  –  17.2   °C)  and  a  mean   oxygen   concentration   of   7.8   ±   0.8   mg   L-­‐1   (range   6.5   –   9.6   mg   L-­‐1).   We  adjusted   the   light/dark   cycle   weekly   to   the   seasonal   natural   conditions.   Light  intensity  was  dimmed  to  mimic  the  stream  conditions  in  the  forest.    

Movement  range  and  temperament  traits

      103

The   tanks   were   set   up   such   that   all   tests   for   each   individual   could   be  conducted   in   just   one   tank   (Figure   1)   although   two   transfers   into   novel  environments  and  a  predator   introduction  were  done   (see   later).  Therefore,   the  tanks   were   temporally   visually   (white   plastic   plate)   and   constantly   physically  (metal  mesh)  divided  into  two  parts.  Ten  percent  of  the  bottom  of  both  tank  sides  (A   and   B)  was   structured;   different   objects   created   two   different   environments  (Figure   1).   Under   the   transparent   bottom   of   the   tank   a   grid   of   7.5   x   7.5   cm  quadrats  was  drawn;  it  was  chosen  in  view  of  the  maximum  size  of  the  recaptured  bullhead   (77  mm  TL).  Above   the   tanks  we  positioned  a  digital   camcorder   (DCR-­‐PC6E  or  DCR-­‐DVD310E,  Sony,  Tokyo,  Japan).    

 

Figure   1   Laboratory   set-­‐up   of   the   80-­‐L   experimental   tanks   for   the   temperament   trait   tests.  Both   tank   sections   were   similar   in   the   amount   of   structure   they   provided.   A   vertical   white  plastic  plate  was  fixed  0.5  cm  below  the  surface,  water  was  allowed  to  flow  between  the  sides  and  the  same  water  was  used  for  each  test.  The  white  plastic  plate  guaranteed  that  the  fish,  that  was  introduced  into  tank  section  A,  did  not  experience  the  environment  in  tank  section  B.  Removal   of   the   plastic   plate   before   the   boldness   test   enabled   the   perception   of   visual   and  chemical  cues  of  the  predator  on  the  opposite  tank  section.  

 

Under   the   artificial   tank   conditions,   bullhead   were   mostly   hidden   in   a  refuge   and   showed   no   activity   at   all   during   the   simulated   daylight.   To   record  behavioural  activity,  the  tests  were  recorded  at  the  beginning  of  the  night  period  

Chapter  6  

104

by  using  the  night-­‐shot  function  of  the  camcorders.  An  observer  was  only  present  to   turn   the   camcorders   on   in   complete   darkness.   The   tests   lasted   for   10   min  starting   from   2   min   after   the   recordings   started   (more   details   in   Kobler   et   al.  2011).   Four   temperament   categories   were   examined:   1)   Boldness-­‐shyness,   an  individual’s   reaction   to   any   risky   situation,   but   not   a   new   situation,   2)  Exploration-­‐avoidance,   an   individual’s   reaction   towards   a   new   situation;   this  includes  behaviour  towards  a  new  habitat,  new  food  or  novel  objects,  3)  Activity,  the   general   level   of   activity   of   an   individual   in   non-­‐risky   and   non-­‐novel  environment   and   4)   Aggressiveness,   an   individual’s   agonistic   reaction   towards  conspecifics  (for  more  details  on  these  definitions  see  Réale  et  al.  2007).  

 

 

 

Day                                                      Action  and  temperament  test  

0  -­‐  2                    -­‐(Re)-­‐capture  of  tagged  and  untagged  bullhead                      -­‐Transport  to  a  400-­‐L  outdoors  tank  at  the  university    

3  

                 -­‐Renewal  of  water  of  the  80-­‐L  laboratory  tank  (9  am)                    -­‐Translocation  from  outside  tank  to  laboratory  tanks                    -­‐Novel  environment  activity  (NEA)  1  in  tank  section  A    

4  -­‐  5                    -­‐Familiarization  to  tank  section  A  

6                    -­‐Activity-­‐test  (ACT)  1  in  tank  section  A                    -­‐Aggressiveness-­‐test:  introduction  of  stimulus  fish  

7                    -­‐NEA  2  in  tank  section  B    

8                    -­‐Removal  of  visual  barrier  between  tank  sides  (9  am)                      -­‐ACT  2  in  tank  section  B                    -­‐Interest  in  novel  food  test  in  tank  section  B    

9  

                 -­‐ACT  3  in  tank  section  B                    -­‐Boldness-­‐test:  predator  (pike)  into  tank  section  A                      -­‐End  of  tests;  remove  fishes  to  second  outdoors  tank  

Table   1   Schedule  of   the  temperament   trait   analysis  of  bullhead   in   the   laboratory   from  3  October   to  28  November  2008   (N   =  53   tagged,  N   =  21   untagged   individuals).  When   two  tests  were  conducted  on  a  day,  they  followed  each  other  immediately.      

Movement  range  and  temperament  traits

      105

The  general  procedure  of  the  behavioural  laboratory  tests  was  based  on  the  study   of   Dingemanse   et   al.   (2007)   and   is   summarized   in   Table   1.   The  temperament   trait   tests   (3   October   to   28   November   2008)   started   with   the  introduction   of   a   bullhead   into   the   unfamiliar   80-­‐L   laboratory   tanks   through   a  vertically  positioned  plastic   tube  (30  x  10  cm)  that  was  removed  directly  before  the   test   (Kobler   et   al.   2011).  Novel   environment   activity   (exploration-­‐avoidance  category)  was  quantified  by  the  number  of  quadrats  crossed  per  minute  (quadrats  min-­‐1)  regardless  of  the  direction  or  position  in  the  tank  and  was  measured  twice  (Table   1).   Novel   environment   activity   is   a   good   indicator   for   the   exploratory  tendency  of  an  individual  (e.g.  Cote  et  al.  2010).  

Interest   in   a   novel   food   item   (exploration-­‐avoidance   category)   was  measured  in  a  familiar  environment  (Table  1)  by  the  bullhead’s  reaction  towards  a  small  maggot  of  terrestrial  Diptera,  that  we  anticipated  being  an  unknown  food  item  (Kobler  et  al.  2011).  The  reaction  was  measured  in  terms  of  1)  the  approach  to   the   maggot   (bullhead   was   situated   in   the   quadrat   next   to   the   square   of   the  maggot),   2)   the   interest   in   the   maggot   (both   in   the   same   quadrat)   and   3)   the  ingestion  of  the  maggot.    

Activity   was   measured   three   times   after   allowing   familiarization   to   the  environment   for   at   least   12   h   (Table   1)   by   quantifying   the   distance   moved  (regardless  of  direction)  with  quadrats  min-­‐1  as  variable  (Kobler  et  al.  2011).    

Aggressiveness   was   tested   in   a   familiar   environment   (Table   1)   with   the  introduction  of  a  smaller  conspecific   into   the   tank  (Kobler  et  al.  2011).  Stimulus  fish  were  distributed  across  the  tanks  by  size  (mean  ±  SD,  46.8  ±  4.4  mm  TL;  range  35   -­‐   62  mm)   to   guarantee   a   similar   size   ratio   between   the   individuals   assayed.  The   number   of   bites   was   counted   and   the   distance   moved   was   recorded  (regardless   of   direction;   quadrats   min-­‐1).   The   individual’s   distance   was   later  compared  to  the  distance  moved  directly  before  the  test  (see  statistics).    

Boldness-­‐shyness  was   tested   in   tank   section   B  with   the   introduction   of   a  pike  (∼30  cm  TL)   into  tank  section  A  (Figure  1).  Because  the  tank  sections  were  only  separated  by  a  metal  mesh  (Figure  1),  visibility  was  provided  and  the  odour  of  the  predator  diffused  between  the  sections.  We  measured  1)  the  mean  time  (s)  as  well  as   the  proportion  of   time  (%)  spent   in   the  proximity   to  structuring   tank  objects   (distance   <   1   quadrat,   Figure   1),   2)   the   proportion   of   time   spent   in   the  tank  section  half  that  was  close  to  the  pike  (%),  and  3)  the  distance  moved  in  the  presence   of   the   predator   (quadrats   min-­‐1).   These   variables   were   quantified  directly  before   the   test   (control)  as  well  as  during   the  presence  of   the  predator,  

Chapter  6  

106

and   statistically   compared   to   measure   the   reaction   towards   the   predator   (see  statistics).    

Although  PIT  tagging  has  been  shown  to  have  negligible  effects  on  bullhead  survival,   growth   and   swimming   performances   (Knaepkens   et   al.   2007),   all   tests  were   conducted   with   field-­‐observed   PIT-­‐tagged   (N   =   53   of   59   recaptured  bullhead;   the   temperament   tests   failed   for   six   individuals   due   to   different  reasons)   and   untagged   bullhead   (N   =   21).   This   allowed   us   to   examine  whether  tagging  had  any  effects  on  the  temperament  traits  under  study  (see  statistics).    

After   the   test   series   (day   10,   Table   1)   bullhead  were   brought   to   a   second  400-­‐L  outdoors  tank,  where  they  were  stored  until  release  back  into  the  stream.  The  water  of  the  laboratory  tanks  was  renewed  before  the  next  test  series.    

Statistics  

Only   individuals   that  were   recaptured   and   successfully   tested   for   temperament  traits   (N   =  53)  were  used   for   the  movement   range   analyses.  Whether  body   size  (TL),  sex  and  body  size  ×  sex  had  an  influence  on  the  individual  movement  range  (m)  was  calculated  with  an  ANCOVA  (variance  homogeneity  of  sex,  Levene-­‐test,  p  >  0.05).    

Additionally,  we   also   tested  whether   there  would   be   similar   results  when  only   the   extreme   33%   of   the   movement   range   values   are   included   in   the  calculations   [(lowest   and   highest   33%   movement   range   values   (N   =   36)   of   all  bullhead   studied   (N   =   53)].   This   was   done   to   exclude   individuals   with  intermediate  movement  range  distances  and  put  emphasis  on  distinct  individuals,  similar   to   a   categorization   into   resident   and   mobile   individuals.   The   resulting  groups   were   tested   for   differences   in   sex   ratio   (Chi-­‐square   test)   and   body   size  (independent  t-­‐test,  equal  variances,  Levene-­‐test,  p  >  0.05).    

Two   temperament   traits   (aggressiveness   and   boldness)   measured   the  difference  between  the  distances  moved  from  just  before  to  during  a  stimulation  test  (see  Temperament  traits).  Each  individual  tested  represented  its  own  control  and   only   the   change   from   “normal”   to   stimulated   behaviour   was   used   as  behavioural  variable.  The  change  in  distance  moved  was  defined  by  the  individual  residual   value   of   the   regression   of   all   tested   individuals’   stimulus   activity   [LN  (quadrats  min-­‐1   +   1),   y-­‐axis]   on   the   control   activity   of   all   tested   individuals   [LN  (quadrats   min-­‐1   +   1),   x-­‐axis;   see   also   Garamszegi   et   al.   2009].   Negative   values  meant   that   the   individual   decreased   movement   during   the   stimulus   test   more  

Movement  range  and  temperament  traits

      107

than  expected  based  on  the  reaction  of  all  individuals  tested.  Similar  calculations  of   the   behavioural   difference   of   control   and   stimulus   were   also   made   for   the  boldness  variables  refuge  use  (%),  mean  refuge  use  (s)  and  tank  side  positioning  (%).    

For   temperament   traits   that   had   more   than   one   behavioural   measure   by  definition   (interest   in   novel   food,   aggressiveness   and   boldness),   we   merged  several  measures   to  one  variable   (Table  2).   In   the  principal   component  analysis  (PCA)  values  were  z-­‐transformed,  Eigenvalues  above  one  were  extracted,  multiple  components   rotated   by   varimax  method   and   the   new   variables   of   the   principal  components  (PC)  were  saved  by  regression  method  (Dingemanse  et  al.  2007;  see  also  Kobler  et  al.  2011).  Interest  in  novel  food  was  represented  by  a  PC  in  which  the   approach,   the   interest   and   the   ingestion   of   the   maggot   were   positively  correlated  (Table  2).  In  the  aggressiveness  PC  the  individual’s  activity  change  and  the   number   of   bites  were   positively   correlated,   suggesting   that   fish,   which   bite  more  often  became  relatively  more  active  when  the  stimulus  fish  was  introduced.  A  positive  value  of  the  boldness  PC  meant  that  after  the  introduction  of  a  predator  (pike)  individuals  spent  relatively  more  time  close  to  a  refuge  (%),  had  on  average  longer  stays  at  a  refuge  (s)  and  spent  relatively  less  time  in  the  tank  half  close  to  the  predator   (%)   compared   to  what  would  be   expected   from   the   reaction  of   all  tested   individuals   (see   previous   paragraph).   The   boldness   PC   was   included   in  further  calculations  as  additive  inverse  [x  =  boldness  *  (-­‐1)]  so  that  positive  values  meant  a  bolder  (and  not  a  shyer)  behaviour.  

   

Chapter  6  

108

 

To  control  for  experimental  bias,  we  tested  for  significant  influence  of  week,  tank  and  recording  analyser   (N  =  2,  but  N  =  1   for  boldness)  on   the  PCs  of  novel  food,  aggressiveness  and  boldness  by  general  linear  models.  Further  independent  variables   included  were   the  body  size   (TL)  and  whether   the   individual  was  PIT-­‐tagged.   The   body   size   ratio   between   tested   and   stimulus   individual   was   also  included   in   the  aggressiveness  model.  All   independent  variables  were  treated  as  fixed   effects.   Sex   was   not   included   in   the   models   due   the   unknown   sex   of   the  untagged   bullhead.   For   the   two   other   temperament   traits,   activity   and   novel  environment  activity,  several  measures  of   the   individuals  made  the  use  of   linear  mixed   models   necessary   with   individual   as   random   effect.   Due   to   variance  heterogeneity   of   activity   and   novel   environment   activity   (quadrats   min-­‐1)  between   the   levels   of   factors   (Levene-­‐test,   p   <   0.05)   dependent   variables   were  transformed   [LN   (x   +   1)].   The   “diagonal”   repeated   covariance   type   was   used.  Repeatability   (r)   of   activity   and   novel   environment   activity   was   calculated   in  additional   calculations   by   using   mean   squares   of   among-­‐groups   and   within-­‐

Temperament  trait   Eigenvalue   Explained      variance  (%)  

Factor  loading  

(a)  Interest  in  novel  food  PC1  Approach  (N)  Interest  (N)  Ingest  (N)  

2.21        

73.66        

 0.83  0.90  0.85  

b)  Aggressiveness  PC1  Activity  change    Number  of  bites  (N)  

1.32      

66.14      

 0.82  0.82  

c)  Boldness  PC1  Refuge  use  (%)  Mean  duration  refuge  use  (s)  Positioning  (tank  side,  %)    Activity  change    

2.11          

52.82          

 0.91  0.92  -­‐0.67  <  0.01  

Table   3   Principal   component  analysis  on   interest   in   novel   food   item,   aggressiveness   and  boldness  variables  of  bullhead.    

Factor   loadings,   Eigenvalue   and   explained   variance   are   presented   for   the   principal  components  (PC).  N  =  these  variables  were  defined  by  individual  counts;  each  test  consists  of  one  observation  for  each  individual  (between  N  =  72  and  N  =  74  individuals).  

Movement  range  and  temperament  traits

      109

groups   variance   of   a   one-­‐way   ANOVA   with   “individual”   as   a   factor   on   the  dependent  variables  (Lessells  &  Boag  1987).    

,  

where   s2^   is   the   among-­‐groups   variance   component   and   s2   is   the   within-­‐group  variance  component.  

Due   to   the   unbalanced   number   of   individual   habitat   localizations,   the  coefficient   (n0)   related   to   the   sample   size  had   to  be   calculated   (Lessells  &  Boag,  1987).    

The   relation   between   the   temperament   traits   and   the   gender   of   an  individual  was  calculated  for  the  PIT-­‐tagged  individuals  by  one-­‐way  ANOVAs.  

Temperament   traits   were   tested   for   correlation   by   Spearman   rank  correlation  due  to  non-­‐normality  of  novel  environment  activity,   interest   in  novel  food,   activity,   and   aggressiveness   (no   transformation   normalized,   Kolmogorov-­‐Smirnov,  p  <  0.05).  Novel  environment  activity  and  activity  were  represented  by  the  mean  value  of  the  multiple  measurements  while  the  other  temperament  traits  were  represented  by  the  PCs.    

Whether   the  movement   range  of  bullhead  was  correlated   to   temperament  traits   was   tested   by   Spearman   rank   correlations   (non-­‐normal   distribution   of  movement  range,  Kolmogorov-­‐Smirnov,  p  <  0.05).    

Whether   resident   and   mobile   groups   of   bullhead   are   different   in   their  expression   of   temperament   traits   was   tested   by   independent   t-­‐tests.   For   the  temperament   traits   novel   environment   activity   and   interest   in   novel   food   equal  variances  were  not  assumed  (Levene-­‐test,  p  <  0.05).    

Significance   of   sets   of   multiple   pair-­‐wise   comparisons   was   assessed   at   a  false  discovery  rate  (FDR)  adjusted  α  (Benjamini  &  Hochberg  1995).  Significance  of   all   other   calculations   was   assessed   at   α   <   0.05.   Statistical   analyses   were  conducted   with   IBM   SPSS   Statistics   20.0   for   Mac   (IBM   Corporation,   New   York,  USA).    

r = s2^ / s2 + s2^( )

Chapter  6  

110

Results  

Movement  range  

From  4  February  to  19  November  2008,  bullhead  (N  =  53)  were  on  average  (±  SD)  9.06   ±   1.39   times   detected   (range   7   to   10).   The  movement   range   (m)   over   the  entire  study  period  differed  considerably  among  individuals  and  ranged  from  1  to  1284  m  (N  =  53,  mean  ±  SD,  349.5  ±  394.0  m).  We  did  not  find  a  distinct  grouping  of   exclusively   resident   and   mobile   individuals   (Figure   2).   The   individual  differences   in  movement   range  were   not   associated  with   body   size   (TL),   sex   or  body  size  ×  sex  (ANCOVA,  all  possible  combinations  of  the  independent  variables  resulted  in  a  corrected  model  p  >  0.05).    

Statistically   differentiated   “resident”   bullhead   (N   =   18,  movement   range  ≤  35  m)  and  “mobile”  bullhead  (N  =  18,  movement  range  ≥  366  m)  did  not  differ  in  sex  ratio  (Pearson  chi-­‐square,  sex  not  known  of  all:  N  =  31,  χ2  =  0.01,  df  =  1,  p  =  0.981)  and  body  size  (t-­‐test,  N  =  36,  t  =  -­‐0.462,  df  =  34,  p  =  0.647).    

 

Figure   2   Individual   movement   range   (absolute   distance   between   the   most   up-­‐   and  downstream  location  during  the  ten-­‐month  study  period)  of  bullhead  (N  =  74)  in  relation  to  body  size  (total  length);  males  (circles:  N  =  17),  females  (quadrats:  N  =  31)  and  not  sex-­‐determined  (triangles:  N  =  5)  are  distinguished.  

Movement  range  and  temperament  traits

      111

Temperament  traits  

There  was  no   influence  of  PIT-­‐tagging  on  the  expression  of  temperament  traits:  PIT-­‐tagged  and  untagged  (solely  VIE-­‐marked)  individuals  behaved  similarly  (Table  3).  The  individual   expression  of   the   temperament   traits  was   not   related   to   the   gender   (sex  not   known   of   all   53   bullhead:   N   =   47,   ANOVAs,   all   p   >   0.05).   Novel   environment  activity   was   found   to   be   significantly   higher   in   smaller   individuals   (Table   3).  Unintentional  potential  influences  on  experiments  (e.g.  observation  week  difference)  showed   no   experimental   bias.   Replicated   temperament   trait   tests   indicated  behavioural  consistency  during  the  laboratory  test  period  with  r  =  0.479  for  activity  (N  =   73   bullhead)   and   r   =   0.529   for   novel   environment   activity   (N   =   74).   Novel  environment  activity  was  significantly  correlated  to  all  other  temperament  traits  and  activity  was  significantly  related  to  boldness  (Table  4).    

 

     

 

 

 

 

 

 

 

 

 

      Ta

ble  3  Tw

o  linear  m

ixed

 mod

els  (with

 rand

om  effe

ct)  a

nd  th

ree  gene

ral  linear  m

odels  

to  con

trol  for  significan

t  influ

ences  of  experim

ental  varia

bles  on  the  tempe

ramen

t  traits.  C

ontrolled  were  diffe

rences  between  expe

rimen

tal  w

eek  (N  =  8),  tank  (N

 =  11),  

the  pe

rson

 who

 analysed  the  vide

os  (N  =  2;  except  for  boldn

ess),  tagged/un

tagged

 status  and

 for  b

ody  siz

e  (to

tal  len

gth,  m

m).  Ad

ditio

nally,  the

 eventua

l  effe

ct  of  the

 size

 ratio

 of  the  tested

 bullhead  an

d  the  stim

ulus  fish

 was  tested  in  the

 aggressiven

ess  

mod

el.  F

or  rep

eated  measures  the  individu

al  differen

ces  as  w

ell  a

s  the  repe

atab

ility  

are  presen

ted;  significant  re

sults  are  in  bold.  

!"#$%&!

%'$()#'*

%'+!

,-+($

(+.!

/'+%)%0+!('!!

'#$%&!1##

2!!

! 3-+($

(+.!

! 344)%00($

%'%00!

! 5#&2'%

00!!

6,)(,

7&%!

! 21!!

"#! 2

1!"#

! 21!

"#! 2

1!"#

! 21!

"#

!"#$%&$''$()*&

/'+%)-%8

+!

9%%:!

;,':!

3',&.<%)!

;,44%2

!!

5#2.!0(<%!

=(<%!),

+(#!

+,-%

./&$''$

()*&

/'2($(2>

,&!

?$@!

! ABCDEF

A!

ACGFH I!

ACAAF A

F!

DCGHD A!

FCFJK A!

HCBGE A

!

L ! 9,&2!%!

DCBIA!

?FCBDK

@!

! MFCFFA

!

FCAFE!

FCJID!

FCFKJ!

FCGEB!

01023&

L! & 01020&

L!

! FCAIB A

!

FCJJB I

!

FCGBG A

F!

FCDBJ A

!

FCFEI A

!

FCAGE A

!

L ! ! L! L!

! FCHIG!

FCKJE!

FCBII!

FCHAI!

FCGDK!

FCHIF!

L! ! L! L!

! ECFKG A

!

FCEAF I!

FCDEB A

F!

DCHGH A!

FCDHF A!

ACJAJ A!

L! 9,&2!%!

ECAFG!

?FCEIK

@!

! FCFEK!

FCKAH!

FCKKJ!

FCAFB!

FCBII!

FCDBI!

L! & 401002

&

L!

! FCFFJ A

!

FCEDB I!

ACAEJ A

F!

ACEEF A!

FCFAA A!

FCJEG A!

FCJDA A

!

! L! L!

! FCKBH!

FCGGD!

FCJBF!

FCDJH!

FCKAH!

FCBBG!

FCBIJ!

! L! L!

! FCHIA A

!

FCKFF I

!

FCHJJ A

F!

L! FCGEJ A

!

FCIEA A!

L ! ! L! L!

! FCEAI!

FCBAJ!

FCIIK!

L! FCJHJ!

FCJKJ!

L! ! L! L!

Chapter  6  

112

 

 

Movement  range  and  temperament  traits    

The   movement   range   of   bullhead   was   not   significantly   related   to   novel  environment  activity  (N  =  53,  rs  =  -­‐0.154,  p  =  0.271),  aggressiveness  (N  =  53,  rs  =  0.022,   p   =   0.878)   and   activity   (N   =   53,   rs   =   -­‐0.001,   p   =   0.994).   The   relations  between  movement  range  and  the  interest  in  a  novel  food  item  or  boldness  were  also   not   significant   but   the   coefficient   (rs)   indicated   weak   positive   correlations  (interest  in  novel  food,  N  =  53,  rs  =  0.222,  p  =  0.109;  boldness,  N  =  52,  rs  =  0.227,  p  =  0.106).  

The  temperament  traits  did  not  significantly  differ  between  “resident”  and  “mobile”  bullhead  (t-­‐test;  novel  environment  activity:  N  =  36,  t  =  1.740,  df  =  34,  p  =  0.091;  interest  in  novel  food;  equal  variances  not  assumed,  N  =  36,  t  =  -­‐1.651,  df  =  26.859,  p  =  0.110;  activity:  N  =  36,  t  =  0.496,  df  =  34,  p  =  0.623;  aggressiveness:  N  =  36,  t  =  0.485,  df  =  34,  p  =  0.631;  boldness:  N  =  35,  t  =  -­‐1.201,  df  =  33,  p  =  0.238;  Figure  3).  

   

Trait  correlation     rs                                                p  NEA  -­‐  INF   0.311   0.007  NEA  –  ACT   0.476   <0.001  NEA  –  AGG   0.406   <0.001  NEA  –  BOLD     0.302   0.008  INF  –  ACT   0.244   0.038  INF  –  AGG   0.166   0.157  INF  –  BOLD     0.124   0.300  ACT  –  AGG   0.234   0.046  ACT  –  BOLD     0.302   0.010  AGG  –  BOLD     0.130   0.275  

Table  4  Novel  environment  activity   (NEA,  N  =  74  bullhead),   interest   in  novel   food  (INF,  N  =  74),   activity   (ACT,  N=73),   aggressiveness   (AGG,  N   =   74)   and   boldness   (BOLD,  N=72)   of   the  bullhead   correlated   by   Spearman   rank   correlations.   Significance   after   False  Discovery   Rate  type  I  error  controlling  is  highlighted  in  bold  (αadjusted  =  0.025).    

Movement  range  and  temperament  traits

      113

 

Discussion  

Long-­‐term   movement   distances   of   stream   fish   can   vary   considerably   among  individuals  (Skalski  &  Gilliam  2000;  Fraser  et  al.  2001).  Accordingly,   the  studied  bullhead   population   was   heterogeneous   in   movement   range   with   some  individuals  being  strictly  sedentary  and  others  having  ranges  of  more  than  1000  m.   These   individual   differences   were   not   related   to   sex   or   body   size   but   the  results  of  this  study  suggest  that  there  may  be  a  behavioural  association.  Bullhead  that  dispersed  further  in  the  stream  tended  to  be  more  interested  in  a  novel  food  item.   A   novel   food   item   is   supposed   to   be   risky   as   it   can   have   adverse   or   toxic  effects   and   may   increase   predation   risk   due   to   prolonged   predator   exposure  during   the   inspection.   It   can,   however,   be   advantageous   to   balance   the   energy  expenditure   during   dispersal   (Bowler   &   Benton   2005)   by   exploring   novel   food  sources.  This  may  help  to  increase  body  condition  after  costly  movements  (Bonte  et  al.  2012).    

Accordingly,   bullhead   with   longer   movement   range   expressed   riskier  behaviour  during  the  predator  trial  (albeit  not  significant,  p  =  0.106).  Fish  that  are  under  predation   risk  might   be  bolder   (Brown  &  Braithwaite  2004;  Brown  et   al.  

Figure  3  Comparison  of  movement  range  (m)  and  temperament  traits  between  resident  (N  =  18,   lower   33%   of   the   movement   range   values   of   the   studied   population)   and   mobile  bullhead  (N  =  18,  upper  33%).  Boxplots  show  median,  75th  (box),  90th  (whiskers)  and  95th  percentiles   (dots);   movement   range   =   absolute   distance   between   the   most   up-­‐   and  downstream  location  during  the  ten-­‐month  study  period;  pc  =  principal  component.  

Chapter  6  

114

2007).   For   instance,   predator-­‐sympatric   poeciliids   (Brachyraphis   episcopi)   are  bolder   than   their   predator-­‐allopatric   conspecifics   (Brown   &   Braithwaite   2004;  Brown  et   al.  2007).  Therefore,   an  association  of  movement   range  with  boldness  may   be   explained   by   higher   predation   risk   for   bullhead  with   longer  movement  range  (see  Howard  1960).  The  low  correlation  coefficient  (rs  =  0.227)  may  be  due  to  the  relatively  low  predation  risk  in  the  studied  stream.  Aquatic  predators  were  rare   and   avian   predators   appeared   only   a   few   times.   The   weak   correlations  between  movement  range  and  interest  in  novel  food  or  boldness  seem  to  indicate  that   bullhead   with   longer   movement   range   may   express   a   more   risk-­‐prone  behaviour.   Future   studies   on   the   relation   between   movement   range   and   risk-­‐prone   behaviour   may   also   consider   the   level   of   predation   risk   in   the   studied  population(s).    

We   did   not   find   a   significant   relation   between   the   movement   range   and  activity  in  a  novel  environment.  Based  on  the  findings  of  Dingemanse  et  al.  (2003),  who  showed   that   juvenile  great   tit   immigrants  were   faster  explorers   than   locals  we   had   hypothesized   that   bullhead   with   longer   movement   range   are   more  explorative.  On  the  opposite,  mobile  bullhead  tended  to  be   less  active   in  a  novel  environment  than  resident  bullhead  (p  =  0.091).  And  indeed,  the  relation  between  dispersal   and   explorative   behaviour   may   be   negative.   Myers   &   Krebs   (1971)  observed  dispersing  field  voles  (Microtus  pennsylvanicus  and  M.  ochrogaster)  to  be  less   explorative   in   a  maze  experiment   than   residents.  This  may  be  explained  by  individual  differences  in  search  strategies.  Philopatric  or  resident  individuals  may  be   more   intensive   and   systematic   searchers   while   dispersing   or   mobile  individuals   may   search   less   intensively   on   a   small   scale.   Comparably,   Doerr   &  Doerr  (2005)  showed  that  individual  treecreeper  birds  (Climacteris  picumnus  and  Cormobates   leucophaeus)   that   dispersed   over   greater   areas   searched   less  thoroughly   suggesting   a   trade-­‐off   in   search   tactic.   During   reproductive   period  when   the   individual  movement   distances   diversified   in   the   bullhead   population  (Kobler  et  al.  2012b)  “mobile”  bullhead  may  have  searched  for  mates  or  habitats  with   a   straight-­‐line   approach   (see   Zollner   &   Lima   1999),   which   resulted   in   a  longer  movement  range.  It  is  possible  that  the  movement  range  diversification  in  bullhead   may   be   related   to   the   individual   degree   of   thoroughness   in   search  tactics.    

The   movement   range   of   bullhead   was   not   related   to   individual   levels   of  aggressiveness.  Due  to  territorial  behaviour  of  Cottus  spp.  even  outside  breeding-­‐period  (e.g.  C.  bairdii,  Petty  &  Grossman  2007)  it  is  plausible  that  mobile  bullhead  are   more   involved   in   aggressive   interactions   with   conspecifics   after   movement  range   expansion   and   settlement.   Duckworth   &   Badyaev   (2007)   observed  

Movement  range  and  temperament  traits

      115

philopatric   western   bluebirds   to   be   less   aggressive   than   their   colonizing  conspecifics.   The   highly   aggressive   individuals   appeared   to   be   better   suited   for  colonization  because  of   their  ability   to  exclude   less  aggressive  conspecifics   from  new  territories  (Duckworth  &  Badyaev  2007).  We  assumed  that  despite  a  possibly  long  time  interval  between  the  movement  range  expansion  and  the  temperament  traits   tests   in   the   present   study   (up   to   several  months)   a   relation   of  movement  range   and   aggressiveness   would   have   been   detectable.   Meylan   et   al.   (2009)  showed   that   ten   months   after   the   dispersal   phase   common   lizards   (Lacerta  vivipara)   still   showed   behavioural   differences   between   dispersing   and   resident  individuals.   However,   it   is   possible   that   the   length   of  movement   range   is   not   a  good  indication  of  the  number  of  territory  establishments.  Individuals  with  short  and   long  movement   range  may  establish   similar  amounts  of   territories  but  on  a  different  spatial  scale.  Future  studies  may  examine  whether  the  movement  range  (dispersal   distance)   and   territory   establishments   of   non-­‐migratory   stream   fish  are   related.   Furthermore,   it   may   be   tested   whether   the   number   of   territory  establishments   is   related   to   aggressiveness.  The  degree  of  habitat   complexity  of  the  territory  may  also  be  related  to  aggressiveness  (see  Kobler  et  al.  2011).    

Bullhead  that  were  more  active  in  the  novel  environment  in  the  laboratory  were   significantly   smaller.   This   was   already   shown   in   a   previous   independent  study  (albeit  not  significant,  Kobler  et  al.  2009b).  Why  smaller  individuals  explore  faster  can  be  explained  by  the  hypothesis  that  smaller  fish  have  higher  metabolic  requirements   and   locomotion   is   more   costly   than   for   larger   fish   (Krause   et   al.  1998).   Similarly,   Brown   &   Braithwaite   (2004)   showed   a   positive   correlation   of  body   size   and   time   to   emerge   from   a   shelter.   It   may   be   concluded   that   an  individual’s   exploration  of   a   novel   environment   is   linked   to   its  metabolism   (see  Careau  et  al.  2008).      

Although   the   individual   differences   in   movement   range   of   bullhead   were  remarkable,  we  did  not  find  a  clear  grouping  of  resident  and  mobile  individuals  as  has   been   suggested   in   other   studies   in   non-­‐migratory   stream   fish   (e.g.   Belica  &  Rahel  2008)  and  also  in  the  bullhead  (Knaepkens  et  al.  2004).  This  may  be  due  to  biological  but  also  methodological  differences.  Distinct  groupings  of  mobility  are  often   an   artefact   of   data   collection   and   the   methodological   definition   when   an  individual  is  mobile  (Porter  &  Dooley  Jr.  1993;  Gowan  et  al.  1994).  Many  studies  define  resident  fish  by  those  not  leaving  a  stream  area  of  a  given  length  (e.g.  20  m  stream   length,   sensu   Gowan   et   al.   1994)   or   an   estimated   home   range   (Gerking  1959).   Our   approach   of   following   individual   fish   over   large   stream   areas   with  multiple   localizations   and   quantified   movement   distances   affirmed   that   the  distribution  of  movement  distances  is  rather  leptokurtic  than  bimodal  (Skalski  &  

Chapter  6  

116

Gilliam   2000;   Fraser   et   al.   2001).   The   conceptual   grouping   of   non-­‐migratory  stream  fish  into  resident  and  mobile  individuals  thus  may  be  reconsidered.    

To   conclude,  we   found   considerable   intra-­‐population   heterogeneity   in   the  movement  range  of  bullhead.  The  individual  movement  range  was  not  related  to  body  size  or  sex.  We  found  weak  positive  correlations  between  movement  range  and   interest   in   novel   food   or   boldness.   Bullhead   that   expanded   further   in   the  stream   seemed   to   be  more   risk-­‐prone.   Smaller   bullhead   were  more   active   in   a  novel  environment.  This  may  be  due  to  higher  metabolic  requirements  of  smaller  fish.   Future   studies   may   also   address   the   question   whether   the   individual  movement  range  or  the  individual  dispersal  distance  of  non-­‐migratory  stream  fish  is  related  to  behavioural  characteristics.  It  may  also  be  tested  whether  individual  differences   in   temperament   traits   are   the   cause   or   the   consequence   of  heterogeneity  in  movement  ranges.  

Acknowledgments  

Many   thanks   to   F.   Volckaert,   S.   Lahaye   and   A.   Geens   for   helpful   comments,   P.  Scheys,   G.   Eens,   Y.   Humblet   and   K.   Geudens   for   technical   assistance   and   G.  Knaepkens   for   support.  Many   thanks   also   to   the  University   of   Antwerp   and   the  Fund   for   Scientific  Research-­‐Flanders   for   funding   (FWO-­‐project  nr  G.0119.08N).  The   experimental   work   was   performed   in   agreement   with   the   Belgian   and  Flemish   laws   and   was   approved   by   the   ethical   committee   of   the   University   of  Antwerp  (ID  number  2007/42).    

 

 

CHAPTER  7  

 

MOVEMENT  RANGE,  FITNESS  AND  HETEROZYGOSITY      

   

Movement  range,  fitness  and  heterozygosity

      119

 Dispersal  in  a  heterogeneous  stream  population:  is  movement  

range  of  bullhead  related  to  fitness  and  heterozygosity?  

 

Alexander  Kobler,  Filip  A.M.  Volckaert,  Alexander  Triantafyllidis,                                                  Marcel  Eens,  Gregory  E.  Maes  

In  preparation  

 

Abstract  

Variation   in   individual   dispersal   propensity   can   depend   on   differences   in   life-­‐history  traits  such  as  developmental  state,  size  and  sex  but  may  also  be  associated  to   fitness.   We   examined   whether   the   movement   range,   that   is   the   distance  between  the  most  up-­‐  and  downstream  location,  of  a  non-­‐migratory  stream  fish  is  associated  to  fitness-­‐related  traits  and  individual  genetic  diversity.  Fifty  bullhead  (Cottus  perifretum)  were  tagged  with  passive  integrated  transponders,  genotyped,  sexed,   field-­‐observed   during   ten   months   and   recaptured.   The   individual  movement   range   varied   from   1   to   1096   meters.   These   differences   were   not  related  to  body  condition,  growth  rate  or  microsatellite  heterozygosity  (single-­‐  or  multilocus)   and   also   not   to   sex   or   body   size.   No   association   between  heterozygosity  and  body  condition  or  growth   rate  was   found.  A  possible   reason  why   body   condition   was   not   associated   with   movement   range   may   be  counterbalancing   effects   of   strong   intra-­‐specific   competition   and   low   predation  risk   during   dispersal.   Growth   rate   measurements   over   the   entire   study   period  were   not   suitable   to   differentiate   a   growth-­‐association   before   dispersal   from   a  possible  growth  benefit  after  dispersal.  Instead  of  using  neutral  genetic  variation  a   candidate-­‐gene   approach   with   genes   associated   to   dispersal   or   temperament  traits   might   help   to   detect   the   evolutionary   background   of   between-­‐individual  differences  in  the  movement  range  (dispersal)  of  non-­‐migratory  stream  fish.    

   

Chapter  7  

120

Introduction  

Dispersal  is  the  active  or  passive  attempt  to  move  from  one  natal  /  breeding  site  to  another  breeding  site  (Clobert  et  al.  2001;  Clobert  et  al.  2009).  Dispersal  allows  the  exploitation  of  spatially  and  temporally  variable  resources  and  is  essential  for  the  persistence  of  a  species  (Bohonak  1999;  Bowler  &  Benton  2005;  Clobert  et  al.  2009).   The   importance   of   dispersal   behaviour   for   the   ecology   and   evolution   of  wild   populations   becomes   increasingly   apparent   as   populations   face  fragmentation  of   their  habitat   (Clobert  et  al.  2009).  Successful  management  of  a  species,   therefore,   relies   on   an   understanding   of   the   patterns   and   dynamics   of  dispersal.    

Animal  dispersal  might  be  linked  to  competition  with  conspecifics  and  kin,  and  competition  for  mates  and  quality  habitats  (Clobert  et  al.  2001;  Clobert  et  al.  2009).  Individuals  that  are  less  successful  during  competitive  interactions  should  preferentially   disperse   and   tend   to   settle   farther   away,   a   mechanism   that   is  recognized   as   “fitness-­‐associated   dispersal”   (Hadany   et   al.   2004   and   references  therein).   The   pressures   to   disperse   are,   therefore,   unequally   distributed   among  individuals  (Bowler  &  Benton  2005)  and  dispersing  individuals  rarely  constitute  a  random  sample  of  the  population  (Hadany  et  al.  2004).  The  variation  in  individual  dispersal   propensity   might   depend   on   differences   in   life-­‐history   traits   such   as  developmental  state,  size  and  sex  (Bowler  &  Benton  2005  and  references  therein).  For   instance,   in  many   birds,   territory   acquisition   by   a   young   adult  may   only   be  possible  through  dispersal  (Bowler  &  Benton  2005).  The  trait  dispersal  may  have  also   a   genetic   component   because   fitness-­‐associated   traits   can   be   related   to  individual  genetic  diversity  (David  1998;  Chapman  et  al.  2009;  Szulkin  et  al.  2010).  For   instance,   heterozygosity   in   mountain   goats   (Oreamnos   americanus)   is  associated  to  increased  survival  (Mainguy  et  al.  2009)  and  a  lower  propensity  to  disperse  (Shafer  et  al.  2011).    

Individual  propensity  to  disperse  is  hard  to  assess  due  to  the  difficulties  in  following   individuals   over   a   long   period   and   in   gathering   information   on   their  breeding   locations.   Non-­‐migrating   stream   fish   are   no   exception.   Although  movement   distances   are   often   very   restricted   (Gerking   1959),   movement  distribution   within   populations   may   be   heterogeneous   (e.g.   Skalski   &   Gilliam  2000;   Fraser   et   al.   2001)   and   numerous   studies   differentiated   non-­‐migratory  stream   fish   populations   into   resident   and   mobile   individuals   (e.g.   Smithson   &  Johnston  1999;  Nakamura   et   al.   2002;  Rodriguez   2002;  Knaepkens   et   al.   2004).  The  mobile  fraction  influences  the  level  of  inbreeding  through  the  spread  of  new  genes   (Howard   1960)   and   the   repopulation   of   depauperated   areas   (Gerking  

Movement  range,  fitness  and  heterozygosity

      121

1959).  However,  not  much  is  known  which   individual  characteristics  distinguish  resident  and  mobile  fish.  

The   studied   species,   the  bullhead   (Cottus  perifreum),   belongs   to   the   genus  Cottus   that   consists   of   small   benthic   fishes   (<   20   cm,   Kottelat  &   Freyhof   2007),  known  for   their  benthic  and  cryptic  behaviour  (e.g.  Smyly  1957).  Cottus   ssp.  are  also  known  for  their  non-­‐breeding  territoriality  (Cottus  bairdii,  Petty  &  Grossman  2007).   Nevertheless,   numerous   studies   found   remarkable   intra-­‐population  heterogeneity  in  movement  distances  (C.  perifretum,  Knaepkens  et  al.  2004,  2005;  Cottus  ssp.,  Breen  et  al.  2009;  Hudy  &  Shiflet  2009;  Ovidio  et  al.  2009).  Whereas  some  individuals  stay  over  the  year  in  a  restricted  area  often  not  larger  than  a  few  square  meters,  other   individuals  move  more  than  one  kilometre  (Hudy  &  Shiflet  2009;  see  also  Knaepkens  et  al.  2004;  Breen  et  al.  2009;  Kobler  et  al.  2012).  The  studied   population   density   was   high   (Kobler   et   al.   2011)   and   intra-­‐specific  competition  presumably  strong.  

The   aim   of   the   study   is   to   examine   movement   range   of   a   non-­‐migratory  stream   fish,   the   bullhead,   in   the   context   of   the   phenotype   and   genetic   diversity  using   a   single   population   in   a   small   lowland   stream   in   Flanders,   Belgium.   The  breeding  sites  of  stream  fish  are  hard  to  identify;  therefore  the  existing  literature  commonly  uses   long-­‐term  movement   range   (the  distance  between   the  most  up-­‐  and  downstream   location  during   several  months)   to   indicate  dispersal   distance.  Consequently,  rather  than  using  the  terms  philopatric/dispersing  individuals  non-­‐migratory  stream  fish  are  differentiated  into  resident  and  mobile  individuals.    

The   present   study   examined   whether   individual   movement   range   is  positively   associated   to   fitness,   similar   to   what   has   been   observed   for   the  dispersal   distances   of   other   vertebrates   (Gaines   &   McClenaghan   Jr.   1980;  Greenwood  1980;  Belichon   et   al.   1996;  Alonso   et   al.   1998;  Hadany   et   al.   2004).  For   instance,   better-­‐conditioned,   juvenile   great   bustards   (Aves:   Otis   tarda)   are  competitively   superior   and   stay   closer   to   their   natal   sites   (Alonso   et   al.   1998).  Such   dispersal-­‐fitness-­‐association   might   have   a   genetic   cause;   individual  heterozygosity   can   be   positively   associated  with   fitness   components   in   a   broad  range  of  taxa  (David  1998;  Chapman  et  al.  2009;  Szulkin  et  al.  2010).  To  test  our  hypothesis,  two  common  indicators  of  fitness  in  fish,  body  condition  (e.g.  Bolger  &  Connolly   1989;   Jakob   et   al.   1996)   and   specific   growth   rate   (e.g.  Werner   &   Hall  1976),   as   well   as   microsatellite   heterozygosity   were   related   to   individual  movement  range  of  bullhead.    

 

Chapter  7  

122

Materials  and  methods  

Sampling  

The   study   was   conducted   in   the   Laarse   Beek   (51°16'28.40"N;   4°29'4.63"E),   a  lowland  stream  in  northern  Belgium  with  a  mean  width  of  3  m  (range  2  -­‐  4  m)  and  a  mean  depth  of  0.3  m  (0.1  -­‐  0.5  m).  Bullhead  were  the  most  abundant  fish  species  in  the  stream.  Aquatic  and  avian  predators  were  rare.  A  more  detailed  description  of  the  study  area  is  given  in  (Kobler  et  al.  2011).  The  focal  stream  reach  was  2500  m  long  and  marked  every  2  m  with  consecutively  numbered  wooden  poles  along  one  side  of  the  stream.    

In   the   middle   of   the   2500   m   observation   reach   bullhead   were   initially  caught  within  324  m   in   two  sessions,  on  4,  5  and  7  February  and  on  13  and  14  February   2008   by   electro-­‐fishing   (WFC7-­‐10,   Electracatch   Int.,   Wolverhampton,  UK)  using  a  40  cm  ring  anode.  Only  adult  bullhead  >  50  mm  total  length  (TL)  were  collected   and   kept   individually   in   buckets.   Fifty   mm   is   the   minimum   size   for  tagging  C.  perifretum  (see  further;  Knaepkens  et  al.  2007).  Bullhead  (N  =  334)  had  a  mean  (±  SD)  TL  of  62.1  ±  6.3  mm  (range  50  to  88  mm)  and  a  mean  wet  weight  of  3.3   ±   1.2   g   (range   1.7   to   9.9   g).   Fourteen   recaptures   during   the   second   session  resulted   in   an   abundance   estimate   of   2006   bullhead   >   50   mm   TL   (confidence  interval  1228–3459)  in  the  324  m  electro-­‐fishing  reach  (Kobler  et  al.  2011).  Thus,  the  captured  bullhead  represented  ~17%  of  the  mature  population  in  the  electro-­‐fishing  reach.  In  comparison  to  other  bodies  of  waters  in  Flanders  the  abundance  of  C.  perifretum  was  very  high.  

Bullhead   were   anaesthetized   (0.25   ml   L-­‐1   2-­‐phenoxy-­‐ethanol)   and  individually  coded  12  mm  PIT-­‐tags  (12  x  2.1  mm,  0.094  g;  ID100,  EID  Aalten,  NL)  were  inserted  horizontally  into  the  body  captivity  through  a  2  mm  incision  close  to   the   genital   papillae   (Kobler   et   al.   2011).   Every   tagged   individual   was  photographed   dorsally  with   a   scale.   A   small   piece   of   tissue   from   the   anal   fin   of  each   tagged   bullhead   was   sampled   for   genetic   analyses   and   preserved   in   95%  ethanol.  After   implantation  and  recovery  in  buckets  with  stream  water,  bullhead  were  released  at  their  capture  site.    

The  gender  of  bullhead  was  determined  morphologically  by  evaluating  the  individual  photographs.  At  the  time  of  first  capture  (and  photographing),  seasonal  gonadal   maturation   had   already   started.   Individuals   with   a   very   round   belly  (looking   tadpole-­‐like),   that   clearly   suggested   the   content   of   eggs,   were  determined  as  females.  Males  could  be  determined  by  the  triangular  shape  of  the  

Movement  range,  fitness  and  heterozygosity

      123

head  (Freyhof  et  al.  2005)  and  the  proportionally  smaller  body  cavity.  Ambiguity  about  the  sex  of  an   individual   led  to  a  non-­‐defined  gender  of   the   individual.  The  sex   of   every   individual  was   determined   “blindly”   three   times   on   three   different  days   by   evaluating   the   photograph   of   an   individual.   Only   when   a   consensus  between  three  sex  determinations  was  reached  was  the  gender  used  in  this  study.  The   majority   of   bullhead   (83%)   was   sexed   and   included   138   females   and   139  males.  

Tracking  and  recapture  

The   stream  was   scanned  monthly   over   a   distance   of   2500  m:   1250  m   up-­‐   and  downstream   of   the   middle   of   the   electro-­‐fishing   reach.   This   tracking   distance  should   allow   to   cover   the   longest   movements   of   bullhead   (observed  maximum  distance  of  a  Cottus  ssp.:  Potomac  sculpin,  Cottus  girardi,  1711  m  in  75  d,  Hudy  &  Shiflet  2009).  Tracking  started  two  weeks  after  the  second  electro-­‐fishing  session  and  was  conducted  monthly  on  28  February,  27  March,  24  April,  21  May,  25  June,  16  July,  13  August  and  9  September  2008.  Tracking  after  9  September  2008  was  conducted  during   the   individual  recapture  (see   further).  The  period  covered  the  reproductive  period   (March   to  May),  when   farthest   annual  movement  distances  were  recorded  in  2008  in  the  Laarse  Beek  (Kobler  et  al.  2012).    

The  duration  of  a  2500  m  tracking  was  three  days  with  an  effort  of  ~8  h  d-­‐1.  A   portable   PIT-­‐tag   antenna   with   a   detection   precision   of   <   30   cm   was   used  (Kobler   et   al.   2011,   2012).   Once   a   bullhead  was   located,   the   individual   PIT-­‐tag  code,  the  stream  length  position  (m)  and  the  tracking  date  were  noted  (for  more  details   see   Kobler   et   al.   2011,   2012).   During   reporting,   the   antenna   was   kept  above   the   detected   bullhead.   An   escape   response   was   never   observed   and   the  tagged  individuals  relied  on  their  camouflage,  a  typical  behaviour  for  Cottus  spp.  (for  more  details  see  Kobler  et  al.  2011).    

From  22  September   to  19  November  2008  we  attempted   to   recapture   the  PIT-­‐tagged   bullhead   within   the   tracking   reach.   This   period   was   chosen   as  bullhead   were   in   the   following   tested   for   animal   personality   differences   in   an  accompanying   study   (Kobler   et   al.   in  preparation,   chapter  6)   and   this  had   to  be  done  before  the  annual  gonadal  maturation  started.  The  fish  were  detected  in  two  complete  screenings  of  the  2500  m  stretch  (in  total  8  d)  by  using  the  portable  PIT-­‐tag   antenna.   Fifty-­‐nine   bullhead   were   caught   with   a   large   landing   net   (one  person)   and   two   small   aquarium   nets   (another   person).   The   relatively   low  recapture  rate  (18%)  may  be  explained  by  natural  mortality  and  not  emigration  (Kobler   et   al.   2012).   Bullhead   are   short-­‐lived   often   not   getting   older   than   four  

Chapter  7  

124

years  (Marconato  et  al.  1993;  Kottelat  &  Freyhof  2007)  and  the  youngest  tagged  individuals  of  the  present  study  were  almost  two  years  old  (in  the  Laarse  Beek,  0+  aged  bullhead  are  maximum  45  mm  TL  long,  personal  observations).    

DNA  isolation  and  genotyping  

Genomic  DNA  was  extracted  using  a  commercial  kit  (NucleoSpin,  Macherey-­‐Nagel,  Düren,   Germany).   Nine   microsatellite   loci   were   amplified   in   a   GeneAmp   PCR  System   2700   thermocycler   (Applied   Biosystems,   Foster   City,   CA,   USA)   in   two  multiplex   PCRs   using   the   QIAGEN   Multiplex   PCR   Kit   (Qiagen   N.V.,   Venlo,   NL).  Annealing   temperatures   were   55°   C   for   Cgo56,   Cgo91,   Cgo1016,   Cgo1033,  Cgo1114  (Englbrecht  et  al.  1999)  and  60°  C  for  CottE6,  CottE23,  CottES21,  LCE22,  LCE59  (Nolte  et  al.  2005).  PCR  products  were  visualised  on  an  ABI  3130  Genetic  Analyser   (Applied   Biosystems).   Allele   size   was   determined   by   means   of   an  internal   Genescan   500-­‐LIZ   size   standard   (Applied   Biosystems)   and   genotypes  were  obtained  using  GENEMAPPER  version  3.7  (Applied  Biosystems).  To  identify  potential   genotyping  errors   in   the  microsatellite  data   (i.e.   stuttering,   large  allele  dropout  or  null  alleles),  the  software  Microchecker  version  2.2.3  (Van  Oosterhout  et   al.   2006)   was   used.   One   locus   (CottE23)   was   not   in   Hardy-­‐Weinberg  equilibrium   and   therefore   excluded   from   further   analysis   (calculated   by   FSTAT  version  2.9.3.2,  Goudet  1995).   For   all   genetic   analyses  we  used  only   individuals  for   which   at   least   seven   of   the   nine   loci   were   successfully   amplified   (N   =   310  bullhead).    

The   number   of   alleles,   the   allele   frequency   per   locus,   the   expected  heterozygosity   (HE)  and   the  observed  heterozygosity   (HO)  were  calculated  using  the   microsatellite   toolkit   for   Excel   3.1.1   (Park   2001).     Calculation   of   the  inbreeding  coefficient   (FIS)   for  each   locus  was  performed   in   the  program  FSTAT  version  2.9.3.2  (Goudet  1995).    

Individual  diversity  

Two  common  measures  of  diversity  were  used  (Chapman  et  al.  2009):  individual  heterozygosity   (HI)   and   internal   relatedness   (IR).  HI  measures   the  proportion  of  heterozygous   typed   loci   for   an   individual.   IR   is   centered   around   zero   for  individuals  born  to  “unrelated”  parents,  with  negative  values  suggesting  relatively  “outbred”   individuals   and   high   positive   values   being   suggestive   of   inbreeding  (Amos  et  al.  2001).    

   

Movement  range,  fitness  and  heterozygosity

      125

IR  was  calculated  in  Storm  1.1  (Frasier  2008).  

2! −   !!2! −   !!

 

 where  H  is  the  number  of  loci  that  are  homozygous,  N  is  the  number  of  loci  and  fi  is  the  frequency  of  the  ith  allele  in  the  genotype.  

HI   (non-­‐normally  distributed,  Kolmogorov-­‐Smirnov,  p  <  0.05)  and   IR  were  strongly  correlated  (Spearman  correlation,  N  =  310,  rs  =  -­‐0.971,  p  <  0.001).  

Fitness  indicators  

Body   condition   was   calculated   separately   for   males   and   females   because   of  seasonal   gonadal   development   before   capture   and   the   associated   inter-­‐sexual  differences   in   body   shape   (see   Sampling).   As   proposed   by   (Bolger   &   Connolly  1989)  we  related  the  actual  weight  of  an  individual  to  its  expected  weight,  which  was  calculated  as  a  function  of  its  length.  Therefore,  (unstandardized)  residuals  of  the  linear  regression  of  wet  weight  (y-­‐axis)  on  body  size  (TL,  x-­‐axis)  for  males  and  females  were  calculated  as  proposed  by  (Jakob  et  al.  1996;  Schulte-­‐Hostedde  et  al.  2005).  A   residual   value  was   assigned   to   every   individual;   positive   values  meant  that   the   individual  was  heavier   than  what  was  expected   from   the   length-­‐weight  function   of   all   sampled   males   or   females.   Residual   values   were   normally  distributed  (Kolmogorov-­‐Smirnov,  N  =  277,  p  =  0.200).  

Since   body   growth   in   fish   is   an   indicator   of   individual   fitness   at   low  predation   risk   (sensu   Werner   &   Hall   1976;   Mangel   &   Stamps   2001),   specific  growth  rate  (µ,  Fausch  1984)  was  also  used  as  fitness  indicator.    

 

 

where  TL1  is  the  final  total  length  (mm),  TL0  is  the  initial  total  length  (mm)  and  t  is  the  growth  period  (d).    

Movement  range  

As  quantitative  measure  of  dispersal  distance  we  used   the   individual  movement  range   (m)   of   each   bullhead.   Movement   range   was   calculated   with   the   absolute  distance   of   the   most   up-­‐   and   downstream   location   of   an   individual   during   the  

tTLTL 01 lnln −

Chapter  7  

126

entire   ten-­‐month   study   period   (Kobler   et   al.   2012).   An   accompanying   study  showed   that   significantly   longer  movement   distances  were   recorded   during   the  annual   spawning  period   and   an   association   to   reproductive   activities  was   likely  (Kobler  et  al.  2012).  After  long  distance  movements,  bullhead  showed  again  their  typical  sedentary  behaviour  (Kobler  et  al.  2012).  Therefore,  movement  range  was  used  as  an  indicator  of  individual  breeding  dispersal  distance  (breeding  dispersal:  attempt   to   move   from   a   breeding   site   to   another   breeding   site,   (Clobert   et   al.  2009).  

Statistics  

Only  individuals  that  were  genotyped,  sexed  and  recaptured  (N  =  50)  were  used  for  movement  range  analyses.  The  relation  between  movement  range  (dependent  variable),  individual  genetic  diversity  (HI  or  IR)  and  body  condition  was  assessed  with  an  ANCOVA  (one  model  including  HI  and  another  including  IR).  Sex  (variance  homogeneity,  Levene-­‐test,  p  >  0.05)  and  body  size  (TL,  mm)  were  also  included  in  the  model.  The   interactions  of  heteroyzgosity  ×  sex,  heterozygosity  ×   length  and  sex  ×  length  were  also  tested.  Most  non-­‐significant  variables  or  interactions  were  excluded  stepwise.  Whether  HI  and  IR  of  the  “movement  range  individuals”  (non-­‐normally   distribution,   Kolmogorov-­‐Smirnov,   p   <   0.05)   were   related   to   body  condition  was  assessed  with  Spearman  rank  correlations.  

We   also   tested   whether   single   locus   heterozygosity   was   associated   with  movement   range   and   body   condition.   Eight   polymorphic   loci   were   tested  individually   in  eight   independent   t-­‐tests   for  movement  range  and  eight   tests   for  body  condition.  The  groups  were  defined  as  homozygote  or  heterozygote.  For  15  tests  equal  variances  were  assumed   (Levene-­‐tests,   all  p   >  0.05).  The  variance  of  the  locus  CottES21  were  heterogeneous  for  movement  range  and  equal  variances  not  assumed  in  the  test.  

Whether   specific   growth   rate   (µ,   dependent   variable)   was   related   to  movement   range,   individual   genetic   diversity   (HI   or   IR)   or   body   condition   was  tested  with  an  ANCOVA  (one  model   including  HI   and  another   including   IR).  This  calculation  was   chosen   as   fish   length-­‐growth   differs   at   different   body   sizes   and  the  model  was  run  with  TL  (mm)  as  controlling  covariate.  Because  the  variable  µ  consisted   of   values   <   0.0001   we   multiplied   it   by   1000.   This   facilitated   the  presentation  of   the  Type   III   sum  of   squares  and   the  parameter  estimates   (±  SE)  but  did  not  change  the  F-­‐  and  p-­‐values  of  the  model.  Sex  (variance  homogeneity,  Levene-­‐test,   p   >   0.05)   and   the   interactions   individual   diversity   ×   sex   and  

Movement  range,  fitness  and  heterozygosity

      127

movement   range   ×   body   condition   were   included   in   the   model.   Most   non-­‐significant  variables  or  interactions  between  them  were  stepwise  excluded.  

The  effect  of  single  locus  heterozygosity  on  specific  growth  rate  was  tested  with   eight   polymorphic   loci.   Each   locus   was   included   separately   as   a   factor  substituting   the   covariate  heterozygosity   (HI   or   IR)   in   the  previously  mentioned  growth  rate  ANCOVA.  This   resulted   in  eight  ANCOVAs  (variance  homogeneity  of  all  loci,  Levene-­‐tests,  all  p  >  0.05).  

Additionally,  only  the  lower  and  higher  33%  the  of  movement  range  values  were   included   in   the   calculations.   This   was   done   to   exclude   individuals   with  intermediate  movement  range  distances  and  put  emphasis  on  the  individuals  with  distinct  distances,  similar  to  a  categorization  into  resident  and  mobile  individuals.  One-­‐way   ANOVAs  with   body   condition,  HI   or   IR   as   dependent   variables   and   an  ANCOVA   with   growth   rate   as   dependent   variable   were   run   with   the   factor  “mobility”  (“resident”  and  “mobile”).  For  the  body  condition  ANOVA,  the  variance  between  the  factor  levels  was  heterogeneous  (Levene-­‐test,  p  <  0.05);  a  Welch  one-­‐way  ANOVA  was  conducted  in  this  case.    

All   calculations   (unless   indicated   differently)   were   conducted   in   PASW  Statistics  18.0  for  Mac  (SPSS  Inc.,  Chicago,  IL,  USA).  Significance  was  assessed  at  α  <  0.05.  

Results  

Genetic  characteristics  of  the  population  

A   total   of   310   individuals   were   successfully   genotyped   from   the   originally   334  tagged   bullhead.   The  mean   (±   SD)   number   of   alleles   per   locus  was   2.44   ±   0.73  (Table   1).   Allele   (N   =   22)   frequency   ranged   from   0.16%   to   100%   (40.91   ±  25.54%).  Ten  pairs  of  individuals  had  an  identical  multilocus  genotype  (based  on  eight   polymorphic   loci).   The   low   number   of   alleles   and   the   identical  multilocus  genotypes   indicate   only   little   genetic   variability   in   the   population.   However,   a  mean  HE  over  all  loci  of  0.44  ±  0.06  and  a  mean  HO  was  0.44  ±  0.01  did  not  indicate  inbreeding   (mean   FIS   =   -­‐0.007,   Table   1).   Also   the   internal   relatedness   (IR)   =   -­‐0.0026  did  not  indicate  inbreeding  nor  outbreeding.    

   

Chapter  7  

128

 

Individual  characteristics  

A  subset  of  fifty  genotyped  bullhead  could  be  sexed  and  recaptured  at  the  end  of  the  observation  period.  These  bullhead  had  in  February  2008  a  mean  size  of  60.6  ±   5.8   mm   TL   (range   50   to   70   mm),   grew   between   0   and   14   mm   and   were  recaptured  with  an  average  of  65.3  ±  5.9  mm  (range  53  to  77  mm).    

Movement  range,  fitness  indicators  and  heterozygosity  

Fifty   bullhead   were   ∼9   times   localised   (9.1   ±   1.2   times)   during   the   ten-­‐month  telemetry   period   (range   6   to   10   locations).   The   movement   range   (m)   varied  considerably   between   individuals   and   ranged   from   1   to   1096   stream   meters  (296.0  ±  335.2  m,  Figure  1).  No  clear  distinction  between  resident  (moving  only  in  a  very  restricted  stream  area)  and  mobile  individuals  was  found  (Figure  1).    

The  movement  range  was  not  significantly  related  to  heterozygosity  (HI  or  IR;  Figure  1;  Table  2,  results  are  only  presented  for  HI),  body  condition  (Table  2)  or  growth  rate  (Table  3).  No  influence  of  sex  or  body  size  on  movement  range  was  recorded  (Table  2).    

Similarly,   movement   range   and   body   condition   did   not   differ   between  homozygotes   and   heterozygotes   when   the   eight   polymorphic   loci   were   tested  individually  (8  independent  t-­‐tests,  all  p  >  0.05).  Furthermore,  there  was  no  effect  of  heterozygosity  on  growth  rate  when  the  polymorphic  loci  were  included  in  the  ANCOVA   individually   (8   ANCOVAs,   all   similar   to   Table   3   but   each   including   a  single  locus,  all  loci  p  >  0.05).  

   

 Cgo1016   Cgo1033   Cgo1114   Cgo56   Cgo91   CottE6   CottES21   LCE22   LCE59  

HE   0.630   0.440   0   0.496   0.451   0.394   0.402   0.661   0.482  

HO   0.610   0.490   0   0.528   0.445   0.394   0.368   0.684   0.465  

A   3   2   1   3   3   3   2   3   2  

FIS   0.032   -­‐0.115   -­‐   -­‐0.064   0.014   0   0.084   -­‐0.034   0.036  

Table  1  Expected  (HE)  and  observed  (HO)  heterozygosity,  allelic  diversity  (A)  and  inbreeding  coefficient  (FIS)  at  nine  microsatellite  loci  from  310  bullhead  collected  in  the  Laarse  Beek  in  a  324  m  stream  stretch.  

Movement  range,  fitness  and  heterozygosity

      129

 

Source   Type  III  ss   Fdf   Estimate  ±  SE   p  

Corrected  model  Intercept  

194052.664a  

29976.008  0.4114  0.2541  

 -­‐290.715  ±  558.595  

0.800  0.617  

Body  size  Sex    HI  

Body  condition  

74274.379  6.389  

 86402.390  4240.529  

0.6291  0.0001  

 0.7321  0.0361  

7.409  ±  9.341  Male  =  -­‐0.799  ±  108.62  

Female  =  0b  

316.301  ±  369.715  196.350  ±  1035.981  

0.432  0.994  

 0.397  0.851  

 

     

a)  R2  =  0.035  (adjusted  R2  =  -­‐0.051);  b)  this  redundant  parameter  was  set  to  0  

Figure  1  Scatter  plot  of  movement  range  and  individual  genetic  diversity  of  bullhead  (N  =  50).   Movement   range   is   the   distance   between   the   most   upstream   and   downstream  location   from   February   to   November   2008   and   here   used   as   an   indicator   of   dispersal  distance.  

Table   2   General   linear   model   of   body   size   (total   length,   mm),   sex,   body   condition   and  individual   heterozygosity   (HI)   on   movement   range   of   bullhead   (N   =   50).   Not   any  combination  of  the   independent  variables  (and  their  interactions)  resulted  in  a  significant  result   for   an   independent   variable   or   the   corrected   model;   estimate   ±   SE   =   parameter  estimate   and   its   standard   error,   ss   =   sum   of   squares,   Fdf   =   F-­‐value   and   the   degrees   of  freedom.  

Chapter  7  

130

Statistically   differentiated   “resident”   (lower   33%   of   movement   range  values,   range   1   to   33  m,   16.6   ±   10.4  m)   and   “mobile”   individuals   (upper   33%,  range   364   to   1096   m,   714.8   ±   263.7   m)   were   also   compared.   There   was   no  significant   difference   in  HI   (ANOVA,   between   groups   ss   =   0.032,   F   =   1.657,   p   =  0.207),   IR   (ANOVA,   ss  =  0.186,  F  =  2.083,  p  =  0.159)  and  body  condition   (Welch  ANOVA,   Stat   =   0.006,   df2   =   26.898,  p   =   0.941)   between   “resident”   and   “mobile”  bullhead   (see   also   Figure   1).   Similarly,   this   categorized  mobility  was   also   not   a  significant   factor   on   specific   growth   rate   (in   a   similar  ANCOVA   than   in  Table   3;  corrected  model:  Fdf  =  5.3684,  p  =  0.002,  mobility:  Fdf  =  0.4981,  p  =  0.486).  

Fitness  indicators  and  heterozygosity  

Growth   rate  was   positively   related   to   body   condition   (p   =   0.003)   in  males   and  females  (Table  3,  no  significant  interaction  of  body  condition  and  sex).  No  relation  was  found  between  growth  rate  and  heterozygostiy  (HI  or  IR;  Table  3;  results  are  only  presented   for  HI).  As   expected,   growth   rate  was  negatively   related   to  body  size  (p  <  0.001).  Male  bullhead  grew  faster  than  females  (p  =  0.005).    

Body  condition  was  not  significantly  correlated  to  heterozygosity  in  males  (Spearman,  N  =  21;  HI:  rs  =  -­‐0.218,  p  =  0.343;  IR:  rs  =  0.156,  p  =  0.499)  and  females  (N  =  29;  HI:  rs  =  0.081,  p  =  0.677;  IR:  rs  =  -­‐0.082,  p  =  0.672).  

 

Source   Type  III  ss   Fdf   Estimate  ±  SE   p  Corrected  model   0.905a   9.0153     <  0.001  Intercept   0.822   24.5581   1.416  ±  0.292   <  0.001  Body  size  Condition  

0.525  0.324  

15.6751  9.6651  

-­‐0.020  ±  0.005  1.715  ±  0.552  

<  0.001  0.003  

Sex   0.296   8.8521   Male  =  0.171  ±  0.058  Female  =  0b  

0.005  

 

   

a)  R2  =  0.370  (adjusted  R2  =  0.329);  b)  this  redundant  parameter  was  set  to  0  

Table   3   General   linear  model   of   body   size   (total   length,  mm;   controlling   variable),   body  condition  and  sex  on  specific  growth  rate  (µ)  of  bullhead  (N  =  50)  during  the  study  period  (4  February  to  19  November  2008).  The  movement  range,  the  heterozygosity  variables  and  their   interactions  were  not   significantly   related   to   the   specific   growth   rate   and   stepwise  excluded;  estimate  ±  SE  =  parameter  estimate  and  its  standard  error,  ss  =  sum  of  squares,  Fdf  =  F-­‐value  and  the  degrees  of  freedom.  

Movement  range,  fitness  and  heterozygosity

      131

Discussion  

The  movement   range   during   the   ten-­‐month   observation   period   varied   between  individuals;   individuals   with   restricted   movement   ranges   and   individuals   with  movement  ranges  >  1  km  were  observed.  We  did  not  detect  a  distinct  grouping  of  resident  and  mobile  individuals  (Figure  1)  as  has  been  observed  in  non-­‐migratory  stream   fish   including  bullhead   (e.g.   Smithson  &   Johnston  1999;  Nakamura   et   al.  2002;  Rodriguez  2002;  Knaepkens  et  al.  2004).  This  may  be  due  to  biological  but  also  methodological  differences  as  many  studies  define  resident  fish  by  those  not  leaving  a  stream  area  of  a  given  length  (e.g.  20  m  stream  length,  sensu  Gowan  et  al.  1994).   Our   approach   of   following   individual   fish   over   large   stream   areas   with  multiple   localizations   and   quantified   movement   distances   affirmed   that   the  distribution  of  movement  distances  is  rather  leptokurtic  than  bimodal  (Skalski  &  Gilliam   2000;   Fraser   et   al.   2001).   Nevertheless,   the   between-­‐individual  differences   in   bullhead   movement   range   were   remarkable   and   a   relation   to  individual  characteristics  or  fitness  differences  seemed  plausible.  

The  hypothesis   that  resident   individuals  can  be  distinguished   from  mobile  individuals   by   a   higher   level   of   “fitness”  was   not   confirmed.   First,   there  was   no  relation  between  movement  range  and  body  condition.  The  measurement  of   fish  body   condition   is   used   as   an   appropriate   indicator   for   “well-­‐being   or   fitness”  (Bolger   &   Connolly   1989).   Under   strong   intra-­‐specific   competition,   body  condition  may  be  negatively  associated  with  dispersal  propensity   (Hadany  et  al.  2004;  Bonte  &  De  La  Pena  2009).  Bullhead  abundance  was  high  and  intra-­‐specific  competition   presumably   strong   (Kobler   et   al.   2011).  However,  when   the   risk   of  predation   during   dispersal   is   low   and   fluctuations   in   environmental   conditions  are  spatiotemporally  unpredictable  body  condition  can  be  positively  associated  to  dispersal   propensity   (Bonte   &   De   La   Pena   2009).   Under   these   conditions,  individuals  with  better  body  condition  are  more   likely   to  disperse  and   favoured  during   the   potentially   energetically   expensive   dispersal   (Meylan   et   al.   2002;  Barbraud   et   al.   2003;   Cote   &   Clobert   2007).   For   bullhead,   the   risk   of  mortality  during  dispersal  was  presumably   low  as   aquatic   and   avian  predators  were   rare  (Kobler  et  al.  2011)  and  distances  relatively  short.  The  conditions   in  the  studied  ecosystem  thus  favour  both  negative  and  positive  associations  of  body  condition  and   dispersal   propensity.   Several   study   systems   with   different   levels   of   intra-­‐specific  competition  and  mortality  risk  during  dispersal  may  help   to  disentangle  their   probably   opposite   effects   on   the   relationship   between  body   condition   and  movement  range.    

Chapter  7  

132

Second,  we  hypothesized  that  fish  with  slower  growth  rate  and,  therefore,  a  lower   level   of   fitness  would   preferentially   disperse.   Our   results   do   not   support  this  hypothesis.  However,  we  did  not  measure  growth  rate  at  the  moment  of  most  dispersal  activity  (which  mostly  occurred  during  springtime,  Kobler  et  al.  2012).  Instead,   our   measurements   include   growth   before,   during   and   after   dispersal.  Therefore,  we  cannot  disentangle  whether  dispersal  was  negatively  associated  to  growth  before  the  dispersal  (sensu  Belichon  et  al.  1996;  Hadany  et  al.  2004)  or,  on  the   other   hand,   individuals   might   have   benefitted   from   dispersal   by   a   higher  growth   rate   after   the   dispersal   event   (Belichon   et   al.   1996;   Lowe   2010).   For  example,   in   anadromous   salmonids   (Pisces:   Salmonidae)   migrating   individuals  benefit   from   faster   growth   but   suffer   from   greater  mortality   risk   (reviewed   by  Jonsson  &   Jonsson  1993).  A   similar  growth-­‐mortality   trade-­‐off  may  also  exist   in  non-­‐migratory  stream  fish  and  may  be  tested  in  future  research.  

Individual   genetic  diversity  was  neither   related   to  body   condition,   growth  rate,   movement   range   nor   different   between   (statistically   distinguished)  “resident”   and   “mobile”   bullhead.   The   relationship   between   individual   genetic  diversity   and   fitness-­‐related   traits   has   become   known   as   heterozygosity-­‐fitness  correlation   (HFC)  and  has  been   reported   in  populations  of  many   species   (David  1998;  Chapman  et  al.  2009;  Szulkin  et  al.  2010).  Two  main  hypotheses  prevail  for  multilocus  HFCs,  the  functional  overdominance  and  the  associative  overdominace  (local  and  general  effect)  hypothesis  (reviewed  by  Hansson  &  Westerberg  2002).  There  was  no   indication  of   inbreeding   in  the  bullhead  population  and  functional  overdominance   (wide-­‐scale   genomic   heterozygosity   that   may   be   linked   to  inbreeding,  Hansson  &  Westerberg  2002)   less   likely.  Associative  overdominance  (heterozygote   advantage   as   a   result   of   genetic   associations  between   the  neutral  marker   loci   and   the   loci   under   selection,   reviewed   by   Hansson   &   Westerberg  2002)  seemed  more  probable.  Low  allelic  diversity,   ten  pairs  of   individuals  with  identical   multilocus   genotype   but   a   relatively   high   abundance   of   bullhead   may  indicate   a   recently   bottlenecked   and   expanded   population.   The   local   effect  hypothesis   is   expected   under   such   circumstances   and   predicts   a   heterozygote  advantage  at   the  markers  as  a  result  of  effects  of  homozygosity  at  closely   linked  fitness   loci   (reviewed   by   Hansson   &   Westerberg   2002).   Positive   and   negative  HFCs   of   single   microsatellite   loci   may   be   blurred   in   analyses   of   the   multilocus  effect   (Lieutenant-­‐Gosselin   &   Bernatchez   2006).   However,   our   analysis   with  single   loci   did   not   reveal   a   significant   difference   of   body   condition   and   growth  rate  between  homozygotes  and  heterozygotes.  The  markers  used  were  randomly  distributed   and   the   proximity   to   genes   that   are   coupled   with   growth   rather  unlikely;   allozyme   loci   involved   in   metabolic   energy   pathways   can   be   more  

Movement  range,  fitness  and  heterozygosity

      133

suitable   (Pujolar   et   al.   2009).   But   clearly,   HFCs   can   also   vary   across   species,  populations,  temporal  samples  and  sexes  (Pujolar  et  al.  2006).  For  instance,  it  has  been  shown  that  growth  rate  of  12-­‐month  old  European  eel  (Anguilla  anguilla)  is  positively  linked  to  individual  genetic  diversity  (allozyme  loci  heterozygosity)  but  this  relationship  vanishes  in  22-­‐month  old  eel  (Pujolar  et  al.  2006).    

While  HFC  studies  that  measure  fitness  with  body  condition  or  growth  rate  are  numerous   (Chapman  et   al.   2009),   only  very   few  studies   related  dispersal   to  heterozygosity  (Selonen  &  Hanski  2010;  Shafer  et  al.  2011).  This  relation  can  be  positive   or   negative.   For   instance,   Shafer   et   al.   (2011)   showed   that   resident  mountain  goats  have  a  higher  multi-­‐locus  heterozygosity.  They  hypothesize   that  this   is   based   on   a   higher   level   of   competitive   abilities   of   more   heterozygote  individuals.   Individuals   with   lower   heterozygosity   should,   therefore,  preferentially   disperse   (Shafer   et   al.   2011).   On   the   other   hand,   inbreeding  may  shorten   dispersal   distances   (Szulkin   &   Sheldon   2008)   and   individual   genetic  variability   may   be   linked   to   dispersal   distances.   For   example,   the   dispersal  distance  of  Siberian  flying  squirrels  (Pteromys  volans)  is  positively  correlated  with  heterozygosity   (Selonen  &  Hanski  2010).  This   correlation  was  mainly  driven  by  one   out   of   seven  microsatellites,   which   indicates   an   associative   overdominance  effect   (Selonen  &  Hanski   2010).   The  markers   used   in   the   present   study  did   not  indicate   multi-­‐   or   single-­‐locus   heterozygosity-­‐dispersal   correlations.   Genetic  maps  based  on  microsatellites  that  are  linked  to  a  physical  map  of  a  model  species  my   help   to   initiate   future   quantitative   trait   loci   (QTL)   studies   in   Cottus   ssp.  (Stemshorn   et   al.   2005)   and   help   to   find   local   effects   of   individual   genetic  diversity  on  the  individual  propensity  to  disperse.    

The   variation   in  movement   range  was   not   body   size-­‐dependent   probably  because  exclusively  adult  bullhead  in  a  narrow  body  size  range  (50  to  70  mm  TL)  were  observed.   It   is  known  that   individual  differences   in  developmental  state  or  size   are   related   to   competitive   abilities   which   can   have   an   impact   on   dispersal  distances  (Bowler  &  Benton  2005).   In  some  stream  fish  smaller   individuals  tend  to  move  further  away,  which  might  confirm  the  hypothesis  that  movement  range  can  be  driven  by  competitive  interactions  (Gowan  &  Fausch  1996;  Hughes  2000;  Petty  &  Grossman  2004).    

The   movement   range   of   bullhead   was   not   sex-­‐biased.   Inter-­‐sexual  differences   in   reproductive   behaviour   are   a   possible   source   for   sex-­‐biased  dispersal.  This   is  well-­‐known   in  birds  and  mammals   (e.g.  Greenwood  1980)  but  only  very   few  studies  examined  sex-­‐biased  dispersal   in   fish   (Pardini  et  al.  2001;  Hutchings  &  Gerber  2002).  Because  of  female  mate  choice  and  male  parental  care  

Chapter  7  

134

in   bullhead   (Bisazza   &   Marconato   1988)   it   is   plausible   that   females   disperse  farther   than   males.   This   differentiation   seems   particularly   plausible   during  reproductive   period   (Kobler   et   al.   2012).   Indeed,   movement   distances   may  diversify   between   the   genders   during   breeding   period   (Croft   et   al.   2003)   but  equalize   during   the   remainder   of   the   annual   period   due   to  movements   that   are  not  directly   linked  to  the  reproduction  (Kobler  et  al.  2012).  A  shorter  time  scale  (e.g.   monthly)   as   well   as   an   annual   time   scale   may   help   to   detect   period-­‐dependent  sex-­‐biased  movements  in  annual  spawning  fish  (Kobler  et  al.  2012).    

In   summary,  we  did  not   find  evidence   that  between-­‐individual  differences  in   bullhead   movement   range   were   related   to   body   condition,   growth   rate   and  heterozygosity.  Furthermore,  no  association  to  sex  or  body  size  was  found.  Future  studies  may  use  a  candidate-­‐gene  approach  with  genes  associated  to  dispersal  or  temperament   traits   (e.g.   Amstutz   et   al.   2006;   Fidler   et   al.   2007;   Korsten   et   al.  2010;  Mueller  et  al.  2011).  This  might  help  to  detect  the  evolutionary  background  of   between-­‐individual   differences   in   the   movement   range   (dispersal)   of   non-­‐migratory   stream   fish   (see   Van   Oers   &   Mueller   2010).   Alternatively,   gene  expression  studies  can  detect  direct  responses  of  an  individual  to  changes  in  the  environment   and   help   to   define   the   ecological   circumstances   when   individual  dispersal   is   initiated   (see   Bell   &   Aubin-­‐Horth   2010;   Van   Oers   &   Mueller   2010;  Aubin-­‐Horth  et  al.  2012).  

Acknowledgments  

Many  thanks  to  B.  Hellemans,  J.-­‐A.  De  Roos,  P.  Scheys,  G.  Eens,  K.  Geudens  and  Y.  Humblet   for   technical   assistance   and  G.   Knaepkens,  Maarten   Larmuseau,   Jeroen  Van   Houdt   and   Joost   Raeymaekers   for   support   and   helpful   comments.   Many  thanks   also   to   the  University   of  Antwerp,   the  Catholic  University   of   Leuven  and  the   Fund   for   Scientific   Research-­‐Flanders   for   funding   (FWO-­‐project   nr  G.0119.08N).   The   experimental   work   was   performed   in   agreement   with   the  Belgian   and   Flemish   laws   and   was   approved   by   the   ethical   committee   of   the  University  of  Antwerp  (ID  number  2007/42).  

 

 

 

 

CHAPTER  8  

 

GENERAL  DISCUSSION,  CONCLUSIONS  AND  FUTURE  RESEARCH    

 

   

Discussion,  conclusions  and  future  research

      137

Late  preface:  personal  reflection  

In   the   beginning,  my   intention  was   to   find   individual   characteristics   that  would  help   to   explain   the   heterogeneity   in   movement   distances   within   a   bullhead  population.  To  put  it  in  a  nutshell,  we  did  not  find  a  single  characteristic  that  was  related   to   the   individual   range   of   movements   in   the   stream.   Of   course,   this  disappointed  me   very  much.   In   the   end,   however,   I   realized   that  we  discovered  several   other   ecological   relationships   that   increased   the   understanding   of  bullhead  movement  behaviour  and  habitat  use.  So  all  in  all,  I  am  satisfied  with  this  thesis   as   it   puts  bullhead  and  more  generally   small   benthic   stream   fish   into   the  picture,  fish  of  which  most  people  don’t  even  know  about  their  existence  let  alone  they   have   an   image   of   their   appearance   and   yet   benthic   stream   fish   are   so  important   for   healthy   ecosystems   (e.g.   Gelwick   &  Matthews   1992;   Holmlund   &  Hammer  1999;  Covich  et  al.  2004;  Moore  2006).    

It   occurred   uncountable   times   that   people   were   passing   us,   stopped   and  asked   what   for   heaven’s   sake   we   were   searching   with   our   equipment   in   the  narrow  and  shallow  stream.  Well,  they  basically  believed  us  every  humbug  as  they  could  not  imagine  anything  else.  The  lies  ranged  from  the  search  for  bombs  of  the  second  world  war,   gold   nuggets   or   the   cleaning   of   the   stream  with   our   special  vacuum   cleaner.   Everything   seemed   more   plausible   than   tracking   fish   called  rivierdonderpad   (directly   translated:   river-­‐thunder-­‐toad   or   in   German  Flussdonnerkröte  J).  Most  often  the  walkers  thought  that  my  Dutch  was  so  bad  that  I  got  something  wrong  when  I  mentioned  that  I  searched  fish  that  are  called  rivierdonderpad.   “You   search   frogs?”   was   often   the   question.   “No,   fish”   I  answered.  On  a  lucky  day,  they  then  walked  on  and  I  had  again  peace  for  another  half   hour   when   the   next   walker   stopped.   They   just   could   not   believe   that   fish  could   live   in   this   sometimes   very   “dirty”   (turbid)   stream.   This   showed   me   the  necessity  of  communication  between  a  biologist  and  people  that  seem  to  be   less  and   less  connected  to  mother  nature.  By  knowing  that  something  special,  a   toad  that   is   actually   a   fish  J,   is   living   in   the   stream,   people   are  made   aware   of   the  ecosystem  and  the  animals  therein,  animals  that  might  need  protection.    

 In   the   following  paragraphs   I  will   focus  on   results   and   findings   that  have  not  yet  been  discussed  in  the  chapters  2  to  7  as  well  as  on  topics  that  overreach  the  results  of  this  PhD  thesis.    

The   behavioural   observations   of   bullhead   in   the   laboratory   are   part   of  chapter  2,  3  and  6.  The  observation  technique,   the  swimming  behaviour  and  the  tank  set-­‐up  are  discussed  in  the  following.    

Chapter  8  

138

Chapter   3   is   one   of   the   rare   studies   linking   individual   habitat   use   with  temperament   traits.   A   negative   relation   between   the   use   of   structured   habitats  and  aggressiveness  was  found.  The  study  design  could,  however,  not  resolve  the  causal  pathway  of  this  relation.  This  topic  will  be  taken  up  in  the  following.  

I  enlarge  upon  the  characteristics  of  the  movement  range  variable,  why  we  used   it   and   discuss   the   similarities   and   differences   of   movement   range   and  dispersal  distance.  

This  thesis  examined  whether  the  individual  level  of  fitness  is  related  to  the  movement   range.   I   discuss   the   difficulty   of   the   relation   between   a   longer-­‐term  fitness   measure,   the   individual   growth   rate,   and   movement   range,   which  diversified   mainly   during   only   a   short   period.   Another   possibility   to   test   for   a  movement  range-­‐fitness  relation  is  proposed.  

I   did   not   test   for   individual   consistency   in   behaviour   across   years.   One  reason   was   the   short   lifespan   of   the   bullhead   and   the   increasing   number   of  natural   mortalities   towards   the   end   of   the   study.   Nevertheless,   this   topic   is  discussed  in  the  following  and  future  study  possibilities  are  proposed.  

Finally,   some   information   about   a   candidate   gene   study   that  was   initiated  during  the  period  of  my  Ph.D.  thesis  is  given.  A  short  overview  of  previous  studies  that   analysed   the   association   between   dispersal   or   temperament   traits   and  candidate  gene  variation  is  also  presented.    

Laboratory  activity  of  bullhead  

Bullhead  are  mostly  active  at  night  (for  results  and  references  see  chapter  4).   In  the  rather  “sterile”  environment  in  the  laboratory  (e.g.  no  sediment,  clearer  water  and  less  structure  than  in  the  natural  environment)  the  nocturnal  behaviour  was  strongly   expressed   and   we   did   not   observe   any   activity   during   daytime   when  bullhead  were  mostly  hidden  in  a  refuge.  This  hidden  behaviour  during  daytime  is  typical   for   Cottus   spp.   (e.g.   Greenberg   &   Holtzman   1987;   Greenberg   1991;  Natsumeda  1998)  and  behavioural  observations  had  to  be  performed  at  night  by  means   of   infra-­‐red   light   recording.   The   recordings   were   of   poorer   quality   than  during   daytime.   Nevertheless,   the   night   recordings   revealed   a   swimming  behaviour   of   very   active   fish   that   was   unexpected:   they   swam   in   a   continuous  motion  just  below  the  water  surface,  mostly  along  the  tank  sides.  This  was  rather  surprising   as   bullhead   have   a   very   reduced   swim-­‐bladder   (Freyhof   et   al.   2005;  

Discussion,  conclusions  and  future  research

      139

Kottelat   &   Freyhof   2007)   and   I   expected   them   to   swim  with   a   hopping  motion  over   the   tank   bottom   by   using   their   large   pectoral   fins.   This   motion   is   to   be  expected   in   the   natural   environment,   particularly   in   stronger   current,   and   is   an  adaptation   to   the   benthic   habitat   (Tomlinson   &   Perrow   2003).   And   indeed,  bullhead  with   a   “normal”   level   of   activity  moved   through   the   tank   in   a   hopping  motion  over  the  bottom.    

The  maximum   distances   that   bullhead   covered   during   ten  minutes   of   the  laboratory   observations  were   up   to   24   quadrats   of   the  measurement   grid   (one  quadrat  was  7,5  ×  7,5  cm;  see  chapter  3).  This  corresponds  to  approximately  10  m  h-­‐1  and  is  higher  than  the  maximum  distance  covered  in  short-­‐term  observations  in  the  field  (6.5  m  h-­‐1,  2-­‐h  tracking  interval,  chapter  4).  Even  with  relatively  short  tracking   intervals  of   two  hours   it   is  possible   to  miss   some   individual  movement  information   and   the   distances   covered   can   be   underestimated   (Horton   et   al.  2004).  Nevertheless,   it   seems  probable   that   the  higher  activity   in   the   laboratory  and   the   untypical   swimming   behaviour   of   some   individuals   indicates   a   higher  stress   level   than   in   the   natural   environment.   However,   the   exploration   rate   of  bullhead  in  the  laboratory  and  in  the  field  correlated  positively  and  the  individual  exploration  rate  was  repeatable  under  both  conditions  (chapter  2).  This  indicates  that   a   potential   influence   of   stress   on   behavioural   traits   still   resulted   in   similar  differences   between   individuals   and   comparability   between   the   individual   rank  order   of   laboratory   and   field   behaviour.   It   thus   seems   that   the   laboratory  observations  of  the  present  study  may  be  suitable  to  reflect  individual  behaviour  in  the  wild.  Nevertheless,  tank  circumstances  may  be  adapted  in  future  studies  to  maximize   the   similarity   to   the   field   conditions.   It   is   a   balancing   act   between  providing   species-­‐specific   circumstances   and   keeping   relatively   empty   tank  spaces   that   ensure   good   circumstances   for   behavioural   observations   of   bottom-­‐dwelling  fish  in  complete  darkness.    

Aggressiveness  and  the  use  of  structured  habitats  

Structured  habitats  like  tree  roots,  rocks  or  branch  jams  are  preferred  habitats  of  bullhead  and  are  used  as  refuge  shelter  (Davey  et  al.  2005)  and  foraging  habitat  (Smyly   1953).   Before   we   studied   the   relation   between   habitat   use   and  temperament   traits   (chapter   3),   we   had   hypothesized   that   less   aggressive  individuals   should   be   displaced   to   less   structured   and   less   favourable   habitats.  This   hypothesis   was   based   on   a   study   of   Fausch   (1984;   reviewed   by  Weber   &  Fausch   2003)   that   observed   in   an   experimental   stream   that   more   aggressive  salmonids  (Onconrhynchus  kisutch,  Salvelinus  fontinalis  and  Salmo  trutta)  displace  

Chapter  8  

140

subordinate   conspecifics   to   less   profitable   stream   patches   in   which   the   cost   of  swimming  is  higher  than  the  energy  gain  from  drifting  invertebrates.  In  bullhead,  we   assumed   that   a   profitable   stream   position   would   be   directly   related   to   a  preferred  (selected)  habitat  type  and  more  aggressive  bullhead  should,  therefore,  be  in  habitats  that  provide  more  complexity.    

On   the  contrary,  we   found  that  bullhead  that  were  associated  with  stream  patches  with   lower  habitat  complexity  were  more  aggressive.  We  discussed  that  the   defence   of   a   territory   was   more   difficult   in   less   structured   habitats   (see  discussion  in  chapter  3).  Our  study  design  could,  however,  not  resolve  the  causal  pathway   of   the   negative   relation   between   habitat   structure   and   aggressiveness.  Do   bullhead   become   more   aggressive   when   defending   their   territory   in   less  structured   habitats   or   do   more   aggressive   individuals   choose   to   live   in   less  structured  habitats  to  benefit  from  underused  resources  (compare  Svanbäck  et  al.  2008;  Kobler  et  al.  2009a)?  Similar  difficulties  in  resolving  the  causal  pathway  are  to   be   expected   in   single   correlations   between   other   temperament   traits   and  microhabitat   use.   For   example,   individuals   in   less   structured   habitats   may   be  exposed  to  a  higher  predation  risk  (Magnhagen  &  Borcherding  2008)  and  adapt  to  their  environment  by  expressing  a  more  risk-­‐prone  (bolder)  behaviour  (Brown  et  al.  2007).  The  other  causal  pathway  implicates  that  bolder   individuals  (boldness  might   have   a   genetic   component,   Brown   et   al.   2007),   are  more   risk   prone   and  therefore   “freer”   in   habitat   choice.   As   a   consequence   they   might   exploit   more  open  habitats.    

The   question   whether   the   individual   expression   of   aggressiveness   (or  another   temperament   trait)   is   the   cause   or   consequence   of   habitat   use  diversification  may  be  disentangled  by  a  habitat   choice  experiment  with   limited  amount  of  complex  habitats.  Several   individuals   that  are   individually  held  under  standardized  conditions  should  be  tested  for  aggressiveness  before  and  after  the  introduction  into  a  habitat  choice  set-­‐up  in  an  experimental  tank  or  stream:  

If  aggressiveness  is  the  (main)  origin  of  habitat  choice,  the  intra-­‐population  rank   order   of   the   individual   expression   of   aggressiveness   should   be   repeatable  between  both  temperament  trait  tests.  Two  scenarios  seem  possible:  1)  Under  the  assumption  that  aggressiveness  is  positively  related  to  dominance  (sensu  Fausch  1984),   more   aggressive   individuals   should   occupy   the   more   complex   and  preferred   habitats.   2)   The   choice   of   less   structured   habitats   of  more   aggressive  individuals  may  indicate  the  usage  of  an  underused  resource.    

Discussion,  conclusions  and  future  research

      141

If   aggressiveness   is   not   the   origin   of   individual   habitat   use   but   the  consequence,   the   rank   order   of   the   individual   level   of   aggressiveness   should  change  between  both  temperament  tests.  The  degree  of  selected  habitat  structure  should  be  correlated   to   the   individual   level  of   aggressiveness  during   the   second  temperament  test  but  not  to  aggressiveness  during  the  first  test.  For  example,  the  individual  distribution  among  different  habitat  types  should  be  random  according  to  the  rank  order  of  the  first  aggressiveness  test  but  individuals  that  scored  higher  during   the   second   test   might   have   been   more   often   found   in   less   structured  habitats.   This   would   indicate   that   the   individual   level   of   aggressiveness   is   a  consequence  of  more  difficulties  in  the  defence  of  less  structured  habitats  (Jensen  et  al.  2005;  Baird  et  al.  2006;  see  discussion  chapter  3).  

Movement  range  and  dispersal  distance  

During   the  writing  process   I   encountered  continuously   the  problem   that  we  did  not  observe  movement  distances  during  an  entire  year  period  but  recaptured  the  field-­‐observed  bullhead  after  ten  months  and  transported  them  to  the  university  for  additional  behavioural  observations.  The  duration  of  the  field  observations  did  not   suffice   to  measure  dispersal  distance;  dispersal   studies  need  at   least   twelve  months   duration   because   dispersal   is   defined   as   the   distance   from   a  natal/breeding  site   to  another  breeding  site   (Clobert  et  al.  2009).  Therefore,  we  could   only   assume   that   the   movement   distances   during   ten   months   indicate  individual   dispersal   distances.   This   made   some   part   of   the   writing   rather  speculative   when   I   aimed   to   implement   our   results   into   the   existing   animal  dispersal  literature  (that  was  commonly  higher  in  impact  than  movement  studies  in  fish).  The  reason  why  we  recaptured  the  fish  before  the  end  of  the  annual  circle  was   the   necessary   independence   from   reproductive   behaviours   during   the  succeeding  temperament  tests  in  the  laboratory  assays  (more  details  can  be  found  in   the   discussion   of   chapter   7).   Nevertheless,   I   would   do   this   differently   in   the  future   and   observe   fish   over   an   entire   annual   cycle.   This   would   give   certainty  about   dispersal   distances   and   may   increase   the   potential   impact   of   the  subsequent  publications.  Furthermore,  movements  in  early  winter  and,  therefore,  preceding  to  the  spawning  period  would  enable  drawing  a  more  complete  picture  of  sex-­‐biased  movements  as  discussed  in  chapter  5.    

To  be  able  to  implement  our  study  into  the  existing  dispersal  literature  we  defined   the   variable   “movement   range”,   the   distance  between   the  most   up-­‐   and  downstream  location  during  the  ten-­‐month  observation  period  (that  included  one  reproductive  period).  This  variable  should  be  a  good  proximate  for  the  individual  

Chapter  8  

142

dispersal  distance  and  may  be  suitable  for  studies  in  which  the  determination  of  individual  breeding  sites  is  rather  difficult  such  as  in  fish.  The  correlation  between  movement   range   and   dispersal   distance   should   be   tested   in   future   research   to  verify   whether   movement   range   suits   as   an   indicator   of   dispersal   in   fish.   A  suitable   indicator   may   facilitate   the   implementation   of   long-­‐term   movement  studies   in   fish   into   the   dispersal   literature   of   other   vertebrates.   For   example,  while  there  are  numerous  studies  about  sex-­‐biased  dispersal  in  birds  or  mammals  (reviewed   by   Greenwood   1980;   Pusey   1987)   there   are   only   very   few   studies  conducted   in   fish   (but   see   Knight   et   al.   1999;   Pardini   et   al.   2001;   Hutchings   &  Gerber   2002).   However,   there   are   indications   that   sex-­‐biased   dispersal  may   be  also   a   common   phenomenon   in   fish   (see   chapter   5).   In   addition   to   movement  studies,  the  study  of  dispersal  in  non-­‐migratory  (stream)  fish  may  thus  reveal  new  insights  and  facilitate  the  comparison  with  dispersal  in  other  vertebrates.  

Movement  range  and  individual  fitness  

In  chapter  7  we  did  not  find  a  relation  between  movement  range  of  bullhead  and  body  condition,  growth  rate  or  heterozygosity.  Thus,  there  was  no  indication  that  the  individual  differences  in  movement  range  were  associated  with  fitness.  One  of  the  examined  fitness   indicators,   the   individual  growth  rate,  might  not  have  been  suitable  to  measure  the  benefit  of  the  individual  expansion  in  the  stream.  Longest  movement   distances   were   covered   during   reproductive   period   in   springtime  (Kobler   et   al.   2012).   The   growth   measurements,   however,   included   growth  before,  during  and  after  that  period.  Therefore,  we  could  not  disentangle  whether  movement  range  was  negatively  associated  to  growth  before  the  dispersal  (sensu  Belichon  et  al.  1996;  Hadany  et  al.  2004)  or   if   individuals  might  have  benefitted  from   higher   growth   rate   after   the   dispersal   event   (Belichon   et   al.   1996;   Lowe  2010;   see   chapter   7).   Another   approach   would   be   to   consider   the   individual  benefit  of  dispersal  through  the  reduction  of  the  inbreeding  risk.    

Breeding   between   close   relatives   may   result   in   a   fitness   decrease   of   the  offspring   (reviewed  by  Pusey  &  Wolf   1996).   This   phenomenon   is   referred   to   as  inbreeding  depression  and  its  avoidance  may  play  a  major  role  in  the  evolution  of  dispersal   and   breeding   behaviours   (Amos   et   al.   2001   and   references   therein).  Theoretically,   the   probability   of   a   mating   with   a   closely   related   conspecific   is  reduced  when   the  distance  of   dispersal   is   longer.   Therefore,   dispersal   distances  might  be  directly  linked  to  fitness  (sensu  Howard  1960;  Pusey  &  Wolf  1996).  For  example,   meadow   voles   (Microtus   pennsylvanicus)   that   were   released   into  experimental  plots  together  with  siblings  were  more  likely  to  disperse  than  voles  

Discussion,  conclusions  and  future  research

      143

released   with   non-­‐siblings   (Bollinger   et   al.   1993).   It   thus   appears   that   the  avoidance   of   inbreeding   can   influence   dispersal   movements   (Bollinger   et   al.  1993).    

Future   studies   may   test   whether   dispersal   movements   in   fish   reduce   the  probability  of  a  mating  with  a  closely  related  conspecific.  Kin  recognition  may  be  involved  in  this  process.  Three-­‐spined  sticklebacks  (Gasterosteus  aculeatus)  make  decisions  about  preferred  shoaling  partners  dependent  on  kinship   (Frommen  et  al.   2007).   Similar   decisions   may   also   be   involved   in   mate   choice.   Regarding  bullhead,  movement  distances  of  females  during  reproductive  period  (chapter  5)  might  be  associated  with  the  search  for  unrelated  males.  This  might  be  tested  in  future   research.   Useful   for   such   a   study   could   be   the   measure   “Identity”   that  calculates  the  expected  proportion  of  loci  that  are  homozygous  in  the  offspring  of  a  chosen  pair  of  individuals    (software  Identix  1.1,  Belkhir  et  al.  2002).    

Between-­‐year  consistency  in  individual  behaviour  

This   thesis   involves   movement   behaviour,   habitat   use   and   temperament   trait  observations   over   a   period   of   up   to   ten   months.   There   is   no   data   to   validate  behavioural   consistency   across   years.   During   the   study   period,   however,  individual  habitat  use  (r  =  0.57),  activity  (r  =  0.44  and  r  =  0.48)  and  activity  in  a  novel  environment  (r  =  0.42  and  r  =  0.53)  was  relatively  consistent  (chapter  3  and  6)  when  compared  with  correlation  coefficients  of  other  studies  (reviewed  by  Bell  et   al.   2009).  A   between-­‐year   consistency   of   individually   distinct   habitat   use   has  been   demonstrated   in   e.g.   adult   lake   trout   (Salvelinus  namaycush,  Morbey   et   al.  2006)  and   in   Icelandic  cod  (Gadus  morhua,  Pàlsson  &  Thorsteinsson  2003).  Also  temperament   traits   can   be   consistent   between   years.   Male   great   tits   can   be  consistent   in   their   exploratory   behaviour   from   juvenile   phase   to   adulthood  (Carere   et   al.   2005).   Theoretically,   consistency   in   behaviour   between   years   is  likely   because   of   reduced   future   costs   of   ecological   adaptation  when   individual  behaviour   is   established   and   fine-­‐tuned   (Wolf   et   al.   2008).   Future   costs   involve  the  time,  energy,  and  mortality  costs  of  sampling  the  environment,  or  the  costs  of  building   and   maintaining   the   required   sensory   machinery   (Wolf   et   al.   2008).  Therefore,   even   small   positive   feedback  between   the   established  behaviour   and  fitness  may  induce  behavioural  consistency  (Wolf  et  al.  2008).    

Nevertheless,   the   repeatability   of   individual   behaviour   declines   over   time  (e.g.  Bell   et   al.   2009;  Chervet   et   al.   2011)  as   individuals   adapt   to   environmental  circumstances.   For   example,   although   boldness   has   a   heritable   component   in  

Chapter  8  

144

Brachyraphis   episcopi   fish,   its   expression   in   young-­‐of-­‐the-­‐year   adapts   to   the  exposure   to   predation   risk   (Brown   et   al.   2007).   Other   influences   on   the  expression  of  behaviour  can  be  for  example  the  individual  development  (changes  in  ontogenetic  stage,  Stamps  &  Groothuis  2010ab),  stress  in  early  life-­‐stages  (Sih  2011),  changes   in   the  social  context  (Webster  et  al.  2007)  or   the  composition  of  the  group  of  conspecifics  (Sih  &  Watters  2005;  Moretz  et  al.  2007).  Furthermore,  different   classes   of   behaviour   differ   in   their   repeatability;   mating   behaviour,  habitat  selection  and  aggressiveness  are  most  repeatable  (Bell  et  al.  2009).  Based  on   these   findings   there   is   no   room   for   speculation   about   between-­‐year  consistency   in   movement   behaviour,   habitat   use   or   temperament   traits   in  bullhead.   Future   studies   might   compare   individual   repeatability   in   behaviour  under   consideration   of   species-­‐specific   lifespan.   The   positive   feedbacks   of   an  established   type  of   behaviour   (Wolf   et   al.   2008)  may  drive   individuals  of   short-­‐lived   species   to   be   relatively   consistent   (even   under   drastically   changing  environmental   conditions,   Dingemanse   et   al.   2004)   while   it   might   be   more  advantageous  for  individuals  of  long-­‐lived  species  to  be  more  adaptive  (compare  Wolf   et   al.   2008).   Study   species   that   allow   relatively   easy   tracking   of   individual  life  histories  in  the  wild  provide  best  opportunities  to  study  the  consequences  of  individual   behavioural   strategies   for  major   life   history   traits,   including   survival,  dispersal  and  reproduction  (Dingemanse  et  al.  2002).  

Candidate  gene  -­‐  phenotype  association    

Variation   in   individual   behaviour   (e.g.   the   degree   of   explorative   or   bold  behaviour)   may   have   a   heritable   component   (e.g.   Verbeek   et   al.   1994;  Dingemanse  et   al.   2002,  2004;  Drent   et   al.   2003;  Bell   2005;  Brown  et   al.   2007).  This  may  indicate  a  genetic  basis  of  some  behavioural  traits.  To  study  the  genetic  basis   of   dispersal   and   temperament   traits   in   bullhead,   we   aim   to   perform   an  association  analysis  with  candidate  gene  variation.  Gene  polymorphisms  may  help  to   explain   consistent   individual   variation   in   behaviour.   For   example,   a   single  nucleotide   polymorphism   (SNP)   in   a   neurotransmitter-­‐associated   gene   (Drd4)  differs  significantly  between  slow-­‐  and  fast-­‐exploring  great  tits  (Fidler  et  al.  2007;  this  may,  however,  vary  between  populations,  Korsten  et  al.  2010).  A  SNP  in  the  candidate  gene  ADCYAP1  explains  approximately  3%  of   the  migratory   tendency  of   blackcaps   (Aves:   Sylvia   atricapilla;   Mueller   et   al.   2011).   The   identification   of  genes   or   genome   regions   that   underlie   behavioural   traits   will   open   exciting  possibilities  to  study  natural  selection  at  the  molecular  level  (Van  Oers  &  Mueller  2010).  

Discussion,  conclusions  and  future  research

      145

A  candidate  gene  –  phenotype  association  in  bullhead  was  already  initiated  during   the  period  of  my  Ph.D.   thesis   (study  by  M.  Eens,  A.  Kobler,  G.  E.  Maes,  A.  Triantafyllidis,   F.   A.  M.   Volckaert).   Information   from  public   databases   (GenBank  and  ENSEMBL)  on  behavioural  genes  in  other  species  was  searched  and  sequence  information   extracted.   Contigs   (sets   of   overlapping   DNA   segments)   of   a  pyrosequenced   Cottus   ssp.   transcriptome   (62,696   recently   sequenced   contigs  provided   by   Arne   Nolte,   Max-­‐Planck-­‐Institute   for   Evolutionary   Biology,   Plön,  Germany)   could   then   be   blasted   against   the   extracted   sequences   and   putative  homologues   were   found   for   a   total   of   22   genes.   Primers   were   designed   that  enabled  the  successful  amplification  of  16  genes.  Sanger  sequencing  was  used  to  detect  SNPs  and  15  candidate  SNPs  are  now  available  that  can  be  associated  to  the  behavioural   heterogeneity   in   the   studied   bullhead   population.   Preliminary  analysis   revealed   an   association   of   a   SNP   in   the   transaldolase   1   gene   with  movement  range  of  bullhead.  This  needs   to  be  verified  but   there  are   indications  that   this   association   may   be   significant   (G.   Maes,   personal   communication).  Previously   it   had   been   shown   that   sedentary   and   migratory   brown   trout  populations   differently   express   transaldolase   1   (in   the   liver)   during   the   period  before   the   onset   of  migration   (Amstutz   et   al.   2006).   It   thus   seems  possible   that  this   gene   is   also   involved   in   the   movement   diversification   in   bullhead.   This  research   area   is   the   follow-­‐up   of   this   thesis   and   it  may   help   to   understand   the  observed   intra-­‐population   heterogeneity   in   movement   range   or   temperament  traits.  

   

References  

      147

REFERENCES    

Alonso  J.  C.,  Martin  E.,  Alonso  J.  A.  &  Morales  M.  B.  (1998)  Proximate  and  ultimate  causes  of  natal  dispersal  in  the  great  bustard  Otis  trada.  Behavioral  Ecology  9:  245-­‐252.  

Amos  W.,  Worthington  Wilmer   J.,   Fullard  K.,   Burg  T.  M.,   Croxall   J.   P.,   Bloch  D.  &  Coulson   T.   (2001)   The   influence   of   parental   relatedness   on   reproductive  success.  Proceedings  of  the  Royal  Society  of  London  B  268:  2021-­‐2027.  

Amstutz   U.,   Giger   T.,   Champigneulle   A.,   Day   P.   J.   R.   &   Largiadèr   C.   R.   (2006)  Distinct   temporal   patterns   of   Transaldolase   1   gene   expression   in   future  migratory   and   sedentary   brown   trout   (Salmo   trutta).   Aquaculture   260:   326-­‐336.  

Andersson  K.  G.,  Brönmark  C.,  Herrmann   J.,  Malmqvist  B.,  Otto  C.  &  Sjörström  P.  (1986)   Presence   of   sculpins   (Cottus   gobio)   reduces   drift   and   activity   of  Gammarus  pulex  (Amphipoda).  Hydrobiologia  133:  209-­‐215.  

Andreasson   S.   (1969)   Locomotory   activity   patterns   of   Cottus   poecilopus   Heckel  and  C.  gobio  L.  (Pisces).  Oikos  20:  78-­‐94.  

Andreasson  S.  (1973)  Seasonal  changes  in  diel  activity  of  Cottus  poecilopus  and  C.  gobio  (Pisces)  at  Arctic  circle.  Oikos  24:  16-­‐23.  

Araujo   M.   S.,   Bolnick   D.   I.   &   Layman   C.   A.   (2011)   The   ecological   causes   of  individual  specialisation.  Ecology  Letters  14:  948-­‐958.  

Aubin-­‐Horth   N.,   Deschenes   M.   &   Cloutier   S.   (2012)   Natural   variation   in   the  molecular  stress  network  correlates  with  a  behavioural  syndrome.  Hormones  and  Behaviour  61:  140-­‐146.  

Austin   D.,   Bowen   W.   D.   &   McMillan   J.   I.   (2004)   Intra-­‐specific   variation   in  movement  patterns:  modeling  individual  behaviour  in  a  large  marine  predator.  Oikos  105:  15-­‐30.  

Baird   H.   P.,   Patullo   B.   &   MacMillan   D.   L.   (2006)   Reducing   aggression   between  freshwater   crayfish   (Cherax   destructor   Clark:   Decapoda,   Parastacidae)   by  increasing  habitat  complexity.  Aquaculture  Research  37:  1419-­‐1428.  

Barbraud  C.,   Johnsson  A.  R.  &  Bertrault  G.   (2003)  Phenotypic  correlates  of  post-­‐fledging  dispersal  in  a  population  of  greater  flamingos:  the  importance  of  body  condition.  Journal  of  Animal  Ecology  72:  246-­‐257.  

References  

148

Basquill   S.   P.  &  Grant   J.  W.  A.   (1998)  An   increase   in   habitat   complexity   reduces  aggression   and  monopolization   of   food   by   zebra   fish   (Danio   rerio).   Canadian  Journal  of  Zoology  76:  770-­‐772.  

Belica   L.   A.   T.   &   Rahel   F.   J.   (2008)   Movements   of   creek   chubs,   Semotilus  atromaculatus,   among   habitat   patches   in   a   plains   stream.   Ecology   of  Freshwater  Fish  17:  258-­‐272.  

Belichon   S.,   Clobert   J.   &   Massot   M.   (1996)   Are   there   differences   in   fitness  components  between  philopatric   and  dispersing   individuals?  Acta  Oecologica  17:  503-­‐517.  

Belkhir   K.,   Castric   V.   &   Bonhomme   F.   (2002)   IDENTIX,   a   software   to   test   for  relatedness   in   a   population   using   permutation   methods.   Molecular   Ecology  Notes  2:  611-­‐614.  

Bell   A.   M.   (2005)   Behavioural   differences   between   individuals   and   two  populations   of   stickleback   (Gasterosteus   aculeatus).   Journal   of   Evolutionary  Biology  18:  464-­‐473.  

Bell   A.   M.   (2007)   Future   direction   in   behavioural   syndromes   research.  Proceedings  of  the  Royal  Society  of  London  B  274:  755-­‐761.  

Bell  A.  M.  &  Aubin-­‐Horth  N.  (2010)  What  can  whole  genome  expression  data  tell  us  about  the  ecology  and  evolution  of  personality?  Philosophical  Transactions  of  the  Royal  Society  B  365:  4001-­‐4012.  

Bell  A.  M.,  Hankison  S.  J.  &  Laskowski  K.  L.  (2009)  The  repeatability  of  behaviour:  a  meta-­‐analysis.  Animal  Behaviour  77:  771-­‐783.  

Benjamini  Y.  &  Hochberg  Y.  (1995)  Controlling  the  false  discovery  rate:  a  practical  and   powerful   approach   to   multiple   testing.   Journal   of   the   Royal   Statistical  Society  B  57:  289-­‐300.  

Bergmüller   R.   &   Taborsky   M.   (2007)   Adaptive   behavioural   syndromes   due   to  strategic  niche  specialization.  BMC  Ecology  7:  doi:10.1186/1472-­‐6785-­‐7-­‐12.  

Bisazza  A.  &  Marconato  A.  (1988)  Female  mate  choice,  male-­‐male  competition  and  parental   care   in   the   river   bullhead,  Cottus  gobio   L.   (Pisces,   Cottidae).   Animal  Behaviour  36:  1352-­‐1360.  

Bohonak  A.  J.  (1999)  Dispersal,  gene  flow  and  population  structure.  The  Quarterly  Review  of  Biology  74:  21-­‐45.  

Bolger   T.   &   Connolly   P.   L.   (1989)   The   selection   of   suitable   indexes   for   the  measurement   and   analysis   of   fish   condition.   Journal   of   Fish  Biology  34:   171-­‐182.  

References  

      149

Bollache  L.,  Kaldonski  N.,  Troussard  J.-­‐P.,  Lagrue  C.  &  Rigaud  T.  (2006)  Spines  and  behaviour   as   defences   against   fish   predators   in   an   invasive   freshwater  amphipod.  Animal  Behaviour  72:  627-­‐633.  

Bollinger  E.  K.,  Harper  S.  J.  &  Barrett  G.  W.  (1993)  Inbreeding  avoidance  increases  dispersal  movements  of  the  meadow  vole.  Ecology  74:  1153-­‐1156.  

Bolnick   D.   I.   (2001)   Intraspecific   competition   favours   niche  width   expansion   in  Drosophila  melanogaster.  Nature  410:  463-­‐466.  

Bolnick   D.   I.,   Svanbäck   R.,   Fordyce   J.   A.,   Yang   L.   H.,   Davis   J.   M.,   Husley   C.   D.   &  Forister  M.  L.  (2003)  The  ecology  of  individuals:  incidence  and  implications  of  individual  specialization.  The  American  Naturalist  161:  1-­‐28.  

Bonte  D.  &  De  la  Pena  E.  (2009)  Evolution  of  body  condition-­‐dependent  dispersal  in  metapopulations.  Journal  of  Evolutionary  Biology  22:  1242-­‐1251.  

Bonte  D.,  Van  Dyck  H.,  Bullock  J.  M.,  Coulon  A.,  Delgado  M.,  Gibbs  M.,  Lehouck  V.,  Matthysen   E.,   Mustin   K.,   Saastamoinen   M.,   Schtickzelle   N.,   Stevens   V.   M.,  Vandewoestijne   S.,   Baguette   M.,   Barton   K.,   Benton   T.   M.,   Chaput-­‐Bardy   A.,  Clobert  J.,  Dytham  C.,  Hovestadt  T.,  Meier  C.  M.,  Palmer  S.  C.  F.,  Turlure  C.  &  J.  M.  J.  Travis  J.  M.  J.  (2012)  Costs  of  dispersal.  Biological  Reviews  87:  290-­‐312.  

Boon   A.   K.,   Réale   D.,   Boutin   S.   (2008)   Personality,   habitat   use,   and   their  consequences   for   survival   in   North   American   red   squirrels   Tamiasciurus  hudsonicus.  Oikos  117:  1321-­‐1328.  

Bowler  D.  E.  &  Benton  T.  G.  (2005)  Causes  and  consequences  of  animal  dispersal  strategies:   relating   individual   behaviour   to   spatial   dynamics.   Biological  Reviews  80:  205-­‐225.  

Brandt  S.  B.  (1986)  Ontogenic  shifts  in  habitat,  diet,  and  diel-­‐feeding  periodicity  of  slimy  sculpin   in  Lake  Ontario.  Transactions  of   the  American  Fisheries  Society  115:  711-­‐715.  

Breen   M.   J.,   Ruetz   C.   R.,   Thompson   K.   J.   &   Kohler   S.   L.   (2009)   Movements   of  mottled  sculpins  (Cottus  bairdii)  in  a  Michigan  stream:  how  restricted  are  they?  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  66:  31-­‐41.  

Broadway  J.  E.  &  Moyle  P.  B.  (1978)  Aspects  of  the  ecology  of  the  prickly  sculpin,  Cottus  asper  Richardson,  a  persistent  native  species  in  Clear  Lake,  Lake  County,  California.  Environmental  Biology  of  Fishes  3:  337-­‐343.  

Brown   C.   &   Braithwaite   V.   A.   (2004)   Size   matters:   a   test   of   boldness   in   eight  populations  of  the  poeciliid  Brachyraphis  episcopi.  Animal  Behaviour  68:  1325-­‐1329.  

References  

150

Brown  C.,  Burgess  F.  &  Braithwaite  V.  A.  (2007)  Heritable  and  experiential  effects  on   boldness   in   a   tropical   poeciliid.   Behavioral   Ecology   and   Sociobiology   62:  237-­‐243.  

Brown   C.,   Jones   F.   &   Braithwaite   V.   A.   (2005)   In   situ   examination   of   boldness-­‐shyness  traits  in  the  tropical  poeciliid,  Brachyraphis  episcopi.  Animal  Behaviour  70:  1003-­‐1009.  

Bruyndoncx   L.,   Knaepkens   G.,   Meeus   W.,   Bervoets   L.   &   Eens   M.   (2002)   The  evaluation   of   passive   integrated   transponder   (PIT)   tags   and   visible   implant  elastomer  (VIE)  marks  as  new  marking  techniques  for  the  bullhead.  Journal  of  Fish  Biology  60:  260-­‐262.  

Bunnell   Jr.  D.  B.  &   Isely   J.   J.   (1998)  Diel  movement  of  brown  trout   in  a  southern  Appalachian   river.   Transactions   of   the   American   Fisheries   Society   127:   630-­‐636.  

Careau  V.,  Thomas  D.,  Humphries  M.  M.  &  Réale  D.  (2008)  Energy  metabolism  and  animal  personality.  Oikos  117:  641-­‐653.  

Carere   C.,   Drent   P.   J.,   Privitera   L.,   Koolhaas   J.   M.   &   Groothuis   T.   G.   G.   (2005)  Personalities   in   great   tits,   Parus   major:   stability   and   consistency.   Animal  Behaviour  70:  795-­‐805.  

Carfagnini   A.   G.,   Rodd   F.   H.,   Jeffers   K.   B.   &   Bruce   A.   E.   E.   (2009)   The   effects   of  habitat   complexity   on   aggression   and   fecundity   in   zebrafish   (Danio   rerio).  Environmental  Biology  of  Fishes  86:  403-­‐409.  

Chapman  B.  B.,  Brönmark  C.,  Nilsson  J.-­‐A.  &  Hansson  L.-­‐A.  (2011)  The  ecology  and  evolution  of  partial  migration.  Oikos  120:  1764-­‐1775.  

Chapman  B.  B.,  Hulthén  K.,  Blomqvist  D.  R.,  Hansson  L.-­‐A.,  Nilsson  J.-­‐A.,  Nilsson  P.  A.,   Skov   C.   &   Brönmark   C.   (2011)   To   boldly   go:   individual   differences   in  boldness  influence  migratory  tendency.  Ecology  Letters  14:  871-­‐876.  

Chapman   J.   R.,   Nakagawa   S.,   Coltman   D.   W.,   Slate   J.   &   Sheldon   B.   C.   (2009)   A  quantitative   review   of   heterozygosity-­‐fitness   correlations   in   animal  populations.  Molecular  Ecology  18:  2746-­‐2765.  

Chervet  N.,   Zöttl  M.,   Schürch  R.,  Taborsky  M.  &  Heg  D.   (2011)  Repeatability   and  heritability   of   behavioural   types   in   a   social   cichlid.   International   Journal   of  Evolutionary  Biology  2011:  ID  321729,  doi:  10.4061/2011/321729.  

Clapp   D.   F.   &   Clark   Jr.   R.   D.   (1990)   Range,   activity,   and   habitat   of   large,   free-­‐ranging   brown   trout   in   a   Michigan   stream.   Transactions   of   the   American  Fisheries  Society  119:  1022-­‐1034.  

References  

      151

Clarke   A.   L.,   Saether   B.-­‐E.   &   Roskaft   E.   (1997)   Sex   biases   in   avian   dispersal:   a  reappraisal.  Oikos  79:  429-­‐438.  

Clobert  J.,  Danchin  E.,  Dhondt  A.  A.  &  Nichols  J.  D.  (2001)  Dispersal.  Oxford,  United  Kingdom:  Oxford  University  Press.    

Clobert   J.,   Le   Galliard   J.   F.,   Cote   J.,   Meylan   S.   &   Massot   M.   (2009)   Informed  dispersal,   heterogeneity   in   animal   dispersal   syndromes   and   the   dynamics   of  spatially  structured  populations.  Ecology  Letters  12:  197-­‐209.  

Clough  S.  &  Ladle  M.  (1997)  Diel  migration  and  site  fidelity   in  a  stream-­‐dwelling  cyprinid,  Leuciscus  leuciscus.  Journal  of  Fish  Biology  20:  1117-­‐1119.  

Coleman  K.  &  Wilson  D.  S.  (1998)  Shyness  and  boldness  in  pumpkinseed  sunfish:  individual  differences  are  context-­‐specific.  Animal  Behaviour  56:  927-­‐936.  

Cote  J.  &  Clobert  J.  (2007)  Social  personalities  influence  natal  dispersal  in  a  lizard.  Proceedings  of  the  Royal  Society  B  274:  383-­‐390.  

Cote   J.,   Fogarty   S.,   Brodin   T.,   Weinersmith   K.   &   Sih   A.   (2011)   Personality-­‐dependent  dispersal  in  the  invasive  mosquitofish:  group  composition  matters.  Proceedings  of  the  Royal  Society  B  278:  1670-­‐1678.  

Cote  J.,  Fogarty  S.,  Brodin  T.,  Weinersmith  K.,  Brodin  T.  &  Sih  A.  (2010)  Personality  traits   and  dispersal   tendency   in   the   invasive  mosquitofish   (Gambusia  affinis).  Proceedings  of  the  Royal  Society  B  277:  1571-­‐1579.  

Corkum   L.   D.   &   Cronin   D.   J.   (2004)   Habitat   complexity   reduces   aggression   and  enhances  consumption  in  crayfish.  Journal  of  Ethology  22:  23-­‐27.  

Covich   A.   P.,   Austen   M.   C.,   Bärlocher   F.,   Chauvet   E.,   Cardinale   B.   J.,   Biles   C.   L.,  Inchausti  P.,  Dangles  O.,  Solan  M.,  Gessner  M.  O.,  Statzner  B.  &  Moss  B.  (2004)  The   role   of   biodiversity   in   the   functioning   of   freshwater   and  marine   benthic  ecosystems.  Bioscience  54:  767-­‐775.  

Croft   D.   P.,   Albanese   B.,   Arrowsmith   B.   J.,   Botham   M.,   Webster   M.   &   Krause   J.  (2003)  Sex-­‐biased  movement  in  the  guppy  (Poecilia  reticulata).  Oecologia  137:  62-­‐68.  

Crook  D.  A.  (2004)  Is  the  home  range  concept  compatible  with  the  movements  of  two  species  of  lowland  river  fish?  Journal  of  Animal  Ecology  73:  353-­‐366.  

Cucherousset  J.,  Roussel  J.  M.,  Keeler  R.,  Cunjak  R.  A.  &  Stump  R.  (2005)  The  use  of  two   new   portable   12-­‐mm   PIT   tag   detectors   to   track   small   fish   in   shallow  streams.  North  American  Journal  of  Fisheries  Management  25:  270-­‐274.  

References  

152

Davey  A.  J.  H.,  Hawkins  S.  J.,  Turner  G.  F.  &  Doncaster  C.  P.  (2005)  Size-­‐dependent  microhabitat  use  and  intraspecific  competition  in  Cottus  gobio.  Journal  of  Fish  Biology  67:  428-­‐423.  

David   P.   (1998)   Heterozygosity-­‐fitness   correlations:   new   perspectives   on   old  problems.  Heredity  80:  531-­‐537.  

Dingemanse  N.   J.,   Both  C.,  Drent  P.   J.,   Van  Oers  K.  &  Van  Noordwijk  A.   J.   (2002)  Repeatability   and   heritability   of   exploratory   behaviour   in   great   tits   from   the  wild.  Animal  Behaviour  64:  929-­‐938.  

Dingemanse  N.   J.,   Both  C.,   Van  Noordwijk  A.   J.,   Rutten  A.   L.  &  Drent  P.   J.   (2003)  Natal  dispersal  and  personalities  in  great  tits  (Parus  major).  Proceedings  of  the  Royal  Society  B  270:  741-­‐747.  

Dingemanse   N.   J.,   Both   C.,   Drent   P.   J.   &   Tinbergen   J.   M.   (2004)   Fitness  consequences  of  avian  personalities  in  a  fluctuating  environment.  Proceedings  of  the  Royal  Society  B  271:  847-­‐852.  

Dingemanse  N.  J.,  Wright  J.,  Kazem  A.  J.  N.,  Thomas  D.  K.,  Hickling  R.  &  Dawnay  N.  (2007)   Behavioural   syndromes   differ   predictably   between   12   populations   of  three-­‐spined  stickleback.  Journal  of  Animal  Ecology  76:  1128-­‐1138.  

Doerr  E.  D.  &  Doerr  V.  A.  J.  (2005)  Dispersal  range  analysis:  quantifying  individual  variation  in  dispersal  behaviour.  Oecologia  142:  1-­‐10.  

Drent   P.   J.,   Van   Oers   &   Van   Noordwijk   A.   J.   (2003)   Realized   heritability   of  personalities  in  the  great  tit  (Parus  major).  Proceedings  of  the  Royal  Society  B  270:  45-­‐51.  

Duckworth   R.   A.   &   Badyaev   A.   V.   (2007)   Coupling   of   dispersal   and   aggression  facilitates   the   rapid   range   expansion   of   a   passerine   bird.   Proceedings   of   the  National  Academy  of  Science  USA  104:  15017-­‐15022.  

Ehlinger  T.  M.  &  Wilson  D.  S.   (1988)  Complex   foraging  polymorphism  in  bluegill  sunfish.  Proceedings  of  the  National  Academy  of  Science  USA  85:  1878-­‐1882.  

Elliott   J.   M.   (2005)   Day-­‐night   changes   in   the   spatial   distribution   and   habitat  preferences   of   freshwater   shrimps,   Gammarus   pulex,   in   a   stony   stream.  Freshwater  Biology  50:  552-­‐566.  

Englbrecht   C.   C.,   Largiadèr   C.   R.,   Hänfling   B.   &   Tautz   D.   (1999)   Isolation   and  characterization   of   polymorphic  microsatellite   loci   in   the   European   bullhead  Cottus  gobio  L.  (Osteichthyes)  and  their  applicability  to  related  taxa.  Molecular  Ecology  8:  1957-­‐1969.  

Fausch   K.   D.   (1984)   Profitable   stream   positions   for   salmonids:   relating   specific  growth  rate  to  net  energy  gain.  Canadian  Journal  of  Zoology  62:  441-­‐451.  

References  

      153

Fidler  A.  E.,  Van  Oers  K.,  Drent  P.  J.,  Kuhn  S.,  Mueller  J.  C.  &  Kempenaers  B.  (2007)  Drd4   gene   polymorphisms   are   associated   with   personality   variation   in   a  passerine  bird.  Proceedings  of  the  Royal  Society  B  274:  1685-­‐1691.  

Fraser   D.   F.,   Gilliam   J.   F.,   Daley  M.   J.,   Le   A.   N.   &   Skalski   G.   T.   (2001)   Explaining  leptokurtic  movement  distributions:  intrapopulation  variation  in  boldness  and  exploration.  The  American  Naturalist  158:  124-­‐135.  

Frasier  T.  R.   (2008)   STORM:   software   for   testing  hypotheses  of   relatedness   and  mating  patterns.  Molecular  Ecology  Resources  8:  1263-­‐1266.  

Freyhof  J.,  Kottelat  M.  &  Nolte  A.  (2005)  Taxonomic  diversity  of  European  Cottus  with   description   of   eight   new   species   (Teleostei:   Cottidae).   Ichthyological  Exploration  of  Freshwaters  16:  107-­‐172.  

Frommen  J.  G.,  Mehlis  M.,  Brendler  C.  &  Bakker  T.  C.  M.  (2007)  Shoaling  decisions  in  three-­‐spined  sticklebacks  (Gasterosteus  aculeatus)  –  familiarity,  kinship  and  inbreeding.  Behavioral  Ecology  and  Sociobiology  61:  633-­‐539.  

Fujimoto  Y.,  Kurosaka  K.,  Ojima  D.  &  Iwata  M.  (2008)  Habitat  use  and  shift  of  two  sympatric  freshwater  sculpins  (Cottus  pollux  and  Cottus  hangiongensis)  during  the   spawning   and   non-­‐spawning   seasons.   Journal   of   Freshwater   Ecology   23:  341-­‐346.  

Gaines  M.  S.  &  McClenaghan  Jr.  L.  R.  (1980)  Dispersal   in  small  mammals.  Annual  Review  of  Ecology  and  Systematics  11:  163-­‐196.  

Garamszegi  L.  Z.,  Eens  M.  &  Török   J.   (2008)  Birds   reveal   their  personality  when  singing.  PLoS  ONE  3:  e2647,  doi:10.1371/journal.pone.0002647.  

Garamszegi   L.   Z.,   Eens   M.   &   Török   J.   (2009)   Behavioural   syndromes   and  trappability   in   free-­‐living   collared   flycatchers,   Ficedula   albicollis.   Animal  Behaviour  77:  803-­‐812.  

Gelwick   F.   P.   &   Matthews   W.   J.   (1992)   Effects   of   an   algivorous   minnow   on  temperate  stream  ecosystem  porperties.  Ecology  73:  1630-­‐1645.  

Gerking   S.   D.   (1959)   The   restricted   movement   of   fish   populations.   Biological  Reviews  of  the  Cambridge  Philosophical  Society  34:  221-­‐242.  

Godin  J.-­‐G.  &  Dugatkin  L.  A.  (1996)  Female  mating  preference  for  bold  males  in  the  guppy,  Poecilia  reticulata.  Proceedings  of  the  National  Academy  of  Science  USA  93:  10262-­‐10267.  

Goto   A.   (1990)   Alternative   life-­‐history   styles   of   Japanese   freshwater   sculpins  revisited.  Environmental  Biology  of  Fishes  28:  101-­‐112.  

References  

154

Goudet   J.   (1995)   FSTAT   (Version   1.2):   a   computer   program   to   calculate   F-­‐statistics.  Journal  of  Heredity  86:  485-­‐486.  

Gowan   C.   &   Fausch   K.   D.   (1996)   Mobile   brook   trout   in   two   high-­‐elevation  Colorado  streams:  re-­‐evaluating  the  concept  of  restricted  movement.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  53:  1370-­‐1381.  

Gowan  C.,  Young  M.  K.,  Fausch  K.  D.  &  Riley  S.  C.  (1994)  Restricted  movement  in  resident  stream  salmonids:  a  paradigm  lost?  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  51:  2626-­‐2637.  

Greenberg  L.  A.   (1991)  Habitat  use  and   feeding  behaviour  of   thirteen   species  of  benthic  stream  fishes.  Environmental  Biology  of  Fishes  31:  389-­‐401.  

Greenberg   L.   A.   &   Holtzman   D.   A.   (1987)   Microhabitat   utilization,   feeding  periodicity,   home   range   and   population-­‐size   of   the   banded   sculpin,   Cottus  carolinae.  Copeia  1:  19-­‐25.  

Greenwood   P.   J.   (1980)   Mating   systems,   philopatry   and   dispersal   in   birds   and  mammals.  Animal  Behaviour  28:  1140-­‐1162.  

Grimm  M.  P.  (1981)  The  composition  of  northern  pike  (Esox  lucius  L.)  populations  in   four   shallow   waters   in   the   Netherlands,   with   special   reference   to   factors  influencing  0+  pike  biomass.  Fisheries  Management  12:  61-­‐76.  

Hadany  L.,  Eshel  I.  &  Motro  U.  (2004)  No  place  like  home:  competition,  dispersal  and  complex  adaptation.  Journal  of  Evolutionary  Biology  17:  1328-­‐1335.  

Hansson   B.   &  Westerberg   L.   (2002)   On   the   correlation   between   heterozygosity  and  fitness  in  natural  populations.  Molecular  Ecology  11:  2467-­‐2474.  

Hawkes   C.   (2009)   Linking   movement   behaviour,   dispersal   and   population  processes:   is   individual   variation   a   key?   Journal   of   Animal   Ecology   78:   894-­‐906.  

Hays  G.  C.,  Kennedy  H.  &  Frost  B.  W.  (2001)  Individual  variability  in  diel  vertical  migration  of   a  marine  copepod:  why  some   individuals   remain  at  depth  when  others  migrate.  Limnology  and  Oceanography  46:  2050-­‐2054.  

Helfman  G.  S.,  Collette  B.  B.  &  Facey  D.  E.   (1997)  The  diversity  of   fishes.  Malden,  Massachusetts:  Blackwell  Science.  pp.  384-­‐405.  

Herborn  K.  A.,  Macleod  R.,  Miles  W.  T.  S.,  Schofield  A.  N.  B.,  Alexander  L.  &  Arnold  K.   E.   (2010)   Personality   in   captivity   reflects   personality   in   the   wild.   Animal  Behaviour  79:  835-­‐843.  

References  

      155

Hoekstra   D.   &   Janssen   J.   (1985)   Non-­‐visual   feeding   behavior   of   the   mottled  sculpin,  Cottus  bairdi,   in   Lake  Michigan.   Environmental   Biology   of   Fishes   12:  111-­‐117.  

Holmlund   C.   A.   &   Hammer   M.   (1999)   Ecosystem   services   generated   by   fish  populations.  Ecological  Economics  29  :  253-­‐268.  

Holomuzki   J.  R.  &  Hoyle   J.  D.   (1990)  Effect  of  predatory   fish  presence  on  habitat  use  and  diel  movement  of  the  stream  amphipod,  Gammarus  minus.  Freshwater  Biology  24:  509-­‐517.  

Horton   T.   B.,   Guy   C.   S.   &   Pontius   J.   S.   (2004)   Influence   of   time   interval   on  estimations  of  movement  and  habitat  use.  North  American  Journal  of  Fisheries  Management  24:  690-­‐696.  

Howard   W.   E.   (1960)   Innate   and   environmental   dispersal   of   individual  vertebrates.  American  Midland  Naturalist  63:  152-­‐161.  

Hudy  M.  &  Shiflet  J.  (2009)  Movement  and  recolonization  of  Potomac  sculpin  in  a  Virginia   stream.   North   American   Journal   of   Fisheries   Management   29:   196-­‐204.  

Hughes   N.   F.   (2000)   Testing   the   ability   of   habitat   selection   theory   to   predict  interannual   movement   patterns   of   a   drift-­‐feeding   salmonid.   Ecology   of  Freshwater  Fish  9:  4-­‐8.  

Hutchings   J.   A.   &   Gerber   L.   (2002)   Sex-­‐biased   dispersal   in   a   salmonid   fish.  Proceedings  of  the  Royal  Society  B  269:  2487-­‐2493.  

Jakob  E.  M.,  Marshall  S.  D.  &  Uetz  G.  W.  (1996)  Estimating  fitness:  a  comparison  of  body  condition  indices.  Oikos  77:  61-­‐67.  

Jensen  S.  P.,  Gray  S.  J.  &  Hurst  J.  L.  (2005)  Excluding  neighbours  from  territories:  effects   of   habitat   structure   and   resource   distribution.   Animal   Behaviour   69:  785-­‐795.  

Johnson   J.   C.   &   Sih   A.   (2007)   Fear,   food,   sex   and   parental   care:   a   syndrome   of  boldness   in   the   fishing   spider,  Dolomedes  triton.   Animal  Behaviour  74:  1131-­‐1138.  

Jonsson   B.   &   Jonsson   N.   (1993)   Partial   migration:   nice   shift   versual   sexual  maturation  in  fishes.  Reviews  in  Fish  Biology  and  Fisheries  3:  348-­‐365.  

Keeler   R.   A.   (2006)   Development   and   application   of   passive   integrated  transponder  technology  to  investigate  the  movement  and  reproductive  ecology  of  adult  slimy  sculpin  (Cottus  cognatus)  in  small  New  Brunswick  streams.  M.Sc.  thesis.  New  Brunswick,  Canada:  The  University  of  New  Brunswick.    

References  

156

Keeler  R.  A.,  Breton  A.  R.,  Peterson  D.  P.  &  Cunjak  R.  A.  (2007)  Apparent  survival  and   detection   estimates   for   PIT-­‐tagged   slimy   sculpin   in   five   small   New  Brunswick  streams.  Transactions  of   the  American  Fisheries  Society  136:  281-­‐292.  

Kemp   P.   S.,   Armstrong   J.   D.   &   Gilvear   D.   J.   (2005)   Behavioural   responses   of  juvenile  Atlantic  salmon  (Salmo  salar)  to  presence  of  boulders.  River  Research  Applications  21:  1053-­‐1060.  

Knaepkens   G.,   Baekelandt   K.   &   Eens   M.   (2005)   Assessment   of   the   movement  behaviour  of  the  bullhead  (Cottus  gobio),  an  endangered  European  freshwater  fish.  Animal  Biology  55:  219-­‐226.  

Knaepkens   G.,   Bruyndoncx   L.   &   Eens   M.   (2004)   Assessment   of   residency   and  movement   of   the   endangered   bullhead   (Cottus   gobio)   in   two   Flemish   rivers.  Ecology  of  Freshwater  Fish  13:  317-­‐322.  

Knaepkens  G.,  Maerten  E.,  Tudorache  C.,  De  Boeck  G.  &  Eens  M.  (2007)  Evaluation  of  passive  integrated  transponder  tags  for  marking  the  bullhead  (Cottus  gobio),  a   small   benthic   freshwater   fish:   effects   on   survival,   growth   and   swimming  capacity.  Ecology  of  Freshwater  Fish  16:  404-­‐409.  

Knight  M.  E.,  Van  Oppen  M.   J.  H.,  Smith  H.  L.,  Rico  C.,  Hewitt  G.  M.  &  Turner  G.  F.  (1999)   Evidence   for   male-­‐biased   dispersal   in   Lake   Malawi   cichlids   from  microsatellites.  Molecular  Ecology  8:  1521-­‐1527.  

Knudsen   R.,   Klemetsen,   A.,   Amundsen   P.-­‐A.   &   Hermansen   B.   (2006)   Incipient  speciation   through   niche   expansion:   an   example   from   the   Arctic   charr   in   a  subarctic  lake.  Proceedings  of  the  Royal  Society  B  273:  2291-­‐2298.  

Kobler   A.,   Engelen   B.,   Knaepkens   G.   &   Eens   M.   (2009b)   Temperament   in  bullheads:   do   laboratory   and   field   explorative   behaviour   variables   correlate?  Naturwissenschaften  96:  1229-­‐1233.  

Kobler  A.,  Humblet  Y.,  Knaepkens  G.,  Engelen  B.  &  Eens  M.  (2012a)  Diel  movement  of   bullhead   (Cottus   perifretum)   in   a   lowland   stream.   Ecology   of   Freshwater  Fish  21:  453-­‐460.  

Kobler   A.,   Humblet   Y.,   Geudens   K.   &   Eens   M.   (2012b)   Period-­‐dependent   sex-­‐biased   movement   in   a   polygamous   stream   fish   (Cottus   perifretum   Freyhof,  Kottelat   &   Nolte,   2005   -­‐   Actinopterygii,   Cottidae)   with   male   parental   care.  Hydrobiologia  693:  195-­‐204.  

Kobler   A.,   Klefoth   T.,   Mehner   T.   &   Arlinghaus   R.   (2009a)   Coexistence   of  behavioural   types   in   an   aquatic   top   predator:   a   response   to   resource  limitation?  Oecologia  161:  837-­‐847.  

References  

      157

Kobler   A.,   Klefoth   T.,  Wolter   C.,   Fredrich   F.   &   Arlinghaus   R.   (2008)   Contrasting  pike  (Esox  lucius  L.)  movement  and  habitat  choice  between  summer  and  winter  in  a  small  lake.  Hydrobiologia  601:  17-­‐27.  

Kobler   A.,   Volckaert   F.   A.   M.,   Humblet   Y.,   Maes   G.   E.   &   Eens   M.   (2011)  Temperament   traits   and  microhabitat   use   in  bullhead,  Cottus  perifretum;   fish  associated  with  complex  habitats  are  less  aggressive.  Behaviour  148:  603-­‐625.  

Korsten   P.,   Mueller   J.   C.,   Hermannstädter   C.,   Bouwman   K.   M.,   Dingemanse   N.   J.,  Drent  P.  J.,  Liedvogel  M.,  Matthysen  E.,  Van  Oers  K.,  Van  Overveld  T.,  Patrick  S.  C.,   Quinn   J.   L.,   Sheldon   B.   C.,   Tinbergen   J.   M.   &   Kempenaers   B.   (2010)  Association   between   DRD4   gene   polymorphism   and   personality   variation   in  great  tits:  a  test  across  four  wild  populations.  Molecular  Ecology  19:  832-­‐843.  

Kottelat  M.  &  Freyhof  J.  (2007)  Handbook  of  European  Freshwater  Fishes.  Cornol,  Switzerland:  Publications  Kottelat.  

Krause  J.,  Loader  S.  P.,  McDermott  J.  &  Ruxton  G.  D.  (1998)  Refuge  use  by  fish  as  a  function   of   body   length-­‐related   metabolic   expenditure   and   predation   risks.  Proceedings  of  the  Royal  Society  B  265:  2373-­‐2379.  

Legalle   M.,   Mastrorillo   S.,   Santoul   F.   &   Céréghino   R.   (2005)   Ontogenetic  microhabitat   shifts   in   the   bullhead,   Cottus   gobio   L.,   in   a   fast   flowing   stream.  International  Review  of  Hydrobiology  90:  310-­‐321.  

Lessells   C.   M.   &   Boag   P.   T.   (1987)   Unrepeatable   repeatabilities:   a   common  mistake.  The  Auk  104:  116-­‐121.  

Lieutenant-­‐Gosselin   M.   &   Bernatchez   L.   (2006)   Local   heterozygosity-­‐fitness  correlations   with   global   positive   effects   on   fitness   in   threespine   stickleback.  Evolution  60:  1658-­‐1668.  

Lowe   W.   H.   (2010)   Explaining   long-­‐distance   dispersal:   effects   of   dispersal  distance   on   survival   and   growth   in   a   stream   salamander.   Ecology   91:   3008-­‐3015.  

Lucas   M.   C.   &   Baras   E.   (2001)   Migration   of   freshwater   fishes.   Oxford,   United  Kingdom:  Blackwell  Science.    

Lundberg  P.  (1988)  The  evolution  of  partial  migration  in  birds.  Trends  in  Ecology  &  Evolution  3:  172-­‐175.  

Magnhagen  C.   (2007)   Social   influence  on   the   correlation  between  behaviours   in  young-­‐of-­‐the-­‐year  perch.  Behavioral  Ecology  and  Sociobiology  61:  525-­‐531.  

Magnhagen  C.  &  Borcherding   J.   (2008)  Risk-­‐taking   behaviour   in   foraging   perch:  does   predation   pressure   influence   age-­‐specific   boldness?   Animal   Behaviour  75:  509-­‐517.  

References  

158

Mainguy  J.,  Côté  S.  D.  &  Coltman  D.  W.  (2009)  Multilocus  heterozygosity,  parental  relatedness   and   individual   fitness   components   in   a   wild   mountain   goat,  Oreamnos  americanus  population.  Molecular  Ecology  18:  2297-­‐2306.  

Mangel  M.  &  Stamps  J.  A.  (2001)  Trade-­‐offs  between  growth  and  mortality  and  the  maintenance  of  individual  variation  in  growth.  Evolutionary  Ecology  Research  3:    583-­‐593.  

Manly   B.   F.   J.,  McDonald   L.   &   Thomas  D.   (1993)   Resource   selection   by   animals:  statistical   design   and   analysis   for   field   studies.   London,   United   Kingdom:  Chapman  &  Hall.  

Marconato  A.  &  Bisazza  A.   (1986)  Males  whose  nests  contain  eggs  are  preferred  by  female  Cottus  gobio  L.  (Pisces,  Cottidae).  Animal  Behaviour  34:  1580-­‐1582.  

Marconato  A.  &  Bisazza  A.  (1988)  Mate  choice,  egg  cannibalism  and  reproductive  success   in   the   river  bullhead,  Cottus  gobio   L.   Journal  of  Fish  Biology  33:  905-­‐916.  

Marconato   A.,   Bisazza   A.   &   Fabris  M.   (1993)   The   cost   of   parental   care   and   egg  cannibalism  in  the  river  bullhead,  Cottus  gobio  L.  (Pisces,  Cottidae).  Behavioral  Ecology  and  Sociobiology  32:  229-­‐237.  

Marentette   J.   R.,   Wang   G.,   Tong   S.,   Sopinka   N.   M.,   Taves   M.   D.,   Koops   M.   A.   &  Balshine   S.   (2011)   Laboratory   and   field   evidence   of   sex-­‐biased  movement   in  the  invasive  round  goby.  Behavioral  Ecology  and  Sociobiology  65:  2239-­‐2249.  

Matthews   W.   J.   (1998)   Patterns   in   freshwater   fish   ecology.   New   York,   United  States  of  America:  Chapman  &  Hall.    

Mayr  E.  (1926)  Die  Ausbreitung  des  Girlitz  (Serinus  canaria  serinus  L.).  Journal  für  Ornithologie  74:  571-­‐671.  

McCleave   J.   D.   (1964)  Movement   and   population   of   the  mottled   sculpin   (Cottus  bairdi  Girard)  in  a  small  Montana  stream.  Copeia  1964:  506-­‐513.  

McLaughlin   R.   L.,   Grant   J.  W.   A.   &  Kramer  D.   L.   (1992)   Individual   variation   and  alternative   patterns   of   foraging  movements   in   recently-­‐emerged   brook   charr  (Salvelinus  fontinalis).  Behaviour  120:  286-­‐301.  

McLaughlin   R.   L.   (1989)   Search   modes   of   birds   and   lizards:   evidence   for  alternative  movement  patterns.  The  American  Naturalist  133:  654-­‐670.  

Meylan  S.,  De  Fraipont  M.,  Aragon  P.,  Vercken  E.  &  Clobert  J.  (2009)  Are  dispersal-­‐dependent   behavioral   traits   produced   by   phenotypic   plasticity?   Journal   of  Experimental  Zoology  311A:  377-­‐388.  

References  

      159

Millot   S.,  Bégout  M.   L.  &  Chatain  B.   (2009)  Risk-­‐taking  behaviour  variation  over  time   in   sea   bass   Dicentrarchus   labrax:   effects   of   day-­‐night   alternation,   fish  phenotypic  characteristics  and  selection  for  growth.  Journal  of  Fish  Biology  75:  1733-­‐1749.  

Moore   J.  W.   (2006)  Animal  ecosystem  engineers   in  streams.  Bioscience  56:  237-­‐246.  

Morbey   Y.   E.,   Addison   P.,   Shuter   B.   J.   &   Vascotto   K.   (2006)   Within-­‐population  heterogeneity  of  habitat  use  by  lake  trout  Salvelinus  namaycush.  Journal  of  Fish  Biology  69:  1675-­‐1696.  

Moretz   J.   A.,  Martins  E.   P.  &  Robison  B.  D.   (2007)  The   effects   of   early   and   adult  social   environment   on   zebrafish   (Danio   rerio)   behaviour.   Environmental  Biology  of  Fishes  80:  91-­‐101.  

Moretz   J.  A.,  Martins  E.  P.  &  Robison  B.  D.   (2007)  Behavioral  syndromes  and  the  evolution  of  correlated  behavior  in  zebrafish.  Behavioral  Ecology  18:  556-­‐562.  

Morris  D.  (1954)  The  reproductive  behaviour  of   the  river  bullhead  (Cottus  gobio  L.)  with  special  reference  to  the  fanning  activity.  Behaviour  7:  1-­‐32.  

Morris  D.  W.  (2003)  Toward  an  ecological  synthesis:  a  case  for  habitat  selection.  Oecologia  136:  1-­‐13.  

Mueller  J.  C.,  Pulido  F.  &  Kempenaers  B.  (2011)  Identification  of  a  gene  associated  with  avian  migratory  behaviour.  Proceedings  of  the  Royal  Society  B  278:  2848-­‐2856.  

Myers  J.  H.  &  Krebs  C.  J.  (1971)  Genetic,  behavioral,  and  reproductive  attributes  of  dispersing   field   voles   Microtus   pennsylvanicus   and   Microtus   ochrogaster.  Ecological  Monographs  41:  53-­‐78.  

Nakamura   T.,   Maruyama   T.   &  Watanabe   S.   (2002)   Residency   and  movement   of  stream-­‐dwelling   Japanese   charr,  Salvelinus   leucomaenis,   in   a   central   Japanese  mountain  stream.  Ecology  of  Freshwater  Fish  11:  150-­‐157.  

Natsumeda  T.  (1998)  Home  range  of  the  Japanese  fluvial  sculpin,  Cottus  pollux,  in  relation   to   nocturnal   activity   patterns.   Environmental   Biology   of   Fishes   53:  295-­‐301.  

Natsumeda  T.  (1999)  Year-­‐round  local  movements  of  the  Japanese  fluvial  sculpin,  Cottus   pollux   (large   egg   type),   with   special   reference   to   the   distribution   of  spawning  nests.  Ichtyological  Research  46:  43-­‐48.  

Natsumeda   T.   (2001)   Space   use   by   the   Japanese   fluvial   sculpin,   Cottus   pollux,  related   to   spatio-­‐temporal   limitations   in   nest   resources.   Environmental  Biology  of  Fishes  62:  393-­‐400.  

References  

160

Natsumeda   T.   (2007)   Estimates   of   nocturnal   home   range   size   of   the   adult  Japanese   fluvial   sculpin,  Cottus  pollux   (Pisces:  Cottidae)   in   relation   to  bottom  topography  and  sampling  intervals.  Journal  of  Ethology  25:  87-­‐93.  

Nelsen  J.  S.  (1994)  Fishes  of  the  World.  New  York,  United  States  of  America:  John  Wiley  &  Sons.  

Newman   R.   M.   &   Waters   T.   F.   (1984)   Size-­‐selective   predation   on   Gammarus  pseudolimnaeus  by  trout  and  sculpins.  Ecology  65:  1535-­‐1545.  

Nilsson  P.  A.  (2006)  Avoid  your  neighbours:  size-­‐determined  spatial  distribution  patterns  among  northern  pike  individuals.  Oikos  113:  251-­‐258.  

Nolte  A.,   Stemshorn  K.   C.  &  Tautz  D.   (2005)  Direct   cloning   of  microsatellite   loci  from   Cottus   gobio   through   a   simplified   enrichment   procedure.   Molecular  Ecology  Notes  5:  628-­‐636.  

Okuda   N.   (1999)   Female  mating   strategy   and  male   brood   cannibalism   in   sand-­‐dwelling  cardinalfish.  Animal  Behaviour  58:  273-­‐279.  

Orians   G.   H.   (1991)   Preface.   The   American   Naturalist   137:   Supplement   Habitat  Selection  S1-­‐S4.  

Orians   G.   H.   &  Wittenberger   J.   F.   (1991)   Spatial   and   temporal   scales   in   habitat  selection.  The  American  Naturalist  137:  Supplement  Habitat  Selection  S29-­‐S49.  

Ovidio,  M.,  Detaille,  A.,  Botninck,  C.  &  J.-­‐C.  Phillippart,  2009.  Movement  behaviour  of   the  small  benthic  Rhine  sculpin  Cottus  rhenanus   (Freyhof,  Kottelet  &  Nolte,  2005)  as  revealed  by  radio-­‐telemetry  and  pit-­‐tagging.  Hydrobiologia  636:  119-­‐128.  

Pàlsson  O.  K.  &  Thorsteinsson  V.  (2003)  Migration  patterns,  ambient  temperature,  and  growth  of   Icelandic  cod  (Gadus  morhua):  evidence   from  storage   tag  data.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  60:  1409-­‐1423.  

Pardini  A.  T.,  Jones  C.  S.,  Noble  L.  R.,  Kreiser  B.,  Malcolm  H.,  Bruce  B.  D.,  Stevens  J.  D.,  Cliff  G.,  Scholl  M.  C.,  Francis  M.,  Duffy  C.  A.  J.  &  Martin  A.  P.  (2001)  Sex-­‐biased  dispersal  of  great  white  sharks.  Nature  412:  139-­‐140.    

Park  S.  D.  E.   (2001)  Trypanotolerance   in  West  African  cattle  and   the  population  genetic  effects  of  selection.  Ph.D.  thesis.  Dublin,  Ireland:  University  of  Dublin.  

Petty   J.   T.   &   Grossman   G.   D.   (1996)   Patch   selection   by  mottled   sculpin   (Pisces:  Cottidae)  in  a  southern  Appalachian  stream.  Freshwater  Biology  35:  261-­‐276.  

Petty   J.   T.   &   Grossman   G.   D.   (2004)   Restricted   movement   by   mottled   sculpin  (Pisces:   Cottidae)   in   a   southern   Appalachian   stream.   Freshwater   Biology   49:  631-­‐645.  

References  

      161

Petty   J.   T.   &   Grossman   G.   D.   (2007)   Size-­‐dependent   territoriality   of   mottled  sculpin   in   a   southern   Appalachian   stream.   Transactions   of   the   American  Fisheries  Society  136:  1750-­‐1761.  

Porter  J.  H.  &  Dooley  Jr.  J.  L.  (1993)  Animal  dispersal  patterns:  a  reassessment  of  simple  mathematical  models.  Ecology  74:  2436-­‐2443.  

Prenda  J.,  Armitage  P.  D.  &  Grayston  A.  (1997)  Habitat  use  by  the  fish  assemblages  of  two  chalk  streams.  Journal  of  Fish  Biology  51:  64-­‐79.  

Pujolar  J.  M.,  Bevacqua  D.,  Capoccioni  F.,  Ciccotti  E.,  De  Leo  G.  A.  &  Zane  L.  (2009)  Genetic   variability   is   unrelated   to   growth   and   parasite   infestation   in   natural  populations   of   the   European   eel   (Anguilla   anguilla).   Molecular   Ecology   18:  4604-­‐4616.  

Pujolar   J.  M.,  Maes  G.  E.,  Vancoillie  C.  &  Volckaert  F.  A.  M.   (2006)  Environmental  stress   and   life-­‐stage   dependence   on   the   detection   of   heterozygosity-­‐fitness  correlations  in  the  European  eel,  Anguilla  anguilla.  Genome  49:  1428-­‐1437.  

Pusey   A.   E.   (1987)   Sex-­‐biased   dispersal   and   inbreeding   avoidance   in   birds   and  mammals.  Trends  in  Ecology  &  Evolution  10:  295-­‐299.  

Pusey  A.  E.  &  Wolf  M.  (1996)  Inbreeding  avoidance  in  animals.  Trends  in  Ecology  &  Evolution  11:  201-­‐206.  

Quinn   J.   L.   &   Cresswell   W.   (2005)   Personality,   anti-­‐predation   behaviour   and  behavioural  plasticity   in   the  chaffinch  Fringilla  coelebs.  Behaviour  142:  1377-­‐1402.2  

Réale   D,   Gallant   BY,   Leblanc   M,   Festa-­‐Bianchet   M.   2000.   Consistency   of  temperament   in  bighorn  ewes  and  correlates  with  behaviour  and   life  history.  Anim  Behav.  60:589-­‐597.  

Réale   D.,   Reader   S.   M.,   Sol   D.,   McDougall   P.   T.   &   Dingemanse   N.   J.   (2007)  Integrating   animal   temperament   within   ecology   and   evolution.   Biological  Reviews  82:  291-­‐318.  

Reaney  L.  T.  &  Backwell  P.  R.  Y.  (2007)  Risk-­‐taking  behavior  predicts  aggression  and  mating  success  in  a  fiddler  crab.  Behavioral  Ecology  18:  521-­‐525.  

Ricker  W.  E.  (1975)  Computation  and  interpretation  of  biological  statistics  of  fish  populations.  Bulletin  of  the  Fisheries  Research  Board  of  Canada  191:  1-­‐382.  

Robinson   B.   W.,   Wilson   D.   S.   &   Shea   G.   O.   (1996)   Trade-­‐offs   of   ecological  specialization:   an   intraspecific   comparison   of   pumpkinseed   sunfish  phenotypes.  Ecology  77:  170-­‐178.  

References  

162

Rodriguez   M.   A.   (2002)   Restricted   movement   in   stream   fish:   the   paradigm   is  incomplete,  not  lost.  Ecology  83:  1-­‐13.  

Rogers   K.   B.   (2002)   FishTel:   telemetry   analysis   package.   Version   1.4.   Colorado,  United  States  of  America:  Colorado  Division  of  Wildlife.    

Rogers   K.   B.   &  White   G.   C.   (2007)   Analysis   of   movement   and   habitat   use   from  telemetry  data.  In:  Guy  C.  S.  &  Brown  M.  L.,  eds.  Analysis  and  interpretation  of  freshwater   fisheries   data.   Bethesda   (Maryland),   United   States   of   America:  American  Fisheries  Society,  pp.  625-­‐676.  

Rosenzweig  M.  L.  (1991)  Habitat  selection  and  population  interactions:  the  search  for   mechanism.   The   American   Naturalist   137:   Supplement   Habitat   Selection  S5-­‐S28.  

Roussel   J.-­‐M.,   Haro   A.   &   Cunjak   R.   A.   (2000)   Field   test   of   a   new   method   for  tracking   small   fishes   in   shallow   rivers   using   passive   integrated   transponder  (PIT)  technology.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  57:  1326-­‐1329.  

Ruetz   C.   R.,   Earl   B.   M.   &   Kohler   S.   L.   (2006)   Evaluating   passive   integrated  transponder   tags   for   marking   mottled   sculpins:   effects   on   growth   and  mortality.  Transactions  of  the  American  Fisheries  Society  135:  1456-­‐1461.  

Salvanes   A.   G.   V.   &   Braithwaite   V.   A.   (2005)   Exposure   to   variable   spatial  information  in  the  early  rearing  environment  generates  asymmetries  in  social  interactions   in   cod   (Gadus  morhua).  Behavioral  Ecology   and   Sociobiology  59:  250-­‐257.  

Schlosser   I.   J.   &   Angermeier   P.   L.   (1995)   Spatial   variation   in   demographic  processes   of   lotic   fishes:   conceptual   models,   empirical   evidence,   and  implications  for  conservation.  American  Fisheries  Society  Symposium  17:  392-­‐401.  

Schoener  T.  W.   (1974)  Resource  partitioning   in   ecological   communities.   Science  185:  27-­‐39.  

Schuett   W.,   Tregenza   T.   &   Dall   S.   R.   X.   (2010)   Sexual   selection   and   animal  personality.  Biological  Reviews  85:  217-­‐246.  

Schulte-­‐Hostedde  A.  I.,  Zinner  B.,  Millar  J.  S.    &  Hickling  G.  J.  (2005)  Restitution  of  mass-­‐size  residuals:  validating  body  condition  indices.  Ecology  86:  155-­‐163.  

Selonen  V.  &  Hanski  I.  K.  (2010)  Condition-­‐dependent,  phenotype-­‐dependent  and  genetic-­‐dependent  factors  in  the  natal  dispersal  of  a  solitary  rodent.  Journal  of  Animal  Ecology  79:  1093-­‐1100.  

References  

      163

Shafer   A.   B.   A.,   Poissant   J.,   Côté   S.   D.   &   Coltman   D.   W.   (2011)   Does   reduced  heterozygosity   influence   dispersal?   A   test   using   spatially   structured  populations  in  an  alpine  ungulate.  Biology  Letters  7:  433-­‐435.  

Sih   A.   (2011)   Effects   of   early   stress   on   behavioural   syndromes:   an   integrated  adaptive  perspective.  Neuroscience  and  Biobehavioral  Reviews  35:  1452-­‐1465.  

Sih   A.   &   Watters   J.   V.   (2005)   The   mix   matters:   behavioural   types   and   group  dynamics  in  water  striders.  Behaviour  142:  1417-­‐1431.  

Sih   A.,   Bell   A.   &   Johnson   J.   C.   (2004)   Behavioral   syndromes:   an   ecological   and  evolutionary  overview.  Trends  in  Ecology  &  Evolution  19:  372-­‐378.  

Sinn  D.  L.,  Gosling  S.  D.  &  Moltschaniwskyj  N.  A.  (2008)  Development  of  shy/bold  behaviour   in   squid:   context-­‐specific   phenotypes   associated   with  developmental  plasticity.  Animal  Behaviour  75:  433-­‐442.  

Sinn   D.   L.   &  Moltschaniwskyj   N.   A.   (2005)   Personality   traits   in   dumpling   squid  (Euprymna   tasmanica):   context-­‐specific   traits   and   their   correlation   with  biological  characteristics.  Journal  of  Comparative  Psychology  119:  99-­‐110.  

Skalski  G.  T.  &  Gilliam  J.  F.   (2000)  Modeling  diffusive  spread   in  a  heterogeneous  population:  a  movement  study  with  stream  fish.  Ecology  81:  1685-­‐1700.  

Skyfield   J.   P.   &   Grossman   G.   D.   (2008)   Microhabitat   use,   movements   and  abundance   of   gilt   darters   (Percina   evides)   in   southern   Appalachian   (USA)  streams.  Ecology  of  Freshwater  Fish  17:  219-­‐230.  

Smith  B.  R.  &  Blumstein  D.  T.  (2008)  Fitness  consequences  of  personality:  a  meta-­‐analysis.  Behavioral  Ecology  19:  448-­‐455.  

Smithson  E.  B.  &   Johnston  C.  E.   (1999)  Movement  patterns  of   stream   fishes   in  a  Ouachita   Highlands   stream:   an   examination   of   the   restricted   movement  paradigm.  Transactions  of  the  American  Fisheries  Society  128:  847-­‐853.  

Smyly  W.   J.   P.   (1957)   The   life-­‐history   of   the   bullhead   or  Miller's   thumb   (Cottus  gobio  L.).  Proceedings  of  the  Zoological  Society  of  London  128:  431-­‐453.  

Stamps  J.  A.  (2007)  Growth-­‐mortality  tradeoffs  and  “personality  traits”  in  animals.  Ecology  Letters  10:  355-­‐363.  

Stamps   J.   A.   &   Groothuis   T.   G.   G.   (2010a)   Developmental   perspectives   on  personality:   implications   for  ecological  and  evolutionary  studies  of   individual  differences.  Philosophical  Transactions  of  the  Royal  Society  B  365:  4029-­‐4041.  

Stamps  J.  A.  &  Groothuis  T.  G.  G.  (2010b)  The  development  of  animal  personality:  relevance,  concepts  and  perspectives.  Biological  Reviews  85:  301-­‐325.  

References  

164

Stemshorn   K.   C.,   Nolte   A.   W.   &   Tautz   D.   (2005)   A   genetic   map   of   Cottus   gobio  (Pisces,  Teleostei)  based  on  microsatellites  can  be  linked  to  the  physical  map  of  Tetraodon  nigroviridis.  Journal  of  Evolutionary  Biology  18:  1619-­‐1624.  

Sundbaum   K.   &   Näslund   I.   (1998)   Effects   of   woody   debris   on   the   growth   and  behaviour  of  brown   trout   in  experimental   stream  channels.  Canadian   Journal  of  Zoology  76:  56-­‐61.  

Svanbäck   R.   &   Bolnick   D.   I.   (2007)   Intraspecific   competition   drives   increased  resource   use   diversity  within   a   natural   population.   Proceedings   of   the   Royal  Society  B  274:  839-­‐844.  

Svanbäck  R.,  Eklöv  P.,  Fransson  R.  &  Holmgren  K.  (2008)  Intraspecific  competition  drives   multiple   species   resource   polymorphism   in   fish   communities.   Oikos  117:  114-­‐124.  

Svärdson  G.  (1949)  Competition  and  habitat  selection  in  birds.  Oikos  1:  157-­‐174.  

Swanson   B.   O.,   Gibb   A.   C.,   Marks   J.   C.   &   Hendrickson   D.   A.   (2003)   Trophic  polymorphism   and   behavioral   differences   decrease   intraspecific   competition  in  a  cichlid,  Herichtys  minckleyi.  Ecology  84:  1441-­‐1446.  

Szulkin  M.,  Bierne  N.  &  David  P.  (2010)  Heterozygosity-­‐fitness  correlations:  a  time  for  reappraisal.  Evolution  64:  1202-­‐1217.  

Szulkin  M.  &  Sheldon  B.  C.  (2008)  Dispersal  as  a  means  of  inbreeding  avoidance  in  a  wild  bird  population.  Proceedings  of  the  Royal  Society  of  London  B  275:  703-­‐711.  

Tews  J.,  Brose  U.,  Grimm  V.,  Tielbörger  K.,  Wichmann  M.  C.,  Schwager  M.  &  Jeltsch  F.   (2004)  Animal   species  diversity  driven  by  habitat  heterogeneity/diversity:  the  importance  of  keystone  structures.  Journal  of  Biogeography  31:  79-­‐92.  

Tomlinson   M.   L.   &   Perrow   M.   R.   (2003)   Ecology   of   the   bullhead.   Conserving  Natura   2000   Rivers   Ecology   Series   No.   4.   Peterborough,   United   Kingdom:  English  Nature.    

Van  Oers  K.  &  Mueller   J.  C.   (2010)  Evolutionary  genomics  of  animal  personality.  Philosophical  Transactions  of  the  Royal  Society  B  365:  3991-­‐4000.  

Van  Oers  K.,  Klunder  M.  &  Drent  P.  J.  (2005)  Context  dependence  of  personalities:  risk-­‐taking  behavior   in   a   social   and  a  nonsocial   situation.  Behavioral  Ecology  16:  716-­‐723.  

Van  Liefferinge  C.,  Seeuws  P.,  Meire  P.  &  Verheyen  R.  F.  (2005)  Microhabitat  use  and   preferences   of   the   endangered   Cottus   gobio   in   the   River   Voer,   Belgium.  Journal  of  Fish  Biology  67:  897-­‐909.  

References  

      165

Van   Oosterhout   C.,   Weetman   D.   &   Hutchinson   W.   F.   (2006)   Estimation   and  adjustment   of   microsatellite   null   alleles   in   nonequilibrium   populations.  Molecular  Ecology  Notes  6:  255-­‐256.  

Verbeek   M.   E.   M.,   Drent   P.   J.   &   Wiepkema   P.   R.   (1994)   Consistent   individual  differences  in  early  exploratory  behaviour  of  male  great  tits.  Animal  Behaviour  48:  1113-­‐1121.  

Wallace  R.  R.,  Hynes  H.  B.  N.  &  Kaushik  N.  K.   (1975)  Laboratory  experiments  on  factors   affecting   the   activity   of   Gammarus   pseudolimnaeus   Bousfield.  Freshwater  Biology  5:  533-­‐546.  

Weber   E.   D.   &   Fausch   K.   D.   (2003)   Interactions   between   hatchery   and   wild  salmons   in   streams:   differences   in   biology   and   evidence   for   competition.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  60:  1018-­‐1036.  

Webster  M.  M.,  Ward  A.  J.  W.  &  Hart  P.  J.  B.  (2007)  Boldness  is  influenced  by  social  context   in   threespine   sticklebacks   (Gasterosteus   aculeatus).   Behaviour   144:  351-­‐371.  

Werner  E.  E.  &  Hall  D.   J.   (1976)  Niche  shifts   in  sunfishes:  experimental  evidence  and  significance.  Science  191:  404-­‐406.  

Whoriskey   F.   G.,   Fitzgerald   G.   J.   &   Reebs   S.   G.   (1986)   The   breeding-­‐season  population   structure   of   three   sympatric,   territorial   sticklebacks   (Pisces:  Gasterosteidae).  Journal  of  Fish  Biology  29:  635-­‐648.  

Wilson  A.  D.  W.  &  McLaughlin  R.  L.  (2007)  Behavioural  syndromes  in  brook  charr,  Salvelinus   fontinalis:   prey-­‐search   in   the   field   corresponds   with   space   use   in  novel  laboratory  situations.  Animal  Behaviour  74:  689-­‐698.  

Wilson   D.   S.   (1998)   Adaptive   individual   differences   within   single   populations.  Philosophical  Transactions  of  the  Royal  Society  of  London  B  353:  199-­‐205.  

Wilson  D.  S.,  Clark  A.  B.,  Coleman  K.  &  Dearstyne  T.  (1994)  Shyness  and  boldness  in  humans  and  other  animals.  Trends  in  Ecology  &  Evolution  9:  442-­‐446.  

Wilson  D.  S.,  Coleman  K.,  Clark  A.  B.  &  Biederman  L.  (1993)  Shy-­‐bold  continuum  in  pumpkinseed   sunfish   (Lepomis   gibbosus):   an   ecological   study   of   a  psychological  trait.  Journal  of  Comparative  Psychology  107:  250-­‐260.  

Winter   H.   V.   &   Fredrich   F.   (2003)   Migratory   behaviour   of   ide:   a   comparison  between   the   lowland   rivers   Elbe,   Germany,   and   Vecht,   The   Netherlands.  Journal  of  Fish  Biology  63:  871-­‐880.  

Wolf  M.,  Van  Doorn  G.  S.,  Leimar  O.  &  Weissing  F.  J.  (2007)  Life-­‐history  trade-­‐offs  favour  the  evolution  of  personalities.  Nature  447:  581-­‐584.  

References  

166

Wolf   M.,   Van   Doorn   G.   S.   &   Weissing   F.   J.   (2008)   Evolutionary   emergence   of  responsive   and   unresponsive   personalities.   Proceedings   of   the   National  Academy  of  Science  USA  14:  15825-­‐15830.  

Young  M.  K.   (1999)  Summer  diel  activity  and  movement  of  adult  brown  trout   in  high-­‐elevation  streams  in  Wyoming,  U.S.A.  Journal  of  Fish  Biology  54:  181-­‐189.  

Young  M.  K.,  Rader  R.  B.  &  Belish  T.  A.  (1997)  Influence  of  macroinvertebrate  drift  and   light   on   the   activity   and   movement   of   Colorado   river   cutthroat   trout.  Transactions  of  the  American  Fisheries  Society  126:  428-­‐437.  

Zollner  P.  A.  &  Lima  S.  L.   (1999)  Search  strategies   for   landscape-­‐level   interpatch  movements.  Ecology  80:  1019-­‐1030.